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Implementation and evaluation of a text
extraction tool for adverse drug reaction
information

Gunnar Dahlberg
Sammanfattning

Inom ramen for Virldshélsoorganisationens (WHO:s) internationella biverk-
ningsprogram rapporterar sjukvardspersonal och patienter misstankta likemedels-
biverkningar i form av spontana biverkningsrapporter som via nationella myn-
digheter skickas till Uppsala Monitoring Centre (UMC). Hos UMC lagras rap-
porterna i VigiBase, WHO:s biverkningsdatabas. Rapporterna i VigiBase analy-
seras med hjéilp av statistiska metoder for att hitta potentiella samband mellan
lakemedel och biverkningar. Funna samband utvéirderas i flera steg dar ett tidigt
steg 1 utvarderingen &r att studera den medicinska litteraturen for att se om sam-
bandet redan &r ként sedan tidigare (tidigare kéinda samband filtreras bort fran
fortsatt analys). Att manuellt leta efter samband mellan ett visst lakemedel och
en viss biverkan ar tidskravande.

I den hér studien har vi utvecklat ett verktyg for att automatiskt leta efter
medicinska biverkningstermer i medicinsk litteratur och spara funna samband i
ett strukturerat format. I verktyget har vi implementerat och integrerat funktion-
alitet for att soka efter medicinska biverkningar pa olika sitt (utnyttja synonymer,
ta bort dndelser pa ord, ta bort ord som saknar betydelse, godtycklig ordfoljd och
stavfel). Verktygets prestanda har utvirderats pa manuellt extraherade medicinska
termer fran SPC-texter (texter fran likemedels bipacksedlar) och pa biverknings-
texter fran Martindale (medicinsk referenslitteratur for information om likemedel
och substanser) dir WHO-ART- och MedDRA-terminologierna har anvints som
kélla for biverkningstermer. Studien visar att sofistikerad textextraktion avsevért
kan forbattra identifieringen av biverkningstermer i biverkningstexter jamfort med
en ordagrann extraktion.
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Uppsala Universitet



Implementation and evaluation of a text extraction tool for adverse
drug reaction information

Gunnar Dahlberg
Abstract

Background: Initial review of potential safety issues related to the use of medicines
involves reading and searching existing medical literature sources for known associations
of drug and adverse drug reactions (ADRs), so that they can be excluded from further
analysis. The task is labor demanding and time consuming.

Objective: To develop a text extraction tool to automatically identify ADR informa-
tion from medical adverse effects texts. Evaluate the performance of the tool’s underlying
text extraction algorithm and identify what parts of the algorithm contributed to the
performance.

Method: A text extraction tool was implemented on the .NET platform with func-
tionality for preprocessing text (remowval of stop words, Porter stemming and use of
synonyms) and matching medical terms using permutations of words and spelling vari-
ations (Soundez, Levenshtein distance and Longest common subsequence distance). Its
performance was evaluated on both manually extracted medical terms (semi-structured
texts) from summary of product characteristics (SPC) texts and unstructured adverse
effects texts from Martindale (i.e. a medical reference for information about drugs and
medicines) using the WHO-ART and MedDRA medical term dictionaries.

Results: For the SPC data set, a verbatim match identified 72% of the SPC terms.
The text extraction tool correctly matched 87% of the SPC terms while producing one
false positive match using removal of stop words, Porter stemming, synonyms and per-
mutations. The use of the full MedDRA hierarchy contributed the most to performance.
Sophisticated text algorithms together contributed roughly equally to the performance.
Phonetic codes (i.e. Soundex) is evidently inferior to string distance measures (i.e. Lev-
enshtein distance and Longest common subsequence distance) for fuzzy matching in our
implementation. The string distance measures increased the number of matched SPC
terms, but at the expense of generating false positive matches. Results from Martindale
show that 90% of the identified medical terms were correct. The majority of false positive
matches were caused by extracting medical terms not describing ADRs.

Conclusion: Sophisticated text extraction can considerably improve the identifica-
tion of ADR information from adverse effects texts compared to a verbatim extraction.

KEY WORDS: Text extraction, Adverse drug reactions, Permutation, Soundex, Lev-
enshtein distance, Longest common subsequence distance, Porter stemming
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VOCABULARY

Vocabulary

API Application Programming Interface
ADR Adverse Drug Reaction

CSV Comma-Separated Values

DBMS Database Management System
DLL Dynamically Linked Library

EMA European Medicines Agency

GUI Graphical User Interface

IC Information Component

ICSR Individual Case Safety Report
LCS Longest Common Subsequence
MedDRA Medical Dictionary for Regulatory Activities
SPC Summary of Product Characteristics

TextMiner TextMiner is the name of the application developed as part of this
master thesis project.

UMC Uppsala Monitoring Centre

VigiBase™ The world’s largest database of spontaneous individual case reports
of suspected adverse drug reactions (contains over 5 million reports).

WHO World Health Organization
WHO-ART World Health Organization Adverse Reaction Terminology
XML eXtensible Markup Language



1 INTRODUCTION

1 Introduction

This master thesis in medical bioinformatics has been conducted at Uppsala Mon-
itoring Centre (UMC), the WHO Collaborating Centre for International Drug
Monitoring in Uppsala. Supervisors for the project are Tomas Bergvall, research
engineer, and Niklas Norén, manager of the research department. The project is
about implementing and evaluating the performance of a text extraction tool that
can isolate adverse drug reaction (ADR) information from free texts. Such a tool
would provide valuable support in the initial review of potential drug safety signals

at UMC.

1.1 Adverse Drug Reaction Surveillance

Pre-market clinical trials are limited in both time and scope. The post-market
monitoring of drugs is therefore vital for establishing drug safety [25]. The WHO
Programme for International Drug Monitoring was established in 1968 aiming
to assess and monitor risks of drugs and other substances used in medicine to
improve public health worldwide. Since 1978, UMC has the scientific and technical
responsibility for the WHO programme. UMC is responsible, on behalf of WHO,
for collecting, monitoring, analyzing and communicating drug safety information to
member countries of the WHO programme [19]. The network of member countries
has steadily grown from 10 in 1968 to 100 full member countries as of September
2010 [20]. The global individual case safety report (ICSR) database, VigiBase™,
is the world’s largest ICSR database [25] and contains reports submitted to the
center since the WHO programme was initiated in 1968. The case reports are
provided by physicians, other health care professionals and patients from member
countries of the WHO programme [3]. As of September 2010, there are more than
5 million reports in VigiBase™.

One of the main responsibilities of UMC is to detect and communicate drug

safety issues to all the national centers participating in the WHO programme [20].
On a quarterly basis UMC performs routine data mining of VigiBase™ to find
new safety signals according to the WHO definition of a signal:
"Reported information on a possible causal relationship between an adverse event
and a drug, the relation being unknown or incompletely documented previously.
Usually more than one report is required to generate a signal, depending on the
seriousness of the event and the quality of the information"[8].

The large size of the data set requires automatic methods for finding asso-
ciations effectively. UMC uses a range of data mining and medical rule-based
algorithms to mine pharmacovigilance data in order to find new potential drug-
ADR signals [3, 25, 28|. The data mining systems allow for an automated way
of highlighting those drug-ADR. associations in VigiBase™ that require further
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attention [28]. The automated method is a major improvement of the previous,
completely manual, signal detection process and is today used as a routine method
for detecting potential drug-ADR signals [3].

Potential signals are reviewed by the signal detection team at UMC. Initial
review includes checking the quality of ICSRs and manual literature checks where
medical literature is studied to see what is already known about the drug and the
ADR. Already known and reported drug-ADR combinations are down-prioritized.
Much time at UMC is spent on searching medical literature for known and well-
described drug-ADR combinations. UMC estimates that in 2009 around 70-100
hours were spent on checking literature and the quality of ICSRs per signal cycle
(last year there were 4 cycles), the major part being literature checking (Richard
Hill, personal communication, September 17, 2010).

Remaining combinations are sent to a panel of international drug safety experts
for in-depth review. Combinations that remain after the expert panel’s clinical
review fulfill the WHO signal definition and are summarized and reported in a
quarterly released SIGNAL document. It is distributed to all national drug safety
centers and pharmaceutical companies participating in the WHO Programme for
International Drug Monitoring [28|. Figure 1 describes a schematic overview of
the signal detection work flow at UMC.

In-depth
ICSRs review
SIGNAL
document
= i .
Data mining Initial review
Data #* Can be more effective by support of automated

text extraction tool

Figure 1: Signal detection process. Schematic overview of the sequential steps
involved in the signal detection process at UMC. Potential drug-ADR combinations are
detected by data mining methods—Bayesian disproportionality-based methods (using
information component (IC) measure) and medical triage analysis [3, 28]. Initial review
includes manual literature checks to search for and filter away known and described drug-
ADR combinations. A text extraction tool can make this step more effective. In-depth
review is performed by a panel of clinical experts.

Around 50% of all potential signals are filtered out because they are already
in the literature (Richard Hill, personal communication, September 17, 2010).
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The manual process can be improved: a text extraction tool to quickly find ADR
information in medical texts would provide valuable support and enhancement.
The tool is not supposed to replace human efforts, but to improve the speed
and provide easy access to valuable and relevant information during the signal
evaluation assessments. At UMC there is an earlier implementation of a text
extraction algorithm considering some of the functionalities included in our text
extraction tool [6]. Our implementation adds support for identifying ADR terms
with spelling mistakes, has improved the efficiency for identifying ADR terms with
word permutations and is developed on the .NET platform, the current production
environment at UMC (the earlier implementation was developed in Perl).

1.2 Text Extraction

In medical research the amount of new published articles with data pertaining to
protein, gene and molecular interactions/functionalities increases rapidly. Much
information is given as unstructured texts. Individual researchers are often unable
to keep up with the fast pace of new information accumulation [11]. To handle all
the data, systems have been developed to automatically extract knowledge about
proteins, genes and other molecular interactions and relationships from the text
of published articles and store the information in databases in a computer read-
able format [1, 7, 11, 29]. There are systems to automate extraction of molecular
pathways [11], protein-protein interactions [12, 29| and gene/protein biological
functions from unstructured text [1]. When the information is stored in a struc-
tured form, it allows for further analysis of the data. This provides an approach
to manage the high rate of new information and making it available to researchers
in a more accessible way.

It is easy to acknowledge the potential of a text extraction system that is
able to parse and understand text. The task is, however, complex and daunt-
ing. The complexity originates from the fact that words can have more than one
meaning (polysemy) and more than one word can be used to express a meaning
(synonyms)—word and meaning have a many-to-many relationship. Natural lan-
guage is also very flexible, it evolves rapidly—grammatical rules are stretched,
new words are added, new modern expressions emerge and old expressions may be
dropped [16]. The high rate of change makes it difficult to develop parsers that will
last for a longer period of time. Sentences in text can often have more than one
possible parse and determining the correct one requires additional information as
context or other prior knowledge. In many cases, the single parsing of a sentence
cannot be determined due to the ambiguous nature of the text [16].

Text extraction is a first step to perform text mining. Common functions of text
mining applications are clustering/categorization of documents (documents within
the same cluster are related based on certain characteristics), summarization of
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documents and trend analysis [16]. Text mining tools have applications in various
areas that share the characteristic of handling large volumes of text. Data mining
and text mining share many common characteristics—both aim at finding hidden
information (i.e. patterns, relationships, trends) in large sources of data using
algorithms from machine learning, statistics and artificial intelligence. The big
difference is that data mining deals with structured numerical data whereas text
mining deals with unstructured text. In both text and data mining the results are
heavily dependent on the source data.

1.3 Objective

The aim of this thesis project is to develop a text extraction tool that can be
used to identify ADR information from unstructured text in existing literature
sources. Different techniques for preprocessing and matching text will be used and
evaluated in terms of number of false positive drug-ADR associations and number
of drug-ADR associations missed by the algorithm.

To summarize, the objective of the project is to:

1. Implement a text extraction tool on the .NET platform to extract ADR
information from free text

2. Evaluate the performance of the tool’s underlying algorithm on adverse ef-
fects texts and extracted semi-structured medical terms under different pa-
rameter settings

3. Identify what parts of the algorithm contributed most to the performance

1.4 Outline

The report is organized in six main chapters. The first chapter provides the reader
with an introduction to the fields of ADR surveillance and text extraction and
states the objective of the project. The second chapter covers background theory
of the algorithms used within the text extraction algorithm. The third chapter
discusses the material and methods— it presents all data set sources and the text
extraction algorithm. The fourth chapter presents technical results from imple-
mentation and results from the evaluation of the text extraction algorithm perfor-
mance. In the fifth chapter we discuss the results and highlight some interesting
areas for future work. The last chapter concludes the study. Five appendices
provide supplementary information. Appendix A describes a classical permuta-
tion algorithm implemented in the text extraction tool, Appendix B summarizes
the text extraction algorithm parameters, Appendix C gives the stop words and
synonyms used in the algorithm performance evaluation, Appendix D shows the
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graphical user interface (GUI) of TextMiner (the developed application) and Ap-
pendix E discusses how to use the TextMiningTools dynamically linked library to
execute the text extraction algorithm through code.

