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Sammanfattning 

 

 

     Detta arbete beskriver skapandet av en algoritm som är tänkt att 

användas vid sekvensering av parasiten Trypanosoma cruzi’s genom. Det 

specifika med T. cruzi’s genom är att det innehåller en ovanligt hög andel 

repetitivt DNA. Detta repetitiva  DNA är mycket svårt att sekvensera med 

dagens sekvenserings-algoritmer. Det som försvårar arbetet är likheten som 

dessa repetitiva sekvenser har. För att lyckas med sekvenseringen måste 

man hitta skillnader hos de repetitiva delarna och sedan använda dessa för 

sekvenseringen. 

     Genom att hitta de små skillnader, sk. naturliga mutationer, som finns 

mellan dessa repetitiva delar så kan dessa användas för att separera de 

repetetiva delarna från varandra. Dessa skillnader som man finner kallar 

man för Defined Nucleotide Positions (DNPs). Utgående från dessa DNPs 

skapas objekt som min algoritm tar hand om, och sedan sätter ihop till 

contig, det vill säga längre DNA bitar som var och en representerar en 

specifik repetitiv del. 

     Algoritmen testkördes mot simulerad data, där längd och antalet 

repetitiva segment kunde varieras. 

 

 

 

 

 

Examensarbete 30hp 

Civilingenjörsprogrammet Molekylär Bioteknik 

Hösten 2001 



 



 1 

Contents 
 

Abbreviations     2 

 

1 Introduction     3

   

2 Shotgun Sequencing Strategies    4 
2.1 Hierarchical Sequencing (Shotgun) Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

     2.1.1 Clone-by-Clone Shotgun Sequencing Steps . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 

          2.1.1.1 BAC-library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

          2.1.1.2 Nebulisation and Insert Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

          2.1.1.3 M13-library Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

          2.1.1.4 PCR – Polymerase Chain Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 

          2.1.1.5 MegaBACE
TM

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 

2.2 Whole-Genome Shotgun Sequencing Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 

 

3 Base Calling     7 
3.1 Phred – A Basecalling Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 

 

4 Assembly      8 
4.1 Phrap - An Assembly Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

     4.1.1 The Phrap Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

     4.1.2 Consed – A Graphical Tool for Sequence Finishing . . . . . . . . . . . . . . . . . . . . . 10 

4.2 TRAP – Tandem Repeat Assembly Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 

     4.2.1 DNPs – Defined Nucleotide Positions, and Analysis of the Multiple Alignment 11 

     4.2.2 The TRAP Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 

 

5 The Thesis Project – Algorithm and Clustering   14 
5.1 Algorithm Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 

     5.1.0 Finding DNP Candidates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 

     5.1.1 Verifying DNP Candidates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 

     5.1.2 Making SolidClusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 

     5.1.3 Order SolidClusters into ClusterContainer – add_cluster . . . . . . . . . . . . . . . . .  17 

     5.1.4 Arranging the Rows in left_vec after Quality – make_resolve_order . . . . . . . .  19 

     5.1.5 Putting SolidClusters together – resolve_cluster – Resolve Process . . . . . . . . . 19 

     5.1.6 Adding Resulting Modified SCs together – chain_cluster – Chain Process . . . 22 

     5.1.7 Making the Chain into one Unit – Merge Process . . . . . . . . . . . . . . . . . . . . . . . 22 

5.2 Programming: Implementation in C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 

5.3 Test Run Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 

5.4 Algorithm Summary – Objects, Data Structures and Functions . . . . . . . . . . . . . . . . . 24 

5.5 Algorithm Problems and Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 

 

6 Discussion      25 

 

Acknowledgements     26 

 

References      26 

 

Appendix A - The implementation of the algorithm made in C++ 27 

 

 

 



 2 
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1 Introduction 
 

Ever since it became clear that it is the DNA molecule which decides how we look, function 

and why we get some diseases, scientists around the world have tried to determine it’s 

composition of the four different bases; A, T, G and C. This process is called sequencing, that 

is, to determine in which order or sequence the bases are. 

The sequencing of an organism’s genome, is a large, time consuming and costly process, 

since sequencing is a relatively slow process and the genomes are very large. Today the most 

common sequencing method for large genomes is the Shotgun Sequencing method. This 

method consists of two parts, first a laboratory step followed by a theoretical analytical step. 