2 Background—Algorithms

This section covers theory of the text algorithms used within the text extraction
algorithm to provide its different matching capabilities. The theory will serve
as background knowledge to the reader when the text extraction algorithm is
explained in the next section.

2.1 Removal of Stop Words

The text extraction algorithm makes use of a list of stop words. Stop words
are words that do not contain any significant information, e.g. prepositions and
conjunctions such as and, in, if, else, or, but etc. Other words that have no
meaning in the specific text search can also be included in the list. Stop words are
removed from the medical texts and terms to reduce the number of words for the
text extraction process.

2.2 Synonyms

Synonyms are words that are regarded as equivalent in the text extraction process.
Medical texts and terms can contain words with different word stems that still
share the same meaning, e.g. decrease and lower, convulsion and seizure etc. A
list of synonyms is used by the text extraction algorithm to give a possibility to
match terms with text where the words are completely different but still share the
same meaning.

2.3 Stemming

Stemming is a process of removing suffixes from words and is often used in infor-
mation retrieval (IR) systems [27]. In such systems, there is typically a collection
of documents where each document is described by a vector of terms (words) ex-
tracted from the respective document. Similar terms with different suffixes often
have the same meaning and by using suffix removal those terms can be grouped
into the same term group based on equal word stems. This increases the perfor-
mance and reduces the number of unique terms in the IR system which results in
lower data complexity [27].

10
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We use the Porter stemming algorithm for suffix removal on all words in the
medical texts and on the words in the medical terms. The algorithm uses a list of
suffixes and for each single suffix there are specific rules for when to remove it from
a word to leave only the stem. Porter points out that the algorithm certainly will
not give successful results in all cases. There are English words where the suffix
completely changes the meaning of the word (Porter gives the example of "probe’
and ’'probate’) and in those cases it will be wrong to remove the suffix. There are
also words where the word stem changes with the addition of a suffix (e.g. index
and indices) [27].

The algorithm consists of several steps, where each step contains specific suffix
stripping rules. A word to be stemmed will pass the different steps of the algorithm
sequentially. Simple suffixes will be stripped in a single step whereas more complex
suffixes will be stripped one part at a time by several steps. We do not intend
to describe the details of all suffix stripping rules involved in the algorithm, but
merely give the reader knowledge about the functionality the algorithm provides.
For full cover of the algorithm and the suffix stripping rules for each step, please see
the detailed description by Porter [27]. We use a freely available implementation
of the Porter Stemming algorithm written in C# [2].

Table 1 shows examples of words and the results from applying the Porter
stemming algorithm.

Table 1: Porter stemming

Original word | Stemmed word
hepatitis hepat
generalizations | gener

hepatic hepat

dyskinesia dyskinesia
convulsions convuls
hypertrichosis hypertrichosi
osteoporosis osteoporosi

Example of words and results from applying the Porter stemming algorithm. Note that
both hepatitis and hepatic are conflated into the same word hepat. Dyskinesia is not
affected by the Porter Stemming algorithm. Not all words will be affected by the algo-
rithm. In a vocabulary of 10,000 words tested by Porter, there were 3650 words that
were unaffected by the Porter stemming algorithm [27].

11
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2.4 Permutation

In our application we have a need to find permutations of the words that constitute
a medical term. In a medical term the same word can sometimes occur multiple
times. The task is therefore to find complete permutations of a set or multiset
of words. We have implemented two algorithms. First, a classical algorithm to
generate the possible permutations in lexicographical order (see Appendix A).

A second algorithm uses a completely different scheme for finding term per-
mutations. Instead of first generating all possible permutations of a medical term
(using the algorithm above) and then performing the search with all permutations,
a search is performed for each individual word within the medical term. All word
matches within the medical text are stored together with the position in the text
where they were found. When all individual words within the medical term have
been used for searching we need to check all the found word matches. If there are
word matches for each single word within the term and these word matches are
positioned in the text within the length of the medical term, then we have found
a term permutation.

2.5 Approximate String Matching

Approximate string matching is used to enhance information retrieval of free text.
To utilize approximate string matching we need a method to assess whether two
strings are similar. We must also be able to quantify the similarity or differ-
ence [10]. The text extraction algorithm provides approximate string matching
by using two string distance measures (Levenshtein distance and LCS distance)
and phonetic codes (Soundex). String distance measures are based on calculating
a numerical estimate of the differences between two strings. These calculations
are based on either the number of character differences between the character se-
quences of two strings or the number of edits that is required to transform one
string into the other [31]. Phonetic codes transforms strings into phonetic codes
and the strings are considered similar if their corresponding phonetic codes are
identical [31].

2.5.1 Soundex

The Soundex algorithm is a phonetic algorithm (i.e. words are coded based on their
pronunciation). The original Soundex algorithm was invented by Robert C. Russell
and Margaret K. Odell and patented in the beginning of the 20th century [26].
There are several variations of the algorithm. The simplified Soundex algorithm
became popular after being described by Donald Knuth [14]|. It is the version
used in our text extraction tool. We use a freely available implementation of the

12
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simplified Soundex algorithm written in C# [4]. The simplified Soundex algorithm
applies a set of well-defined rules to a string to generate a four-character code
consisting of a letter followed by three digits. The rules are based on the English
pronunciation of words. The point is that words with similar pronunciation will
receive identical Soundex codes. This allows for fuzzy string matching based on
the pronunciation of words instead of their exact literal spelling. A limitation
of the simplified Soundex algorithm is that it only applies to English words, i.e.
applying it to words of other languages will not give any meaningful results. An
outline of the steps in the simplified Soundex algorithm is as follows [14]:

e All characters in the string except the English letters A to Z are ignored.
e Extract the first letter in the string. It is the first letter in the Soundex code.

e Transform the remaining characters to digits according to the following rules:

- 0:AOUELH WorY
— 1. B,F,PorV

-2.C G, J, K, Q,S, XorZ
— 3 DorT

— 4: L

— 5 MorN

- 6: R

e When adjacent digits are the same, remove all digits except for one.
e Remove all zero characters.

e As a final step, force the Soundex code to be 4 characters long by appending
zero characters if it is too short or use truncation if it is too long.

Below follows a couple of examples to illustrate how the algorithm works.

Example 1 Let us say we want to assign a Soundez code to LEXICON.

The first letter L is extracted to be the first letter of the Soundex code. Neuxt,
transforming remaining characters to digits give 020205. No adjacent digits are
the same. Removal of zero characters gives 225. The Soundex code is L225. No
truncation or appending of zero characters is needed.

Example 2 Assign a Soundex code to DICTIONARY.

The first letter D is extracted. Next, remaining characters are transformed to
digits, which give us 023005060. Removal of adjacent digits results in 02305060.
Removal of zero characters gives us 2356. The Soundex code is now D2356. As
a final step, we force the Soundex code to be 4 characters long. Thus, the final
Soundex code becomes D235.

13
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2.5.2 Levenshtein Distance

The Levenshtein distance is an edit distance metric for measuring the difference
between two strings. The allowed edit operations are insertion, deletion and sub-
stitution of a single character. The Levensthein distance is the minimum number
of edit operations (insertions, deletions and substitutions of single characters) re-
quired to turn one string into the other [17].

Our implementation of computing Levenshtein distance of two strings uses a
dynamic programming approach to solve the task. A. Lew and H. Mausch define
dynamic programming as "a method that in general solves optimization problems
that involve making a sequence of decisions by determining, for each decision, sub-
problems that can be solved in like fashion, such that an optimal solutions of the
original problem can be found from optimal solutions of subproblems” [18|. Dy-
namic programming approaches have been applied to numerous problems within
bioinformatics involving string processing and sequencing. For dynamic program-
ming to become computationally efficient the subproblems should be overlapping
such that results from subproblems only need to be computed once and can then
be reused within the algorithm [18].

Below is pseudo code for our implementation of computing Levenshtein distance
of two strings.

FUNCTION LevenshteinDist(first : STRING, second : STRING) : INTEGER

SET m to length[first]
SET n to length[second]
SET editMatrix[0,0] to O

FOR i =1 tom
SET editMatrix[i,0] to editMatrix[i-1,0] + 1
FOR j =1 ton
SET editMatrix[0,j] to editMatrix[0,j-1] + 1

FOR i =1 tom

FOR j =1 ton
SET optionl to editMatrix[i-1,j] + 1
SET option2 to editMatrix[i,j-1] + 1

IF (first[i-1] == second[j-1])
SET editCost to O

ELSE

SET editCost to 1

14
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21 SET option3 to editMatrix[i-1,j-1] + editCost
22 SET editMatrix[i,j] to min(optionl,option2,option3)
23

24 RETURN editMatrix[m,n]
25 END FUNCTION

As seen in the pseudo code a matrix is used to store results of subproblems.
In this way results of new subproblems can be computed with the help of results
of previously calculated subproblems. First there is an initialization step where
the matrix is initialized—the upper left position is assigned 0 and the cells in the
first row and first column is initialized with values incremented with 1 for each
step. The algorithm iterates over all rows in the matrix. For each row it iterates
over all columns and computes the Levenshtein distance of substrings up to this
position. To compute the Levenshtein distance value for a particular cell, it uses
the previously computed Levenshtein distances of shorter substrings. The final
Levenshtein distance for the two input strings is equal to the value found in the
lowest right cell of the matrix.

In our implementation we assume a penalty of 1 for deletions, substitutions
and insertions. The algorithm and the dynamic programming solution were devel-
oped in the Soviet Union within the area of coding theory [17]. In the literature
there are examples of extending the basic algorithm in different ways [21]. One
example is to allow substitutions, deletions and insertions to have different weights
depending on the characters involved in the edit operation. To develop and define
penalty matrices for edit operations one can consider adjacency of characters on
the keyboard [10].

The example below shows how to reason to find the Levenshtein distance measure.

Example 3 Compute Levenshtein distance of ABDOMINAL and NOMINAL.
ABDOMINAL can be transformed into NOMINAL by deletion of the first
character A, the second character B and substitution of the third character D to
N. Therefore the Levenshtein distance is 3.

2.5.3 Longest Common Subsequence

The longest common subsequence (LCS) is another measure that can be used to
quantify the difference between two strings and hence be used in approximate
string matching [24]. A subsequence differs from a substring—in a subsequence
the characters do not have to be consecutive. The text extraction algorithm has
an implementation of computing the longest common subsequence of two strings.
Below is pseudo code for our implementation.

15



3 MATERIALS & METHODS

= s = e
T = W N = O

1 FUNCTION LCS(first : STRING, second : STRING) : INTEGER
2 SET m to length[first]
3 SET n to length[second]
4 FOR i =0 tom
5 FOR j =0 ton
6 IF (i == 0 or j == 0)
7 SET resultMatrix[i,j] to O
8 ELSE IF (first([i-1] == second[j-1])
9 SET resultMatrix[i,j] to
resultMatrix[i-1,j-1] + 1
ELSE
SET resultMatrix[i,j] to
max (resultMatrix[i-1,j], resultMatrix[i,j-1])
RETURN resultMatrix[m, n]
END FUNCTION

—_
(@)

LCS is a similarity measure, where a higher value indicates a higher degree of
similarity. Levenshtein distance, on the other hand, is a difference measure (i.e.
higher values indicate a higher degree of difference). To transform LCS into a
difference measure like Levenshtein distance, we use equation 1:

LCS; = maz(s;.Length, sy.Length) — LCS(s1, s2) (1)

it guarantees, 0 < LC'S; < max(sy.Length, so.Length)

Below is an example of computing LCS and LC'S; for two strings.

Example 4 Compute LCS and LC'S; of HORDOLEUM and HORDEOLUM.
The longest common subsequence string is H—O—R—D—O—L—U—M, thus
the longest common subsequence is 8. Both HORDOLEUM and HORDE-
OLUM have length 9, so LCS; =9 —8 =1. (Note 1: the Levenshtein distance
of HORDOLEUM and HORDEOLUM is 2. An E has to be both deleted and
inserted to transform one string into the other. Note 2: the longest common
substring is H—O—R—D.)

3 Materials & Methods

The section begins with a discussion of the medical text and medical terminology
sources that have been used. We then specify our implementation of the text
extraction algorithm. The section then covers the methods used for evaluating the
text extraction algorithm and implementing the text extraction tool.
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3.1 Text Sources

The text extraction algorithm requires both a medical text source (consisting of
free text descriptions of ADRs for drugs) and a medical terminology source as
input data. Each medical term in the terminology is searched for in the medical
text source.

The medical text source should consist of a list of medical entries where each
entry must contain data for a specific drug and its ADR text. The ADR texts will
be searched by the text extraction algorithm. In the project two different medical
text sources have been utilized, namely Martindale: The Complete Drug Reference
[23] and manually extracted Summary of Product Characteristics (SPC) texts.

The medical terminology source should consist of a list of medical terms. A
terminology is defined as a "set of terms representing the system of concepts of a
particular subject field"[13]. Terminologies can be simple enumerations of terms or
have a more sophisticated organization where terms are assigned to classes, groups
or categories [20]. WHO-ART and MedDRA were used as medical terminologies
by the text extraction algorithm (both are hierarchical terminologies).

3.1.1 Martindale: the Complete Drug Reference

Martindale provides a medical reference for information about drugs and medicines
of clinical interest internationally [30]. Besides providing information about drugs
in clinical use other types of substances like vitamins, contrast media and toxic
substances are included. The information about a substance is divided into sec-
tions that cover different properties and aspects. The type of information available
vary among substances. A few examples of information that can be provided are
molecular descriptions, interactions, pharmacokinetics, preparations, uses and ad-
ministration, withdrawal, precautions, dependence, adverse effects and treatment
of adverse effects. The first publication of Martindale came in 1883 [30]. The
version of Martindale used in the project includes data up to October 2009 [23].

As discussed above, Martindale holds more information for each substance than
is needed in our application. We are only interested in the known ADRs of each
substance. Therefore as a first step the ADR texts for each substance must be
isolated from Martindale. The extracted texts can then be provided as input to
the text extraction algorithm (see figure 2).

Martindale is available in electronic format as an XML-file [23]. In the XML,
a coding system with prime numbers is used to distinguish information in sec-
tions as belonging to different categories. Sometimes a specific section will contain
information which is a combination of several categories. In those cases the indi-
vidual prime numbers are multiplied. The extraction of ADR texts is accomplished
in code by examining the prime numbers of sections and extracting the text for
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sections containing adverse reaction information.

<?xml version="1.0" ...>

ADR text
<book> . Substance e

Substance | ADR text

Input to
Substance | ADR text text extraction
algorithm

</book= Substance | ADR text

Martindale XML-file Extracted ADR texts

Figure 2: ADR texts isolation from Martindale. A schematic view of the ADR
texts isolation from Martindale. The process generates a list of substances and their
respective ADR text. This list serves as input to the text extraction algorithm.

3.1.2 Extracted SPC Texts

SPC texts are found on the leaflet accompanying a drug when purchased. It pro-
vides information about dosage, manufacturer, usage, precautions, adverse effects
etc. The data set of SPC texts used for the project originates from the European
Medicines Agency (EMA). Each SPC text (belonging to a specific drug) has been
preprocessed by manual extraction of ADR terms from the adverse effects section.
The data set therefore consists of one or more texts (i.e. one for each extracted
ADR term) for each drug.

As described above, the nature of the extracted SPC texts will differ from the
ADR texts extracted from Martindale:

e Fach text consists of text for what is assumed to be one isolated ADR term.

e The texts are much shorter.

3.1.3 WHO-ART

WHO Adverse Reaction Terminology (WHO-ART) is a medical terminology dic-
tionary maintained by UMC (see figure 3). It has been developed specifically for
the WHO Programme for International Drug Monitoring [20].
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System Organ Class (32)
(SOC)

High Level Term (188)
(HLT)

Preferred Term (2175)
(PT)

Included Term (5792)
(Im)

Figure 3: WHO-ART hierarchy. The WHO-ART hierarchy consists of four levels.
The numbers in parenthesis show the number of terms for the respective hierarchy level
(as of September 2010). Included terms are most detailed. The preferred terms (PTs)
often allow precise identification of a reaction [20]. The set of terms for different levels
can have overlapping elements.

3.1.4 MedDRA

In 1989 the UK Medicines Control Agency (MCA) identified a need for a new med-
ical terminology to assist in storage of drug regulation data. This marks the start
of the development of the Medical Dictionary for Regulatory Activites (MedDRA).
MedDRA covers symptoms, diagnoses, therapeutic indications, adverse drug re-
actions, medical procedures and more. It is developed with the aim to provide a
single comprehensive and internationally accepted medical dictionary to be used
in pre- and postmarket regulatory processes [5].
MedDRA is structured into an hierarchical tree with five levels, see figure 4.

System Organ Class (26)
(soc)

High Level Group Terms (335)
(HLGT)

High Level Terms (1709)
(HLT)

Preferred Terms (18786)
(PT)

Lowest Level Terms (68258)
(LLT)

Figure 4: MedDRA hierarchy. A schematic view of the five levels in the MedDRA
hierarchy. The number of terms for each hierarchy level in the latest version of MedDRA
(version 13.0 from March 2010) is shown in parenthesis.
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3.2 Text Extraction Algorithm

As described earlier, the algorithm requires a list of ADR texts and a medical term
dictionary as input data. It has several parameters that will set up and affect how
the text extraction process will be performed (see Appendix B for a complete list
of parameters including descriptions).

The high level steps of the algorithm are:

e Initialize all algorithm parameters (if there are parameters not set, default
values will be read from an XML-file)

e Sort all the medical terms (in descending order based on the number of letters
they contain)

e Clean all medical terms (replace all non-alphanumeric characters in the text
with spaces and replace long stretches of space with a single space character)

e Preprocess all medical terms (possibly using removal of stop words, Porter
stemming, Soundezx, synonyms)

e Go through each ADR text. For each text:

— Clean ADR text (same procedure as for medical terms)

— Preprocess the ADR text (using the same methods as when preprocess-
ing the medical terms)

— Search the preprocessed text using the preprocessed terms to get a
list of matches (possibly using permutation, Levenshtein distance, LCS
distance)

— Filter away partial text matches, i.e. matches that cover a percentage
of the words in the text below a certain threshold (if setting is turned
on)

— Filter out the "best” matches when matches are overlapping in the
text (i.e. matches that originate from positions in the original text that
overlap with each other; see section 3.2.1 for how the "best” matches
are determined)

— Search the original ADR text using the sorted original medical terms
to get all verbatim matches (sorting is needed because found matches
are removed from the searched text during the search, thus the order
in which the terms are searched is important).

— Mark each found term match as a verbatim match if it exists in the set
of found verbatim matches

20



3 MATERIALS & METHODS

The cleaning step ensures that the text only consists of consecutive stretches
of alphanumeric characters split by single space characters. It allows for a simple
way of extracting words from the text—words are extracted by splitting the text
on space characters. The Porter stemming algorithm and the Soundex algorithm
both require the text to be partitioned into words, since the algorithms work with
one word at a time.

Appendix E shows a code example to illustrate how to set up the algorithm
parameters, listen to algorithm events and start a text extraction algorithm by
code.

3.2.1 Function to determine "best” match

The text extraction algorithm uses a function to determine the "best” match for
overlapping matches in the text (i.e. matches that originate from positions in the
original text that overlap with each other). By default, the "best” match of two
overlapping matches is given by:

e For each match: Compute a "hit success value”. It is calculated using equa-
tion 2:

HitSuccessValue = length(s,) — 2 x mty (2)
where, s; denotes the matched string in the preprocessed ADR text

mty denotes the matched preprocessed medical term’s distance measure (i.e.
the Levenshtein distance or LCS distance between s; and the matched pre-
processed medical term)

e The match with the highest "hit success value" is the best.

e If both matches have the same "hit success value”, we check whether the
matched medical terms contain stop words. The matched medical term that
do not contain stop words is the "best”. If none or both contain stop words,
they are considered equally good.

The above is the default implementation, however it is possible to define a
custom function to determine the "best” match (see the HitComparerMethod pa-
rameter in Appendix B for details).

3.3 Text Extraction Algorithm Performance Analysis

The performance of the text extraction algorithm was analyzed on the SPC and
Martindale data sets. Performance was evaluated in terms of precision and recall.
A high precision ensures a low number of false positive drug-ADR associations.

21



3 MATERIALS & METHODS

A high recall ensures that as few positive drug-ADR associations as possible are
missed by the algorithm. Results from both data sets were therefore analyzed to
check the amount of correctly matched medical terms, false positives (i.e. falsely
reported matches of medical terms) and unmatched medical terms (i.e. medical
terms missed in the ADR texts) generated.

To evaluate and provide an objective count of the number of false positives, a
framework with criteria for when a medical term match was considered correct and
not needed to be established. For the analysis, the following criteria were used:

1. The matched medical term has a different meaning than the matched text
— False positive

2. The matched medical term has the same meaning but is less detailed (more
general) — Correct match

Consider the examples: (text on the left, matched medical term on the right)
Primary graft dysfunction — Graft dysfunction

Genital pain male — Genital pain

Unstable angina pectoris — Angina pectoris

Oral soft tissue disorder — Soft tissue disorder

Cerebral adverse reaction — Adverse reaction

3. The medical term is more detailed (i.e. specific) than the matched text —
False positive

To illustrate the reasoning behind point 2 and 3 above, a soft tissue disorder
is not necessarily an oral soft tissue disorder but an oral soft tissue disorder is
a soft tissue disorder. Thus oral soft tissue disorder — soft tissue disorder is a
correct match, whereas soft tissue disorder — oral soft tissue disorder is not (i.e.
false positive). For point 2 we acknowledge that a more detailed medical term had
been preferable, but we still consider the match as correct.

The algorithm can report more than one ADR term as a match for overlapping
texts. This occurs when both matches are considered equally good by the algorithm
(see section 3.2.1). As a consequence, there are many situations when evaluating
the SPC data set that an extracted SPC term will be matched to several ADR
terms, e.g. the SPC term Metabolic acidosis can be matched to both Metabolic
acidosis and Acidosis metabolic.

Counts on number of unmatched ADR terms were provided by comparing the
found ADR terms by the algorithm with manual extraction of ADR terms from
the ADR texts. The manual identification was performed by a M.Sc. in pharmacy
to provide a gold standard.
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All runs included in the performance analysis that use the settings removal of
stop words or synonyms have used the stop word list and synonyms list that can be
found in Appendix C (the synonyms list is the same as one used in a previous text
extraction implementation at UMC [6]). All runs that used permutations used the
permutation algorithm based on storing the position of single word matches (see
section 2.4)

3.3.1 SPC Data Set

The SPC data set consists of a total of 4270 extracted ADR terms from SPC texts
of 75 different drugs. There are several cases where the same extracted ADR term
occurs for multiple drugs in the data set. To avoid redundancies, the SPC data
set was prepared by removing all duplicate extracted ADR terms. The formatted
SPC data set consisted of 1785 unique extracted ADR terms.

15 text extraction runs were performed using the non-redundant SPC data
set for the algorithm performance analysis. As medical terminology, runs used
MedDRA Preferred Terms or all unique terms from the MedDRA hierarchy. Runs
that used a string distance measure to allow for approximate string matching (i.e.
LCS distance or Levenshtein distance) used, admittedly arbitrary, a 15% cut-off
value on term distance and 25% cut-off value on word distance. The term and
word distance cut-off values set the maximum allowed percentage deviation (i.e.
percentage calculation based on character differences) for a single word or complete
term match respectively (see Appendix B).

Since the nature of the SPC data set differs from the Martindale data set (each
text consists of what is assumed to be one extracted medical term, see section
3.1.2), a restriction on partial text matches was set when running the performance
analysis on the SPC data set (i.e. a threshold was imposed on minimum percentage
of the words in the text that need to be matched by a term to result in a match).
It limits the number of reported partial SPC matches. For the runs on the SPC
data set, a partial match restriction of either 100% (to find verbatim matches) or
60% (a threshold value that required a little bit more than half of the words in the
SPC term to be matched) was used.

The results of each run were analyzed to check the amount of correctly matched,
false positives and unmatched SPC terms generated. For consecutive runs, algo-
rithm parameters were set stepwise using forward selection within groups (i.e.
the best combination of algorithm parameters were kept from each group). The
algorithm parameters were tested using the following groups and order:

1. Term list (using MedDRA Preferred Terms or all unique terms within the
MedDRA hierarchy) and Restrict partial text matches (using a 100% or 60%
threshold)
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2. Remowal of stop words, Permutations and Stemming
3. Synonyms

4. LCS distance, Levenshtein distance (both using a 15% and 25% cut-off value
on term distance and word distance respectively)

3.3.2 Martindale Data Set

5 text extraction runs were performed on the extracted ADR texts in Martindale.
The results for each run were extensive and a complete analysis of all results from
of each run was not possible due to limited resources. Therefore, to control and
assess the quality of the results, a random sample of 10 ADR texts was drawn from
the results of one text extraction run. A clinical evaluation of the extracted ADR
terms from the texts was performed by a domain expert (M.Sc. in pharmacy). Two
of the ADR texts in the random sample were strongly overlapping and therefore
one was omitted from the evaluation. Hence, 9 ADR texts were evaluated. The
domain expert was available to perform the clinical evaluation of the results at a
point when the functionality for synonyms was not implemented. Therefore, the
text extraction run for the clinical evaluation used removal of stop words, stemming
and permutations, but not synonyms. WHO-ART Preferred Terms were used as
term list.

For the 4 other runs, statistics were calculated for minimum, maximum, mean
and median number of matched medical terms per text. These runs used the
parameter settings remowval of stop words, stemming, permutations and synonyms.
For these runs, we varied the term list to evaluate its impact on the results—
WHO-ART Preferred Terms, MedDRA Preferred Terms and all unique terms in
the WHO-ART and MedDRA hierarchy were used respectively.