Sequencing is a difficult task where many different obstacles have to be overcome. Some of 

the problems are errors from the first laboratory step, where base separation in the base 

calling process and sequencing errors are the two major problems. Even the structure of the 

genome can contribute to major problem for the sequenceing process. Specially if the genome 

contains a high frequency of repeat regions. These repeats make the shotgun sequncing 

method together with its assembly programs less favorable. 

Repeat regions are very similar stretches of bases that arise many times in the DNA. These 

repeat regions can be of different length and distribution. If the length of the repeat regions 

are shorter than the reads produced in the shotgun sequencing method, then they are easier to 

handle, but if they are longer, i.e. over 500 base pairs (bp), they can be very hard to separate. 

The distribution can also be different, they can either be placed directly after each other, that 

is tandem repeats or be present at various locations, so called interspersed repeats. 

Some organisms genomes have an higher frequency of repeat regions than others, and the 

organism Trypanosoma cruzi (T. cruzi) is an example of a parasite having extensive amount 

of repetitive elements. The genome of the T.cruzi is what the Genome Analysis Group at the 

Karolinska Institute is sequencing. 

When using shotgun sequencing and alignment software tools of today, these repeat regions 

are very seldom correctly separated. Instead, these regions will mostly be separated into two 

different repeat regions placed next to each other. 

To correctly separate the repeat regions, two persons in the Genome Analyzis Group at the 

Karolinska Institute, Martti T. Tammi and Erik Arner, have had as their biggest task to come 

up with a new sophisticated assembly program that can handle difficult repeat regions. The 

result became TRAP, Tandem Repeat Assembly Program. 

The new thing with TRAP is that it tries to find the small differences that actually exists 

between repeats. The differences are natural mutations. The frequency of these mutations are 

in the order of 1-2% in a 500 bp fragment. When using these mutation differences the repeats 

can be separated and assembled in the correct way. To find these differences a Multiple 

Alignment (MA) is setup. The difficulties is to optimize this multiple alignment as much as 

possible, both when it comes to correctness and speed. The mutation differences in the repeats 

are defined as Defined Nucleotide Positions (DNPs), and these have to be separated from 

errors made in the laboratory step, i.e. errors made in the base calling process. The TRAP 

program handles a huge amount of sequencing data and that slows down the assembly 

process, so the question is if a clustering process can speed up the run time. 

The purpose of this thesis project is to investigate if there exists such a clustering algorithm 

and what would it look like and will it speed up the assembly process. The algorithm should 

be fast and correct, that is the two main things. If this algorithm turns out to speed up the 

assembly process in a desirable way, the clustering module will be put in to the TRAP 

program. The demand on the program is to handle special indata and to return special outdata. 

To do this a good communication between all software parts is important. 
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The TRAP program is written in the programming language C++, so the clustering algorithm 

will also be in that language.  

 

2 Shotgun Sequencing Strategies 
 

The shotgun sequencing method can be used with many different sequencing strategies. The 

two most common strategies are the Hierarchical Sequencing (HS) Strategy also called 

Clone-by-Clone Sequencing and the Whole-Genome Shotgun (WGS) Strategy [1]. 

The differences between these two strategies is how the ―target‖ DNA being sequenced is 

organized. In the WGS method the whole genome of the organism is sheared into small 

fragments and these fragments are then sequenced. In the Clone-by-Clone Strategy the 

genome is sheared to bigger fragments in size of 100 to 200 kb. The fragments are then 

inserted into BACs (Bacterial Artificial Chromosomes) to make a BAC-library. The BACs are 

then sheared to smaller fragments and sequenced. 

The most powerful methods seems to be a combination of these two strategies. 

 

2.1 Hierarchical Sequencing (Shotgun) Strategy 
 

The initial step when using the HS strategy is to create a map, Physical Map [1]. The physical 

map gives information about how the different BACs are located in relation to the DNA they 

originate from. The physical map is built from the BACs. The ends of the BAC inserts are 

sequenced and the sequenced fragments are matched against the origin DNA, see figure 1. 

The making of the map prevent multiple coverage of the same region and makes sure that the 

whole genome is covered by the BAC-library. The name HS strategy comes from the way of 

breaking down the problem into minor parts which is easier to handle e.g. Genome  

Chromosomes (chromosome specific libraries)  BAC-libraries  Reads. Reads are the 

smallest parts, which are sequenced with the MegaBACE
TM

 machine. When the genome has 

significant amount of repeat regions it may cause problems to make the physical map, 

because the matching of the BAC ends against the genome will not be consistent.   