3.4 Implementation Methods for TextMiner

The text extraction system was developed using the .NET platform. The produc-
tion systems at UMC are developed on .NET and using the same technical plat-
form allows for easier integration of the text extraction solution. Robert Martin
describes principles used when deciding how to design the system into components
and manage the dependencies between components [22]. The system was designed
so that the text extraction algorithm functionality was collected in a standalone
component within the system with a well-defined interface. It allows the compo-
nent to be easier maintained and reused as part of other .NET implementations.

A graphical user interface using Windows Forms technology was developed to
allow user interaction with the system. Data to support and run the text extraction
algorithm as well as output from the algorithm were stored in a SQL Server 2008
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database. A data layer to provide functionality for the communication with the
database was also created.

3.4.1 High-level Architecture

Figure 5 shows a high-level architecture of the text extraction system. First a
collection of ADR texts and medical terms stored in a dictionary are fed as input
to the system. A text preprocessing step transforms the ADR texts and medical
terms to a preprocessed form. Then preprocessed texts and terms are used as
input for the term extraction. The preprocessed medical terms are searched for
and extracted from the preprocessed text. Finally the extracted terms are used
to generate drug-ADR associations. The user interacts with the system through a
user interface to set up, start, stop text extraction runs etc.

User Interface « %
User interaction
Generate drug-ADR
associations

Results storage

Term extraction

@ - Preprocessing «

Term dictionary

Collection of adverse
effects texts

Figure 5: System architecture. A high-level conceptual view of the text extraction
system and how the different functionalities fit together.

4 Results

The results section is divided into two parts. The first part presents results from
the text extraction performance analysis on the SPC and Martindale data sets.
The second part describes the results of the technical implementation.

4.1 Text Extraction Algorithm Performance Analysis

The section presents the results of the text extraction algorithm performance anal-
yses of the SPC and Martindale data sets.

25



4 RESULTS

4.1.1 Summary of Product Characteristics Data Set

The SPC data set used for the performance analysis was a non-redundant version of
the original SPC data set as outlined in section 3.3.1 (i.e. duplicate extracted ADR
terms were removed). It consisted of 1785 unique extracted ADR terms. Table
2 shows results from 14 of the text extraction runs included in the performance
analysis of the SPC data set. All runs used a cleaning step where non-alphanumeric
characters were removed from the text (see section 3.2).

One more text extraction run was performed that used a 60% threshold on
partial match restriction, removal of stop word and Soundex to allow approximate
string matching. Initial evaluation of the results indicated that over 500 of the SPC
matches were false positives. The total number of medical terms matched were
above 5500—significantly higher than for the other runs. Since the number of false
positives was very high and obvious reasons for this were identified (i.e. different
medical terms were encoded identical Soundex codes) , we did not continue with
an exhaustive results analysis.

Run 1 did not allow partial matches, i.e. 100% of the words in the extracted
SPC term needed to be matched by the dictionary term to result in a match. It
used the MedDRA Preferred Terms as term dictionary. It resulted in 987 SPC
terms that found a match. 979 of the 987 matches were verbatim, thus 8 matches
were non-verbatim. The non-verbatim matches were found due to the cleaning
step in the algorithm where non-alphanumeric characters are removed from the
medical terms and texts (see section 3.2 for details). Table 3 shows examples of
non-verbatim matches.

Run 2 used the same settings as run 1 with the exception of a 60% threshold on
partial match restriction and resulted in an additional 38 matched SPC terms. All
of these additional matches were verbatim matches where the matching medical
term was more general than the extracted SPC term (the medical term consisted of
a subset of words found in the extracted SPC term). Table 4 gives some examples.

Run 3 did not allow partial matches and used all terms in the MedDRA hierarchy
as term dictionary. It resulted in 1294 SPC terms being matched and 1287 of these
were verbatim matches. The remaining 7 matches were the result of non-verbatim
matches. Similar to run 1, these matches were all found due to the cleaning step
of the algorithm.

Run 4 used a 60% threshold on partial match restriction (similar to run 2). It used
all terms in the MedDRA hierarchy as term dictionary. Run 4 matched 322 addi-
tional SPC terms compared to run 2—a result of using all terms in the MedDRA
hierarchy as opposed to the MedDRA Preferred Terms as term dictionary. Run
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Table 2: Results from SPC runs

X
2
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=18 < | <
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glg| | 5 S22 € |2
gl : ki - RN -
:E s|8 Tlgl 2% g = A
SIS |E|% | »| 2|28 E|E|5| E |8
NI ARG
=8| & % g g ¢ 8 O O |2 =2 |g
Run gl < | aleglalal3 A % ?f) Sl e |8
1 987 | 798 | 0 | 987 | O
2 * 1025 | 760 | 0 | 1026 | O
3 * 1294 1 491 | 0 | 1302 | O
4 * 0¥ 1347 | 438 | 0 | 1356 | O
5 * kX 1392 | 393 | 0 | 1700 | O
6 * K * 1402 | 383 | 1 | 1415 | 1
7 * |k * 1437 | 348 | 0 | 1620 | O
8 Ol BN B 1450 | 335 | 0 | 1764 | O
9 * K *¥ ook 1492 1293 | 1 | 1685 | 1
10 ¥ ok |k * 1486 | 299 | 1 | 2047 | 1
11 ol OR EEON B 1546 | 239 | 1 | 2134 | 1
12 ol I R EE O O 1561 | 224 | 1 | 2343 | 1
13 ol O O O * 1582 | 203 | 10 | 2363 | 12
14 N I R O R * | 1583 | 202 | 10 | 2364 | 12

The table presents the results from running the text extraction algorithm on the SPC
data set under different settings. For the Full MedDRA hierarchy column, an asterisk
indicates that all unique terms in the whole MedDRA hierarchy were used, whereas no
asterisk indicates that MedDRA Preferred Terms were used. For the Allow partial text
matches column, an asterisk indicates that a 60% threshold on partial match restriction
was used, whereas no asterisk indicates that a 100% threshold on partial match restriction
was used. For all other columns, an asterisk indicates that the particular setting is turned
on. For Levenshtein distance and LCS distance, the term and word percentage cut-off
values used were always 15% and 25%, respectively (see section 3.3.1).
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Table 3: Examples of non-verbatim matches in run 1

SPC term

Matched MedDRA term

Influenza-like illness

Influenza like illness

Stevens Johnson syndrome

Stevens-Johnson syndrome

Infusion-related reaction

Infusion related reaction

Post-procedural haemorrhage

Post procedural haemorrhage

Examples of non-verbatim matches found from run 1.

Table 4: Examples of matches in run 2

SPC term

Matched MedDRA term

Acute renal failure

Renal failure

Oral soft tissue disorder

Soft tissue disorder

Injection site pain / discomfort

Injection site pain

Upper abdominal pain

Abdominal pain

Pleural effusion symptoms

Pleural effusion

Examples of matches that are found in run 2 due to the lowered threshold on partial
match restriction compared to run 1 (i.e. the threshold is 60% in run 2 and 100% in run

1).
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4 matched 53 additional SPC terms compared to the results of run 3. All other
matches were identical to the results of run 3. All of the additional 53 matches
were verbatim matches—reported as a result of lowering the threshold compared to
run 3 (matching medical term was more general than the extracted SPC term).

Run 5 applied the same settings as run 4 with the addition of using permutations
(i.e. it used partial match restriction with a 60% threshold and permutations). Run
5 gave different results for 348 extracted SPC terms compared to run 4, which were
caused by the use of permutations. 45 extracted SPC terms reported a match that
did not find any match in run 4. In all of these cases, the match was non-verbatim
and was found using a permutation of the words in the term. Table 5 shows some
examples.

Table 5: Examples of permutation matches in run 5

SPC term Matched MedDRA term
Abnormal respiration Respiration abnormal
Interstitial nephritis Nephritis interstitial
Intracranial bleeding Bleeding intracranial

Reduced visual acuity Visual acuity reduced
Thyroxine (T4) free decreased | Free T4 decreased

Sudden unexplained death Sudden death unexplained

Examples of matches found by using permutations in run 5.

In 13 cases the use of permutations resulted in a more specific (i.e. detailed)
medical term being matched than without permutations (see table 6 for examples).

Run 6 applied the same settings as run 4 with the addition of using removal of
stop words (i.e. it used partial match restriction with a 60% threshold and removal
of stop words). The results differed for 66 SPC terms. For 55 SPC terms there was
a match in run 6 where none were found for run 4. Most of the matches came from
treating "nec” and "nos” as stop words and removing them from medical terms
(there are several terms within MedDRA that contain these abbreviations, which
stand for "not elsewhere specified” and "not otherwise specified” respectively).
Other differences were found because remowval of stop words from the extracted
SPC terms reduced the number of words and allowed medical terms to match
within the partial match restriction of 60%. Matches were also found because of
removal of stop words in medical dictionary terms. Table 7 gives examples of all
cases.

Run 6 resulted in 1 false positive (Reduced visual acuity — Low visual acuity).
Even though reduced visual acuity may result in low visual acuity, the meaning of
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Table 6: More specific permutation matches in run 5

SPC term Matched MedDRA | Matched MedDRA
term (run 4) term (run 5)

Chronic otitis media | Otitis media serous Otitis media serous

serous chronic, Chronic serous

otitis media

Unstable angina pec-
toris

Angina pectoris, Unsta-
ble angina

Angina pectoris unsta-
ble

Increased creatine phos-
phokinase

Creatine phosphokinase

Creatine phosphokinase
increased

Increased blood triglyc-
erides

Blood triglycerides

Blood triglycerides in-
creased

Increased alanine

aminotransferase

Alanine aminotrans-

ferase

Alanine aminotrans-

ferase increased

Examples where more specific medical terms where matched to the SPC terms by the
use of permutations (run 5 used permutations but run 4 did not).

Table 7: Examples of matches in run 6

Matched MedDRA term
Dental disorder NEC

Mood disorders NEC
Appetite increased NOS
Leucocytosis NOS

SPC term
Dental disorder
Mood disorders
Appetite increased

Leucocytosis

Renal failure/impairment Renal failure and impairment

Local swelling at the injection site | Swelling of injection site
Tightness of the chest

Increase in heart rate

Tightness in chest

Heart rate

Examples of cases where matches were found in run 6 and none where found in run 4
(run 6 used removal of stop words but run 4 did not).
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the terms is not exactly the same.

Run 7 applied the same settings as run 4 except for the use of stemming (i.e. it
used partial match restriction with a 60% threshold and stemming). The results
differed for 255 extracted SPC terms compared to run 4. For 90 SPC terms there
were matches where there were none in run 4. In some cases differences occured
because of stemming which resulted in several medical terms being mapped to an
SPC term. Stemming also caused differences because more detailed medical terms
were matched. Table 8 shows examples of all cases.

Run 8 used partial match restriction with a 60% threshold, removal of stop words
and permutations. Matches were found for an additional 58 SPC terms compared
to run 5 and 48 SPC terms compared to run 6. No false positive matches were
generated. The results differed for 20 SPC terms compared to the results of both
run 5 (using permutations) and run 6 (using remowval of stop words). All of these
differences were due to the combination of using remowval of stop words and per-
mutations. An investigation of all differences shows that 11 SPC terms had no
match for both run 5 and 6, 3 cases had different matches for all three runs and
6 SPC terms had no match for run 5 but matches for both run 6 and 8. Table 9
shows examples of all cases where the results differ.

Run 9 used partial match restriction with a 60% threshold, removal of stop word
and stemming. Results showed that 90 additional SPC terms were matched com-
pared to run 6 and 55 additional SPC terms were matched compared to run 7.
For 24 SPC terms, the result differs from both the result of run 6 and 7—these
differences were due to the combination of using removal of stop words and stem-
ming. In 14 of these cases, there were no matches found when using remowval of
stop words or stemming alone. In 4 cases there were matches in run 6 and 9 but
none in run 7. In the 6 remaining cases, a new medical term match was found due
to the combination. The same false positive match was reported as for run 6 (i.e.
Reduced visual acuity — Low visual acuity). Table 10 shows examples of cases
where the results differ.

Run 10 used partial match restriction with a 60% threshold, stemming and per-
mutations. An additional 94 SPC terms were matched compared to run 5 and
49 additional SPC terms were matched compared to run 7. For 107 SPC terms,
the result differs from both the result of run 5 and 7—these differences were due
to the combination of using stemming and permutations. For 7 SPC terms, there
were no matches found when using stemming or permutations alone. In most
cases, differences were reported because new medical term matches were found
due to the combination. One false positive was reported—Gastro-oesophageal re-
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Table 8: Examples of matches in run 7 compared to run 4

SPC term Matched @~ MedDRA | Matched MedDRA
term (run 4) term (run 7)

Burning — Burn

Optical neuritis — Optic neuritis

Allergies — Allergy

Thromboembolic — Thromboembolism

Injection site nodules and
cysts

Injection site nodule

ECG investigations ab-
normal

Investigation abnormal

Cerebrovascular adverse
reactions

Adverse reaction

Blood pressure fluctua-
tions

Blood pressure

Blood pressure fluctuation

Liver function tests ab-
normalities

Liver function tests

Liver function tests abnor-
mal, Liver function test ab-
normal

Hallucination Hallucination Hallucination, Hallucina-
tions, Hallucinating

Itching Itching Itch, Itching

Encephalopathy Encephalopathy Encephalopathy, En-
cephalopathies

Blisters Blisters Blisters, Blistering, Blister

The first seven rows show examples of SPC terms where

no match is found in run 4,

but a match was found in run 7 due to stemming. Rows six and seven are examples of
cases where the matching was vague (however, considering our criteria for false positives
(see section 3.3) these were considered correct). The next two rows are examples of
when stemming results in more detailed medical term matches. The last four rows are
examples of when stemming results in more than one match for a specific SPC term.
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Table 9: Examples of matches in

run 8 compared to run 5 and 6

SPC term

Matched
MedDRA

term (run 5)

Matched
MedDRA

term (run 6)

Matched
MedDRA

term (run 8)

Acute and chronic

Acute and chronic

Acute and chronic

Acute and chronic

pancreatitis pancreatitis pancreatitis pancreatitis, Pan-
creatitis acute on
chronic

Fungal infection | — Fungal infection Vaginal infection

(vaginal only)

Reactivation  of | — Hepatitis B Hepatitis B reac-

hepatitis B tivation

Exacerbation of | — Multiple sclerosis | Multiple sclerosis

multiple sclerosis

exacerbation

Tightness of the
chest

Tightness in chest

Chest tightness

Impaired coordi-
nation or balance

Coordination im-
paired

Haemorrhage of | — — Operative haem-
operative wound orrhage
Elevated creati- | — — Blood creatinine

nine in blood

Urination abnor-
mal

Urination abnor-

mal NOS

Liver disorders

Other disorders of
liver

Sudden sleep on-
set

Sudden onset of
sleep

Examples of SPC terms where the results differed in run 8 compared to the result of both
run 5 and 6. Run 8 used partial match restriction with a 60% threshold, removal of stop
words and permutations. Run 5 used partial match restriction with a 60% threshold and
permutations. Run 6 used partial match restriction with a 60% threshold and removal of
stop words.
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Table 10: Examples of matches in run 9 compared to run 6 and 7

SPC term Matched Matched Matched
MedDRA MedDRA MedDRA
term (run 6) |term (run 7) | term (run 9)

Allergic and | — — Anaphylactoid re-

anaphylactoid action

reactions

Abnormal hair | — — Abnormalities of

texture the hair

Elevation of liver
enzymes

Elevated liver en-
Zymes

Increase in serum | — — Increased serum
creatinine level creatinine
Decrease in | — — Decreased
haemoglobin haemoglobin
Dental disorders Dental disorders | — Dental disorders
NEC NEC, Dental dis-
order NOS

Tightness of the
chest

Tightness in chest

Tight chest

Pain in extremity

Pain in extremity

Pain in extremity

Pain of extremi-
ties, Pain in ex-
tremity

Gastrointestinal
stenosis and
obstructions

Gastrointestinal
stenosis

Gastrointestinal
stenosis and
obstruction

Gastrointestinal
stenosis and
obstruction,
Gastrointestinal
stenosis and
obstruction NEC

Examples of SPC terms where the results differed in run 9 compared to the result of
both run 6 and 7. Run 9 used partial match restriction with a 60% threshold, remowval
of stop words and stemming. Run 6 used partial match restriction with a 60% threshold
and removal of stop words. Run 7 used partial match restriction with a 60% threshold
and stemming.
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flux — Reflux oesophagitis. However, Gastro-oesophageal refluxz can cause Refluz
oesophagitis. Table 11 shows examples of cases where the results differ.

Run 11 applied partial match restriction with a 60% threshold, removal of stop
word, stemming and permutations. The results were the same as for run 9, except
for 447 extracted SPC terms. One false positive was reported among the results—
the same as for run 10. The false positive reported in run 9 was not reported here
due to the use of permutations. An investigation of the differences revealed that
most were due to more than one medical term being matched to the SPC terms
because of the addition of permutations. There were 54 extracted terms where a
match was found but no match was established in run 9. These additional matches
were found due to the additional use of permutations. Table 12 gives examples.

Run 12 applied synonyms (see Appendix C for the list of synonyms used) in
addition to the settings in run 11 (i.e. it used partial match restriction with a 60%
threshold, removal of stop word, stemming, permutations and synonyms). The
result differed for 95 SPC terms compared to run 11. In 15 cases, an SPC term
was matched where no match was established in run 11. Many differences were due
to more reported matches for a specific extracted term due to the use of synonyms.
Table 13 gives examples of both cases. One false positive was reported—the same
as for run 10 and 11.

Run 13 applied Levenshtein distance (with a term and word distance threshold
of 15% and 25% respectively) in addition to the settings in run 12 (i.e. it used
partial match restriction with a 60% threshold, removal of stop word, stemming,
permutations, synonyms and Levenshtein distance). The results differed from run
12 for 30 SPC terms. The results reported 10 false positive SPC matches. Table
14 shows examples of where the results differ.

Run 14 used the same settings as run 13 except for using LCS distance instead
of Levenshtein distance as a distance measure, but with the same term and word
distance thresholds (i.e. it used partial match restriction with a 60% threshold,
removal of stop word, stemming, permutations, synonyms and LCS distance). The
results of run 14 were the same as the results of run 13, but with one exception—
the SPC term Hordoleum matched the medical term Hordeolum (in run 13
there was no match for Hordoleum).

A pie chart was created (see figure 6) to illustrate the contributions of indi-
vidual parts of the text extraction algorithm to the results of the SPC data set.
As discussed in section 3.3.1, a specific order was used for the forward selection
of algorithm parameters within groups. The chart was created by subsequently
adding the parameter setting, within a group, that contributed the most to the
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Table 11: Examples of matches in run 10 compared to run 5 and 7

SPC term Matched Matched Matched
MedDRA MedDRA MedDRA
term (run 5) term (run 7) term (run 10)
Malignant  neo- | — — Neoplasm malig-
plasms nant
Prolonged erec- | — — Erection pro-
tions longed
Abnormal taste — — Taste abnormal-
ity
Skin reactions — Skin reaction Reaction skin,
Skin reaction
Optical neuritis — Optic neuritis Neuritis optic,
Optic neuritis
Increased weight | Weight increased | — Weight increase,
Weight increased
Breast pain Breast pain, Pain | Breast pain Breast pain,
breast Painful  breasts,
Pain breast
Gastro- Oesophageal Oesophageal Oesophageal
oesophageal reflux reflux reflux, Reflux
reflux oesophagitis

Examples of SPC terms where the results differed in run 10 compared to the result of run
5 and run 7. Run 10 used partial match restriction with a 60% threshold, permutations
and stemming. Run 5 used partial match restriction with a 60% threshold and permu-
tations and run 7 used partial match restriction with a 60% threshold and stemming.
The first three rows give examples of SPC terms where a match was only found due
to the combination of stemming and permutations. The next four rows give examples
where more MedDRA terms are matched to the SPC terms when both stemming and
permutations were used. The final row gives example of the false positive SPC match.
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Table 12: Examples of matches in run 11

compared to run 9

SPC term Matched MedDRA | Matched MedDRA
term (run 9) term (run 11)

Sudden unexplained | — Sudden death unexplained

death

Burning at the injection | — Injection site burning

site

Stinging at the injection
site

Injection site stinging

Eyelid inflammation

Other inflammations of
eyelids, Inflammation of
eyelids

Skin discolouration

Skin discolouration

Skin discolouration, Dis-
colouration skin

Suicide attempt

Suicide attempt

Attempted suicide, Sui-

cide attempt

Reduced visual acuity

Low visual acuity

Visual acuity reduced

Examples of SPC terms where the results differ in run 11 compared to the result of
run 9. The false positive reported in run 9 is correct for run 11, see last row. Run 11
used partial match restriction with a 60% threshold, removal of stop words, stemming
and permutations, whereas run 9 used partial match restriction with a 60% threshold,
removal of stop words and stemming. One false positive was reported—the same as for
run 10.
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Table 13: Examples of matches in run 12 compared to run 11

Nephropathy toxic

SPC term Matched MedDRA | Matched MedDRA
term (run 11) term (run 12)
Heart failures Heart failures, Heart fail- | Heart failures, Failure
ure, Failure heart heart, Heart  failure,
Cardiac failure
Nephropathy toxic Toxic nephropathy, | Toxic nephropathy;,

Nephrotoxicity, Nephropa-
thy toxic

Acute liver failure

Acute liver failure

Acute liver failure, Acute
hepatic failure

Elevated triglycerides

Elevated triglycerides

Raised triglycerides,
Triglyceride increased,
Elevated triglycerides

Oral/Oropharyngeal
bleeding

Oropharyngeal hemor-
rhage, Oropharyngeal
haemorrhage

Elevations of transami-
nases

Transaminases increased

de-

Liver
creased

enzymes

Hepatic enzyme decreased

Elevated amylase

Amylase increased

Hepatic function tests
abnormal

Abnormal liver function
tests, Liver function tests
abnormal, Liver function
test abnormal

Examples of SPC terms where the results differed in run 12 compared to the result of run
11. Run 12 used partial match restriction with a 60% threshold, removal of stop words,
stemming, permutation and synonyms, whereas run 11 used partial match restriction
with a 60% threshold, removal of stop words, stemming and permutation.
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Table 14: Examples of matches in run 13 and 14 compared to run 12

SPC term Matched MedDRA | Matched MedDRA
term (run 12) term (run 13 & 14)

Lymphopaenia — Lymphopenia

Leukopaenia — Leukopenia

Pollakisuria — Pollakiuria

Leucocyturia — Leukocyturia

Dysgueusia — Dysgeusia

Hyperhydrosis — Hyperhidrosis

Loss of appetite — Appetite lost

Hypophosphotemia — Hypophosphatemia

Neutropaenia — Neutropenias, Neutrope-

nia

Fatal cerebral haemor-
rhage

Cerebral hemorrhage,
Cerebral haemorrhage,
Haemorrhage cerebral,

Hemorrhage cerebral

Cerebral hemorrhage fetal

Fatal bleeding

Fetal hemorrhage

Infusion-associated re-
actions

Reaction asocial, Asocial
reaction

Local paraesthesia

Local anaesthesia, Anaes-
thesia local

Transient blurred vision

Blurred
blurred

vision,  Vision

Blue vision transient

Blood creatinine phos-
phokinase increased

Blood creatine phosphoki-
nase increasedavanza

Examples of SPC terms where the results differed in run 13 and 14 compared to the
result of run 12. Run 13 and 14 both used partial match restriction with a 60% threshold,
removal of stop words, stemming, permutation, synonyms and Levenshtein distance or
LCS distance respectively. Run 12 used the same settings except for Levenshtein distance
and LCS distance. The first 9 rows give examples where the use of a distance measure
generated a match. The last 6 rows give examples of false positive matches.
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results at the given point.

Positive contributions from
algorithm parts

¥ Baseline
® Full MedDFEA hierachy
Restrict partial text matches (60%)
= Stemming
Eemovalofstop words
= Permutation
Synonyms

Unmatched SPC terms

Figure 6: SPC results. A pie chart that shows the positive contribution to the SPC
results (i.e. number of SPC terms matched) when individual algorithm parts are subse-
quently added to the algorithm. The baseline consists of run 1 (using MedDRA Preferred
Terms as term list and a 100% threshold on partial text matches). The percentage values
given indicate the additional portion of SPC terms matched when the specific parameter
is added. As discussed in section 3.3.1, we used a specific order for the forward selection
of algorithm parameters within groups. Note that the chart could have potentially looked
different if algorithm parameters were selected using complete forward selection.

4.1.2 Martindale

Martindale holds information of a total of 5564 substances where 1716 of these
have ADR texts [23]. A random sample of ADR texts were drawn from one
text extraction run that used removal of stop words, permutations, stemming and
WHO-ART Preferred Terms as term list (see section 3.3.2). Table 15 shows the
results of the analysis of the text extraction algorithm output from 9 ADR texts
in the random sample (one ADR text was omitted because the text was strongly
overlapping with another text within the sample, see section 3.3.2). The results
from each ADR text were analyzed by a domain expert to assess the number of
correctly matched medical terms, false positives and unmatched medical terms.
Example 5 illustrates the results from the clinical evaluation. It uses text parts
extracted from the adverse effects text of Meloxicam, Gatiflozacin and Glipizide.
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Table 15: Results from random sample of texts in Martindale
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fﬂ c &0 g
Substance = - < &
Ceftazidime 23 12 0 1
Fosfomycin 9 D 0 0
Gatifloxacin 76 35 4 2
Glipizide 31 15 1 2
Meloxicam 67 37 1 12
Methadone hydrochloride 44 20 0 5
Procaine Benzylpenicillin 31 20 1 2
Telithromycin 27 14 0 1
Vancomycin 26 13 0 2

| TOTAL 1334 [1711 |7 | 27 |

() The number of false positives that were caused by errors in the matching due to
the algorithm.
(i) The number of false positives that were caused by matching medical terms not

describing ADRs.

The results from analyzing the output of the text extraction algorithm on 9 substances (i.e.
ADR texts) in Martindale. For each substance, the number of correctly matched medical
terms (i.e. the number of matched terms subtracted with the number of false positives),
false positives and unmatched medical terms were determined by a domain expert. For
each false positive, we distinguish between two types—those caused by faulty matching in
the text extraction algorithm and those caused by correctly matching medical terms, but
where the medical term is not describing an ADR in the text.

Example 5 An example to show how the results of the clinical evaluation of the 9
random sample adverse effects texts looked like. To illustrate, we use 5 short text
parts, taken from the adverse effects text of Meloxicam, Gatifloxacin and Glip-
wzide. In the text parts, correctly matched medical terms, false positives and un-
matched medical terms are highlighted differently—correctly matched medical terms
are marked in bold, unmatched medical terms are underlined and false positives
are both underlined and marked in bold. The first two texts parts are taken from
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Meloxicam, the next two from Gatifloxacin and the last text part from Glipizide.
The results are summarized below each respective text part.

"...CNS-related adverse effects include headache, vertigo, dizziness, nervous-
ness, tinnitus, depression, drowsiness, and insomnia. Hypersensitivity
reactions may occur occasionally and include fever, angioedema, bronchospasm,
and rashes. Hepatotozicity and aseptic meningitis, which occur rarely, may also
be hypersensitivity reactions. Some patients may experience visual disturbances.”

Correct: headache, vertigo, dizziness, nervousness, tinnitus, depression, insom-
nia, fever, angioedema, bronchospasm, rash, meningitis

False positive: meningism

Unmatched: drowsiness, hypersensitivity reactions, hepatotoxicity, visual distur-
bances

"...Other risk factors for renal impairment with NSAIDs include dehydration,
cirrhosis, surgery, sepsis, and a history of gout or hyperuricaemsia."”

Correct: -
False positive: dehydration, sepsis, gout, hyperuricaemia
Unmatched: -

"...Severe life-threatening events, including hyperosmolar nonketotic hyperglycaemic
coma, diabetic ketoacidosis, hypoglycaemic coma, convulsions, and mental
status changes have been reported very rarely..."

Correct: hypoglycaemic coma, convulsions
False positive: coma diabetic
Unmatched: hyperglycaemic coma, diabetic ketoacidosis

"...Reports have included anaphylazis (which has sometimes been fatal, and may
occur after the first dose), serum sickness, Stevens-Johnson syndrome, tozic
epidermal necrolysis (sometimes fatal), laryngeal oedema, and vasculitis.

Correct: serum sickness, Stevens Johnson syndrome, epidermal necrolysis, oedema,
vasculitis

False positive: laryngitis

Unmatched: anaphylaxis

"...reported an increased incidence in mortality from cardiovascular complications
in_diabetic patients given tolbutamaide...”
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Correct: -

False positive: diabetic complication

Unmatched: cardiovascular complications

The results from the other 4 text extraction runs performed on all 1716 ADR
texts (see section 3.3.2) are shown in table 16. All runs used removal of stop words,
permutations, stemming, synonyms (see Appendix C for list of synonyms used).
For each run, it displays the min, max, median and mean number of matched

medical terms per text.

Table 16: Results from Martindale runs
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Run | H Z = = Z | 2 |2 | Running time
1 WHO-ART PT | 2175 | 54348 | 31.7 |0 | 144 |26 |4 h, 2 min, 4 s
2 WHO-ART HY | 5824 | 75609 | 44.1 |0 | 208 |34 |9h,1min, 8s
3 MedDRA PT 18786 | 81995 | 47.8 | 0 | 266 | 37 | 26 h, 55 min, 53 s
4 MedDRA HY 70328 | 164109 | 95.6 | O | 555 | 71 | 105 h, 20 min, 4 s

The results from running the text extraction algorithm on the Martindale data set. All
runs used removal of stop words, permutations, stemming, synonyms (see Appendix C
for list of synonyms used). All runs were performed using two threads on a computer
with a 3.16GHz Intel Core 2 Duo E8500 (Dual core) CPU, 2 GB RAM and Windows 7

Professional 64-bit Operating system.
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4.2 Technical Solution - TextMiner Application

TextMiner is the name given to the application implemented to fulfill the require-
ments set up in the methods of the project. TextMiner is built on the .NET plat-
form using Visual Studio 2008 and .NET framework 3.5. (The section is divided
into paragraphs describing the functionality, architecture, data model, paralleliza-
tion and graphical user interface of the system).

4.2.1 Functionality

The TextMiner application has functionality to execute the text extraction algo-
rithm and view the results. Below is a list of supported functionality:

e Load a term dictionary into the application (from a text file or CSV-file)

e Load a medical text source into the application (from a text file, CSV-file or
XML-file (Martindale))

e Delete a loaded term dictionary or medical text source

e Set up parameters and start a text extraction run (see Appendix B for de-
scription of all the parameters)

e Stop an ongoing text extraction run
e View results from finished and aborted runs

e Search results of finished and aborted runs for specific drug substances and
ADR terms

4.2.2 Architecture

For smaller applications, classes provide a sufficient unit of organization for struc-
turing the code. On a higher level, packages are used to accomplish the task
of organizing code. Packages in .NET are also called assemblies or dynamically
linked libraries (DLL). By structuring the application into well-defined packages
the design becomes more clean, the application becomes easier to maintain and it
facilitates code reuse [22].

The TextMiner application has been partitioned into four packages. Figure 7
shows a graph of the packages and their dependencies. The arrows point in the
direction of a dependency. This means that the TextMiner package is dependent
on the TextMinerCore and TextMinerGUI packages, TextMinerGUI is dependent
on TextMinerCore and TextMinerCore is dependent on TextMiningTools. The
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TextMiningTools package thus has no dependencies and can therefore easily be
reused as a single package in other .NET implementations.

The TextMiningTools package includes all classes that provide functionality
for the text extraction algorithm. The package includes classes for Levenshtein
distance, longest common subsequence, Soundex, Porter stemming, permutation,
removal of stop words, handling of synonyms and for running the text extraction
algorithm and retrieving results. The TextMinerGUI package contains all classes
needed for the GUI. TextMinerCore consists of classes needed to send user pa-
rameters from the GUI, to consume the functionality within the TeztMiningTools
package and to store and retrieve data from a database instance.

TextMiner

TextMinerCore TextMinerGUI

TextMiningTools

Figure 7: TextMiner application packages. A package dependency graph for the
TextMiner application. Note that the graph is a directed acyclic graph (DAG).

4.2.3 Data Model

TextMiner used a relational data model implemented in the SQL Server 2008
database management system (DBMS) to store information. The database schema
can be seen in figure 8. Medical text sources loaded into the application were stored
in the LexiconSource and LexiconEntry tables. Loaded term dictionaries were
stored in the TermSource and Term tables. When a new text extraction run was
started by the user, information about it was stored in the TextMiningRun table.
Information about which medical text source and term dictionary that were used
for the run was provided by the foreign key relationships to the LexiconSource and
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TermSource tables respectively. During a text extraction run, new results were
saved continuously when extraction of a single medical ADR text was finished.
The results were saved in the TextMiningTermHit and TextMiningHit tables. By
continuously saving results, even runs aborted by the user stored results up to the

point of abortion.

SynonymErom
SyronymTo
= Properties
TermSource T, s e 1 5 SyrenymFromid
TextMiningRun 2] ' SyncaymTald 3 Framword
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T Hame } U5 TextMiningRunld
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LexiconSouirce StopWord
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# Narne
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15 Termid

Figure 8: TextMiner database schema. An overview of the database schema. Shows
all the tables and the columns for each table in the TextMiner database. It shows
what type of data that can be stored. Foreign key relationships between tables are also

indicated.

4.2.4 Parallelization

Support for parallelization has been implemented for the text extraction algorithm.
The application programming interface (API) of the compiled TextMiningTools
dynamically linked library exposes a public parameter called NumberOfThreads
where the user can set the number of threads to be used by the algorithm (see
Appendices A and D for further details). Two steps in the algorithm have been

parallelized:
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e The preprocessing of all terms in the term dictionary as outlined in section
3.2

e The search of all preprocessed terms in a preprocessed adverse effects text
as described in section 3.2

Both steps are carried out on all terms in the term dictionary. The paralleliza-
tion makes use of this and implements the same idea for parallelization—to divide
the list of terms into one sublist for each thread. Each thread then carries out the
task for the sublist of terms and at the end all results from individual threads are
merged.

4.2.5 Graphical User Interface

A GUI was developed using Microsoft Windows Forms technology. The GUI was
built on top of the text extraction system to allow for easy administration of text
extraction algorithm runs. The user can easily load new term dictionaries and
medical text sources. It is simple to set up the properties and variables for the
text extraction algorithm. All finished and aborted runs can be viewed. Single
runs can be searched by the user to see if particular ADR-terms were extracted
from a specific medical text. The user can also easily switch medical text source
and medical terminology source for a search. Results from runs can be viewed
directly and exported to spreadsheet software for further processing. Appendix D
provides screenshots of the graphical user interface.

5 Discussion

A text extraction tool was developed on the .NET platform to identify ADR infor-
mation in adverse effects texts—it includes a GUI for user interaction, a data layer
for storage and retrieval of data and a text extraction algorithm with function-
ality for preprocessing text (removal of stop words, Porter stemming and use of
synonyms) and searching medical terms using permutations of words and spelling
variations (Soundex, Levenshtein distance and LCS distance). Many parts of the
algorithm gave a positive contribution to the results. For the SPC data set the
best parameter settings—using removal of stop words, stemming, permutations
and synonyms—reached a precision of 99.96% with a recall of 87% (a verbatim
identification had a precision of 100% and a recall of 72%). In Martindale, the
precision was 98% (accounting for semantic false positives; the precision not ac-
counting for semantic false positives was 90%) with a recall of 64%. The use of
a distance measure (i.e. Levenshtein distance or LCS distance) or Soundex did
not give a positive contribution to the results—their use generated too many false
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positive matches. The most substantial contribution to performance was from the
use of full MedDRA hierarchy. Sophisticated text algorithms together contributed
roughly equal performance impact.

The pie chart of the results of the SPC data set (see figure 6 in section 4.1.1)
shows that the largest contribution to the results was from the use of full MedDRA
hierarchy—accounting for an increase of matched SPC terms with 17%. The so-
phisticated text extraction algorithms (i.e. restriction of partial text matches, stem-
ming, removal of stop words, permutations and synonyms) together contributed
roughly equally to performance—together they contributed to a 15% increase of
matched SPC terms.

The results showed that the text extraction algorithm generated more false
positive matches on Martindale than on the SPC data set. The main reason was
that the free adverse effects texts in Martindale posed an additional challenge
compared to the extracted SPC terms; text semantics. 79% of the false positive
matches were caused by text semantics, i.e. matching medical terms not describ-
ing ADRs. If the text extraction algorithm was able to distinguish ADRs from
other contexts (i.e. indications, precautions, interactions etc.), the results on free
unstructured adverse effects text could have been improved. We suggest further
research to implement context based medical term extraction—one example would
be to use sentence structure analysis, which has successfully been used as a step
to extract gene-protein biological functions from free texts [1].

Accounting for semantic false positives, the precision was still slightly lower for
Martindale than for the SPC data set. In the SPC data set, the SPC terms are
isolated from each other, whereas for Martindale the medical terms can be found
anywhere within the ADR texts. This poses a subtle problem for the text extrac-
tion algorithm when using Martindale—some false positives are generated from
matching adjacent words in the text not belonging to ADR terms or belonging to
different ADR terms, e.g. for the text "...mortality from cardiovascular complica-
tions in diabetic patients...” the algorithm matches diabetic complication, for the
text "...including hyperosmolar nonketotic hyperglycaemic coma, diabetic ketoaci-
dosis, hypoglycaemic coma,...” the algorithm matches coma diabetic. The recall
for Martindale was lower than for the SPC data set (64% compared to 87%)—a
reason for missing more medical terms in Martindale is the use of WHO-ART
Preferred Terms (2175 unique terms) as term list compared to MedDRA hierarchy
(70328 unique terms).

For the SPC data set, the use of string distance measures (i.e. Levenshtein dis-
tance and LCS distance) did not give a positive contribution to the results—slightly
more than 20 additional SPC terms were matched at the expense of generating 9
false positives. We used a 15% cut-off value on term distance and 25% cut-off value
on word distance (see section 3.3.1). The word distance cut-off needs to be set less
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strict than the term distance cut-off (otherwise we potentially lose word matches
that might had been possible to use to build term matches). The word distance
cut-off was set to 25% —it allows many word matches but still limits the num-
ber of matches for performance reasons. An analysis of the false positive matches
shows that often the match originates from 1 or 2 character differences, e.g. after
preprocessing, fatal matches fetal (leading to the false positive match fatal cere-
bral haemorrhage — Cerebral hemorrhage fetal), oper matches open (leading to
the false positive match Haemorrhage of operative wound — Open wound) and
blur matches blue (leading to the false positive match Transient blurred vision —
Blue wvision transient). For the future, it would be interesting to try a combined
mazimum number of character differences and percentage cut-off—potentially it
could decrease the number of false positives.

Stemming allows matching where the suffixes of words are different but con-
flated to the same stem. The use of Levenshtein distance or LCS distance allow
matches where the words are similar enough (i.e. within a distance cut-off value).
Hence, stemming and distance measures can achieve the same matching effects.
However, for stemming the string differences are confined to the suffixes, whereas
for distance measures the differences can occur anywhere in the strings. Using the
two together can be problematic—seen in the false positives generated from run 13
and 14 on the SPC data set (discussed above). It would be interesting to evaluate
a run that uses a distance measure but not stemming.

Soundex did not provide a positive contribution in our application. The results
from the SPC data set demonstrate that Sounder generates many false positives
and in that sense is inferior to string distance measures (Levenshtein distance and
LCS distance) in approximate string matching in our implementation. The sim-
plified Soundex algorithm encodes strings to four character codes always starting
from the beginning of the strings. Hence, strings that have equal characters in the
beginning but differs at the end are often encoded as identical Soundex codes. The
approximate string matching with Soundexr therefore proved to be too unspecific
generating too many false positive matches, e.g. hypothermia, hypoadrenalism,
hypotropia, hypothrombinaemia and hypothromboplastinaemia all have identical
Soundex codes (H136).

The text extraction algorithm uses a best function to determine the best match
for overlapping matches in the text (i.e. matches that originate from positions in
the original text that overlap with each other) and only returns those matched
terms. Another possibility would have been to return all medical term matches
found. The reason for using a best function was to limit the returned matches,
e.g. if the text contains "...common adverse effect is abdominal pain..." we only
return abdominal pain instead of both abdominal pain and pain. Which approach
is to be the preferred may vary between users and applications.
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The results from Martindale show that the use of a more comprehensive term
dictionary results in more medical terms being extracted per ADR text—mean,
median and maximum matched medical terms per text all increase. However, the
increase in matches is small when changing from WHO-ART hierarchy to MedDRA
Preferred Terms considering the difference in size of these dictionaries—a likely
cause is that many MedDRA Preferred Terms are not representing ADRs and
would thus not be found in the ADR texts. Many terms within the Lowest Level
Terms (LLT') of the MedDRA hierarchy are variations of spelling and permutations
of words corresponding to Preferred Terms (PT). We will match all permutation
variations of a term in the term dictionary as a result of using the MedDRA
hierarchy in combination with permutations—an explanation for the large increase
of matches in Martindale when using MedDRA hierarchy instead of MedDRA
Preferred Terms with the same algorithm settings. As an example, the SPC term
Blood glucose increased will be matched to the medical term Blood glucose increased
when MedDRA Preferred Terms are used and Glucose blood increased and Blood
glucose increased when MedDRA hierarchy is used as term dictionary. Thus,
increased number of matched terms may not correspond to increased number of
matches in the original text.

The Martindale results show that the execution time of the text extraction
algorithm increases approximately linearly with the size of the medical term dic-
tionary. Parallelization was implemented to improve the efficiency. However, an
optimized search data structure for the preprocessed text would likely improve
efficiency further. An example is to use a hash table to store the preprocessed
text—the key could be the word and the values could be objects containing the
word together with its position within the text. Each search for a medical term
within the text would become more effective, but there would be an initial cost
to create the data structure. However, when using string distance measures (i.e.
Levenshtein distance or LCS distance) all keys in the hash table would be needed
to be searched.

During the preprocessing step, the original text is transformed into a prepro-
cessed form. All text extraction is performed on the preprocessed text. After a
medical term match is found, the section of the original text where the match was
found is extracted. However, there is at the moment no easy way of going from
a position in the preprocessed text to the corresponding position in the original
text. The section of original text where the match originated from is identified by
counting the number of words before and after the match in the preprocessed text
and isolate the original text between these word numbers. Since the preprocessing
step always results in a text that has less or equally many words as the original
text this method will perform a correct extraction. However, often the extracted
original text will be unnecessary long, containing several additional sentences or
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5 DISCUSSION

even paragraphs in addition to where the match originated from. A great improve-
ment would be to allow for a simple way to go from positions in the preprocessed
text to positions in the original text. This would allow for more accurate and pre-
cise extraction of match origin in the original text. In addition, it would simplify
when determining if a matched medical term originates from a verbatim match or
not—there would be no need for an additional search of the original medical text
using the sorted original terms.

As the project progressed, a number of technical difficulties were encountered
mainly related to the vast amount of data that needed to be processed—one diffi-
culty was that the Martindale XML-file exceeded 250 MB in size. A first solution
to parsing the XML-file was to use an existing .NET XML-parsing API to traverse
the nodes. However, it required all nodes in the XML-file to be read into primary
memory as a hierarchical tree and then traversing the in-memory tree to extract
the ADR texts. It worked well for small XML-files, but did not prove feasible for
the Martindale XML-file. The in-memory tree never got constructed correctly due
to its large size and consequently no data could be extracted. A second solution
was developed based on opening and reading the XML-file sequentially line by line
until the end of the file was reached. For each read line the text was scanned for
opening and closing of XML-tags of certain types that contain information to be
extracted. This "streaming” solution proved to be successful for extraction of in-
formation from Martindale and can be used as a general approach when processing
very large XML-files.

Another technical difficulty was that the output from one text extraction run
could be several GBs in size. The text extraction algorithm was first developed
to return an object containing all the search results of all input texts. No results
were returned until the algorithm finished searching all the medical texts. For
small and medium sized input data sets where the number of medical texts and
the text lengths were limited the solution was successful. However, it was not
working for larger data sets, such as the medical adverse effects texts in Martin-
dale. The search result object grew steadily in size as the algorithm progressed,
resulting in continuously increased memory allocation, which eventually resulted
in an out of memory problem. To overcome the memory issues another mechanism
for returning results from the algorithm was needed. A new solution was imple-
mented based on the idea of returning results of single medical texts continuously
as the algorithm progressed using an event mechanism. Hence, there was no build
up of internal memory allocation by the algorithm and results were continuously
provided for single ADR texts.

The implemented text extraction tool includes a limited set of functionalities
and it would be possible to extend the text extraction functionalities so that addi-
tional preprocessing and approximate string matching algorithms could be used.
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However, due to time limits, such extensions were not possible to include in the
project.

Besides extending the text extraction functionalities, an interesting area for
future research would be to use the output (i.e. the matched medical terms) from
the text extraction algorithm to generate feature vectors for substances. The
feature vectors could be viewed as finger prints of each substance’s adverse reaction
profile. For example, the vectors could be used to group substances based on
their similarity of adverse reactions using either hierarchical or flat clustering (i.e.
hierarchical clustering produces nested partitions whereas flat clustering produces
a single partition with objects in disjoint groups) [9].

6 Conclusion

The results indicate that sophisticated text extraction can markedly improve the
identification of ADR information from adverse effects texts compared to a verba-
tim extraction.

In a collection of semi-structured summary of product characteristics texts,
the text extraction tool was able to increase recall to 87% compared to a verba-
tim identification with a recall at 72% while maintaining a high precision (99.96%
for sophisticated extraction). Results from Martindale, a medical reference for
information about drugs and medicines, show a high precision of 98% (90% if not
accounting for semantic false positives). The majority of false positive matches
(73%) where caused by extracting medical terms not describing ADRs. The most
substantial contribution to performance was from the use of full MedDRA hier-
archy. Sophisticated text algorithms together contributed roughly equally to per-
formance. String distance measures (i.e. Levenshtein distance and LCS distance)
and Soundex did not contribute positively to the results in our implementation.
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APPENDIX A

Appendix A: Classical Permutation Algorithm

The text extraction algorithm implements a classical algorithm to generate all
possible permutations for a given set or multiset of n elements aq, as, ..., a,. The
algorithm will generate the possible permutations in lexicographical order. It has
its roots in 14th century India [15]. Below is an outline of the steps involved [15]:

1. Sort the individual elements in the set in ascending order (i.e. a; < as <
... < a,) and let it be the first permutation.

2. Start from the last element in the permutation. Find the element just before
the longest tail (i.e. sequence of elements at the end ordered in descending
order).

3. Find the element in the tail that is the smallest larger than the element just
before the tail (found in the previous step). Swap the elements found in step
2 and 3.

4. Sort the elements in the tail in ascending order. This is the next permutation
in lexicographical order. Continue from step 2 using this permutation.

5. Terminate when all elements are sorted in decreasing order (this occurs when
step 2 does not find an element).

Below follows two examples that show how the algorithm finds all possible
permutations in lexicographical order.

Example 6 We want to find all permutations of {2, 1, 8}. First we sort the
elements in ascending order {1, 2, 3}, which is the first permutation. The longest
tail consists of the element ’3°. The element just before the tail vs ’2’. Therefore
the 2" and 3’ are swapped. Next permutation becomes {1, 3, 2}. The procedure
1s repeated. The longest tail now consists of elements 8’ and °2°. The element
just before the tail is now 1’ and the smallest element larger than ’1’ in the tail
1s '2°. These elements are swapped and the two elements in the tail are sorted in
ascending order to generate the next permutation {2, 1, 3}. Repeating the procedure
will generate the permutations {2, 3, 1}, {3, 1, 2} and {3, 2, 1}. All permutations
generated in lexicographical order are thus:

{1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2} and {3, 2, 1}.

Example 7 Let us say we have the term {duodenal ulcer hemorrhagic}. It
consists of 3 words and we want to find all term permutations (i.e. all permuta-
tions of the words). There should be 3! = 6 possible permutations. The algorithm
starts by finding the lexicographically smallest permutation, which is {duodenal
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hemorrhagic ulcer}. The next permutation in lexicographical order is {duode-
nal ulcer hemorrhagic}. Next permutation will be {hemorrhagic duodenal
ulcer }. The next permutations will be {hemorrhagic ulcer duodenal}, {ulcer
duodenal hemorrhagic} and {ulcer hemorrhagic duodenal} generated in
this order. After the sixth permutation the algorithm will terminate because there
1s no next permutation. All possible permutations have been generated.
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Appendix B: Algorithm Parameters

Table 17 shows the parameters that can be set on the text extraction algorithm.
Each parameter is described and its possible values are given.

Table 17: Text extraction algorithm parameters

Parameter Description Possible values
Name
LexiconEntries | A list of lexicon entries (i.e. the ADR | Can be any list of lex-
texts to search by the algorithm) icon entries. Each lex-
icon entry contains an
ADR text and a drug
name.
Terms A list of medical terms to search for | Can be any list of
in the ADR texts. terms.
NumberOf- The number of threads to use to run | An integer in the in-
Threads the algorithm. More threads will in- | terval [1, 10].
crease the speed of the algorihm in
a multicore processor environment.
StopWords A list of stop words. Stop words are | Any list of stop words.
words that are treated as words with
no meaning and will be removed in
the extraction process.
RemoveStop- A boolean value indicating if re- | True or false.
Words mowal of stop words should be used
in the preprocessing step.
Stemming A boolean value indicating if the | True or false.
Porter stemming algorithm should
be used in the preprocessing step.
Synonyms A list of synonyms to use. Synonyms | Any list of synonyms.
are treated as equivalent by the al-
gorithm.
UseSynonyms A boolean value indicating if syn- | True or false.
onyms should be used in the prepro-
cessing step.
Soundex A boolean value indicating if the | True or false.

Soundex algorithm should be used
in the preprocessing step.
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Table 17: Text extraction algorithm parameters

Parameter Description Possible values
Name
Permutation- The type of permutation to use. Can be set to either
Type none, term permu-
tation or word posi-
tion permutation.
DistanceMeasure | The type of distance measure to use. | Can be set to ei-
ther none, Leven-
shtein distance or
LCS distance.
MaxWord- The maximum allowed percentage | A percentage value in
Percentage- deviation (i.e. percentage calcula- | the interval [0, 100].
Deviation tion based on character differences)
for a single word match when us-
ing string distance measures. Appli-
cable when DistanceMeasure is set
to either Levenshtein distance or
LCS distance.
MaxTerm- The maximum allowed percentage | A percentage value in
Percentage- deviation (i.e. percentage calcula- | the interval [0, 100].
Deviation tion based on character differences)
for a complete term match when us-
ing string distance measures. Appli-
cable when DistanceMeasure is set
to either Levenshtein distance or
LCS distance
RestrictPartial- | Imposes a threshold on minimum | True or false.
TextMatches percentage of the words in the text
that need to be matched by a term
to result in a match.
MinWords- The minimum percentage threshold | A percentage value in
PercentageHit value of the words in the text that | the interval |0, 100].

need to be matched by a term to re-
sult in a match. Applicable when
Restrict Partial Text Matches is set to
true.
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Table 17: Text extraction algorithm parameters

Parameter Description Possible values
Name

HitComparer- A delegate method that is called by | Any method that
Method the algorithm when there are over- | takes two hits as pa-

lapping hits in the text. It is used to
determine which of two overlapping
hits in the text is the best.

rameters and returns
an integer.
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Appendix C: Used Stop Words and Synonyms

The text extraction algorithm requires a list of stop words and a list of synonyms
when removal of stop words and synonyms are used respectively. In the text
extraction performance analysis, all the runs that used removal of stop words used
the list of stop words below. The list is a customized version of the universal stop
words list given by Konchady [16] (p. 96-97). Customization consists of addition
of nec and nos and removal of no and not. Nec and nos are abbreviations of
"not elsewhere specified” and "not otherwise specified” respectively—two frequently
occurring words within MedDRA terms. Our stop words list is:

about, add, ago, after, all, also, an, and, another, any, are, as, at, be, because,
been, before, being, between, big, both, but, by, came, could, did, do, does, due,
each, else, end, far, few, for, from, get, got, had, has, have, he, her, here, him,
himself, his, how, if, in, into, is, it, its, just, let, lie, like, low, make, many, me,
might, more, most, much, must, my, nec, never, nos, nor, now, of, off, old, on,
only, or, other, our, out, over, per, pre, put, re, said, same, see, she, should, since,
so, some, still, such, take, than, that, the, their, them, then, there, these, they,
this, those, through, to, too, under, up, use, very, via, want, was, way, we, well,
were, what, when, where, which, while, who, will, with, would, yes, yet, you, your.

All the runs in the text extraction performance analysis that used synonyms used
the following list of synonyms:

qt — qtc

ferritin — iron

heart — cardiac

gi — gastrointestinal

convulsion — seizure

convulsions — seizures

anti platelet — antiplatelet

international normalised ratio — inr
nephrotoxicity, nephrotoxic — nephropathy toxic
hepatic — liver

estrogen — oestrogen

hepatotoxicity, hepatotoxic — hepatotoxic effect
potentiated, raised, elevated — increased
decreased — lowered

decrease — lower

haemorrhage, hemorrhage, haemorrage — bleeding
acute — immediate
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Appendix D: TextMiner - Graphical User Interface

This appendix presents the GUI of the TextMiner application. Figure 9 shows a
screenshot of the Text Sources-tab. This is where all the term sources and lexicon
sources that have been loaded into the application are displayed.

File  About
Tex sources | Textmining | Search
Term source: | MEDDRA | Lexicon Source: | Martindale b
ADR Terms: (18786) Substances: (5565) ADR text:
| | | Aftet topical application to the skin local reactions

|17 ketosteroids urine Benzyl Nicotinate such as entherma or rash may occur and photosensitivity has
17 ketosteroids utine abnarmal Beta-aminopropionitile been reported. After use as mouth ancd throat

17 ketosteroids urine decreased Bicifadine Hydrochloride preparations, numbness or stinging sensations of the oral

17 ketosteraids urine increased Bormyl Salicylate mucosa have been reported: hypersensitivity reactions including
17 ketosteraids urine normal Bromfenac Sodium urticaria. photosensitivity, and

17.20-desmolase deficiency Bufexarmac bronchospasm may also ocour rarely.

17-alpha-hydroxylase deficiency Burmadizone Calciurm

17-hydroxyprogesterone decreased Buprenorphine A57-year-old woman who had used 400 g of &
17-hydroxyprogesterone increased Butibufen Sodium topical crearn containing benzydamine hydrochloride 3% over
18g minus syndrome: Butorphanol Tartrate @ period of 4 months was found to heve raised plasma

2" B"-oligoadenylate synthetase test Capsaicin concentrations of creatining and urea consistent with a

2" B"-oligoadenylate synthetase testy Carbasalate Calcium substantial rechuction in glomerular filtration rate

2" B"-ligoadenylate synthetase testi Carfentanil Citrate

20.22-desmolase deficiency Carproten Photoallergic contact dermatitis developed on the hands of a
21-hydroxylase deficiency Celecoxb G5~year-old woman after the use of a genital wash

bralpha reductase inhibition therapy Choline Magnesium Tnsalicylate containing benzydarning 0.1% for several years. The lesions disappeared
B-alpha-reductase deficiency Chaoline Salicylate once the patient stopped using the solution.
B-hydroxyindolacetic acid Clofexamide

B-hydroxyindolacetic acid decreased Clotezone Abyear old girl had

E-hydroyindolacetic acid in urine Clonixin hallucinations after receiving 500 mg

Bhydrowyindolacetic acid in urine dec Codeine of benzydamine arally: it had heen intended
B-hydroxyindolacetic acid in urine incr Crotan Qil as awaginal douche for pruritus vulvae;

B-hydroxyindolacetic acid increased Devil's Claw Root recovery was spontaneous

B'ruclectidase Dexibuprafen

b"nucleotidase decreased Dextromaramide

5"nucleotidase increased Dextropropoxyphene

By minus syndrome Diacerein

Aase syndrome Diamorphine Hydrochloride

Abasia Diclofenac

Abdoren crushing Diethylarine Salicylate

Ahdomen scan Diflunisal

Abdormen scan normal | Dihydrocodeine Phosphate

e # | [Dipipanane Hydrachlorids ]

Figure 9: Text Sources-tab. Screenshot of the Text Sources-tab. The term source
drop down box on the left is populated with all term sources that have been loaded into
TextMiner. The term source list below the drop down box shows all terms for the selected
term source. On the right, the lexicon source drop down box contains all lexicon sources
that have been loaded into the application. The selected lexicon source is displayed.
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Figure 10 shows a screenshot of the Text Mining-tab. This is where the user can
start a new text extraction run. The user can easily set the parameters for the
run. All finished runs can be seen along with their respective run information.

® TextMiner |Z||E|r5__<|

File  About

Lexis . MartindaleClean I a’ 3
[ ] Term source: MEDDRA s 5 -
Connections: 0 Pemutatior: Off
Progress Stemming: On Mapplng l'esults

Nurnber of threads: 1 :|

Sources
Lexicon | LOMDI

I

Texts: 6

Remove stop words: On
Soundex:

Fuzzy matching: OFff
Sunonyms: Dff

Fiestrict partial match: Of

Algorithm Settings

Lexicon source: LONDON COMPLETE SPC

Term

MEDDRA W

Term source: ALL MEDDRA
Preprocess setiings

[ Remove stop words

[ Use stemming

Textmining settings:

Ou | Permutation: Word Position Permutation
se souncex

.
Stemming: On
Lexiconsource: LONDON COMPLETE SPC ) ) <
[ Use synonyms Term source: ALL MEDDRA « Remove stop words: On
Match setings Connections: Permutation: On + Use synonyms: Off
Texts: 4270 Stemming: On « Soundex: Off
[] Use fuzzy matching ’ ?gaﬂnt'dveiftuuﬁ ekt o+ Fuzzy matching distance measure: None
Euw matc?a?’g 0ff = o Max word percentage deviation: 0 %
R’;’;f,f‘é’,"’plm match: O o Max term percentage deviation: 0 %
— - - s Restrict partial text matches: Off
Lexicon source: MartindaleClean H 5 . 0
Term source: MED DRA Y o Min words percentage hit: 0 %
Connections: 0 Pemutatior: 0if R l S
Stemming: On
[0 Use permutations Tests:b Remove stop words: On esults ummary
Soundex: Off
E:;?n;,n,ﬁ;cmg 2 Number of Connections: 5431
OF i . Restrict partial match: Off
estrict partial text matches -
2 Lexicon source: MartindaleClean i Number of Searched Texts: 4270
: &
= Term source: MEDDRA =
Connections: 0 Permutatior: O Average number of connections per text: 1,27 v
Stemming: On -
Texts:6 Plarnnue chon e Do 00

Figure 10: Text Mining-tab. Screenshot of the Text Mining-tab. On the left, the
user can set up algorithm parameters, start a new text extraction run, view progress
and abort an ongoing run. All finished runs are stored in the list in the middle. Run
information is displayed for the selected run.
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Figure 11 shows a screenshot of the Search-tab. This is where the user can search
results of finished and aborted runs for specific drug substances and ADR terms.

® TextMiner,
File  About
Text sources | Text mining | Search |
ADR: !fever | Print Preview
Search
Drug: |Allopurinal | The search on ADR: fever and Drug: Allopurinol resulted in 1 match.
Select the result set for the search:
Lexicon source: MartindaeClean A e
Term source: WHO-ART =
Allopurinol
Connections: 0 Pemutation: Oif P
) Stemming: On
Teats:6 Remove stop words: On Fever
Soundex: OIf —
Fuzzy matching: Off
Synorwms: On R
Fiestict partial match: 0 Found match on: fever
#E“ic"" m""_‘;:;;:;:::w' rtigo, and visual disturbances. Patients with gout may have an increase in acute attacks on beginning
em m‘f":e' treatment with allopurinol, although attacks usually subside after several months. A Boston Collaborative
Connections 12 E?;mﬂi:g?ﬂdn? f Drug Surveillance Program involving 29 524 hospitalised patients found that, with the exception of skin
Rieats:6 Eemd\fe Stﬂolpf words: On reactions, 33 of 1835 patients treated with allopurinol (1.8%) had adverse effects. These effects were
OLNCER: . . " - .
Fuzzp matching: Off dose-related and the most frequent were haematological (11 patients. 0.6%). diarthoea (5 patients,
gﬁgﬂ:‘mjﬁlﬁg D 0.3%). and drug fever (5 patients, 0.3%). Hepatotoxicity was reported in 3 patients (0.2%). Two
patients developed possible hypersensitivity reactions to allopurinol. A further analysis involving 1748
outpatients indicated no instances of acute blood disorders, skin diseases. or hypersensitivity that
warranted hospital treatment. Liver disease. although found. was not considered to be associated with
allopurinol. There were only 2 patients in whom renal disease could possibly have been caused by
allopurinol. In addition to the haematological abnormalities of leucopenia, thrombocytopenia, hasmolytic
anaemia, and clotting abnormalities noted in the Boston Collaborative Drug Surveillance Program,
aplastic anaemia has also been reported, sometimes in patients with renal impairment. Pure red cell
aplasia has also been reported. Some case reports have suggested an association between allopurinol
Lexicon source: MartinddeClean & use and the development of cataracts, but a detailed ophthalmological survey mvolving
Term source: MEDDRA e
Connections: 0 Permutation: 0ff L
. Stemming: Off
Teats: 6 Remave stop words: Off
Soundes: OFf
Fuzzy matching: Off
Synaryms: Off .

Figure 11: Search-tab. Screenshot of the Search-tab. On the left, the user can select
the text extraction run to search and enter a drug substance and ADR term to search
for. The results of the search are displayed on the right side.
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APPENDIX E

Appendix E: Code Example Using TextMiningTools.dll

This appendix consists of a code example to illustrate how to set up the algorithm
parameters, listen to algorithm events and start a text extraction run by code.

// An example method that shows how to set up the text extraction
// algorithm parameters, set up event handlers for algorithm events
// and start a text extraction run.

public void RunExtractionAlgorithm (LexiconSource lexSource, TermSource termSource)

{

/3 ko o o o K KK Kok oK K o KKK KoK oK K K KKK KoK oK K K S KKK KoK oK 3K K S K KKK K oK SR K o K KK K
// Get a list of ILexziconEntry objects and a list of terms from

// a database

//*************************************************************

IEnumerable<ILexiconEntry> lexiconEntries =
Database. GetAllLexiconEntries (lexSource);

IEnumerable<string > termNames = Database.GetAllTerms (termSource);

//*************************************************************

// Set up the text extraction algorithm parameters

//*************************************************************

// Set algorithm lezicon entries
// to the lexicon entries fetched from the database
algorithm . LexiconEntries = lexiconEntries;

// Set algorithm ADR terms
// to the terms fetched from the database
algorithm . Terms = termNames;

// Set the number of threads to use (parallelization)
// (1—10 threads are possible)
algorithm . NumberOfThreads = 2;

// Set preprocessing parameters
algorithm . Stemming = true;
algorithm .Soundex = false;
algorithm . RemoveStopWords = true;
algorithm . UseSynonyms = true;

// Set the permutation type

algorithm . PermutationType = PermutationType. WordPositionPermutation

// Set the distance measure to wuse

// and cut—off wvalues in percent for how much deviation to
// during the matching

algorithm . DistanceMeasure = DistanceMeasure . LCSDistance;
algorithm . MaxTermPercentageDeviation = 15;

algorithm . MaxWordPercentageDeviation = 20;

// Set the restriction of partial text matches
algorithm . RestrictPartialTextMatches = false;
algorithm . MinWordsPercentageHit = 0;

// Set the stop words for the algorithm
algorithm . StopWords = Database.GetStopWordList ();

// Set the synonyms for the algorithm
algorithm .Synonyms = Database.GetSynonymUList ();
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// Set up event handlers for algorithm events
algorithm . algorithmRunResult +=

new AlgorithmRunResult (algorithm algorithmRunResult);
algorithm .algorithmRunStarted 4=

new AlgorithmRunStarted (algorithm algorithmRunStarted);
algorithm . algorithmException +=

new AlgorithmException (algorithm algorithmException);
algorithm . algorithmRunFinished +=

new EventHandler(algorithm algorithmRunFinished);
algorithm . algorithmProgressChanged 4=

new AlgorithmProgress(algorithm algorithmProgressChanged);

// Start the text exztraction run
algorithm .Run ();
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