 

 

 

 

 

 

 

 

 

 
 

Figure 1: BAC walking. The figure shows how the BACs are building up the Physical Map of the chromosome 

of interest for sequencing.   

 

2.1.1 Clone-by-Clone Shotgun Sequencing Steps  
 

The strategy used by the Björn Andersson group, the Genome Analysis Group at the 

Karolinska Institute, is the HS strategy. The part of the genome sequenced is chromosome 3 

from the T. cruzi. Chromosome 3 is represented as BAC-library, where every BAC clone 

constitutes a 100-140 kb long part of the chromosome. The following describes the steps in 

the sequencing process. 

Chromosome 

BACs 100 – 140 kb 

BAC walking 

BAC ends 
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2.1.1.1 BAC-library 

 

The BAC-library system is based on Escherichia coli (E. coli) F factor. Replication of the 

factor F in E.coli is strictly controlled and the F plasmid is maintained in low copy number 

(one or two copies per cell), thus reducing the potential for recombination between DNA 

fragments carried by the plasmid. The BAC system is very stable; it is capable of maintaining 

incorporated human genomic DNA fragments over 300 kb pairs long [2]. The inserts from 

chromosome 3 are just approx 100 kb long. The size of the mini-F plasmid, pMBO131, from 

which the pBAC vector is constructed, is 9000 bp, which is very small when compared to the 

insert with a size of 100 kb. 

 

First step is to pick the BAC clone that will be used for sequencing. This BAC clone is grown 

to get enough amounts of BACs. After right amount of BACs are achieved, the BAC plasmid 

is separated from the E.coli. 

 

2.1.1.2 Nebulisation and Insert Selection 

 

The nebulisation step will shear the chosen BAC clone plasmids into a broad range of minor 

linear fragments of different sizes, the fragment size of interest is 2000 bp. After nebulisation 

the ends of the fragment are made blunt ended, a step called ―end repair‖. To make the 

fragment ends more specific for the ligation to the sequening plasmid M13 highly efficient, 

adaptors are put to the ends of the fragments. The fragments are then run on agarosgel to get 

the specific size 2000 bp.  

This will result in fragments 2000 bp long coming from both the insert and from the BAC 

plasmid, mini-F plasmid [3]. 

 

2.1.1.3 M13-library Construction 

 

M13 plasmid is used for the sequence step. The M13 plasmid is split and annealed together 

with an adaptor. This way the ligation of insert to the M13 vector becomes highly efficient. 

To attain a large amount of M13 vectors with insert they are transformed into Supercompetent 

E.coli XL-2 blue cells. (The cells are grown on agar for 20 h in 37˚C.) 

The cells containing the insert are now visible as placks. These are picked and incubated one 

more time for 20 h in 37˚C on a shaker. After that the preparation of the M13 vectors 

according to protocol ―High-throughput of M13 DNA‖ (ThermoMAX prep) [3]. 

 

2.1.1.4 PCR – Polymerase Chain Reaction 

 

The purified M13 constructs (vector and insert) are now ready for PCR-sequencing. The 

sequencing is performed with an automated fluorescence method based on cycle sequencing 

according to the protocol DYEnamic ET terminator kit (MegaBACE
TM

) from Amersham-

Pharmacia Biotech. In this kit the method of labelling is called Dye Terminator Sequencing. 

In this case the terminating (ddNTP) base is the one labelled with the fluorescent dye. There 

exists an alternative labeling method where the primer is labelled instead, Dye Primer 

Sequencing. During the PCR-sequencing reaction a lot of single stranded fragments of 

different lengths and labelled with different dyes are created. These fragments are later 

separated by gel electrophoresis.  
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2.1.1.5 MegaBACE
TM

 

 

The separation of the PCR-sequencing fragments take place in an automated DNA Analyzis 

System from Amersham-Pharmacia Biotech called MegaBACE
TM

. 

 

All the steps can also be viewed in figure 2. 

 
Figure 2: Flowchart of the laboratory step. From the BAC library the T.cruzi fragment is split from the factor F. 

This 100 kb long fragment is sheared into smaller fragments. To get the length of 2000 bp the mixture is run on 

agarosgel and this will separate the fragment. The band of 2000 bp cuts out. The fragments are annealed into the 

sequencing vector M13. To get a large amount of  M13 vector with insert the is transformed in to E.coli cells for 

amplification.  The purified M13 with insert are run in the PCR together with primers and PCR-reagents.  

 

2.2 Whole-Genome Shotgun Sequencing Strategy 
 

A different strategy from the HS strategy, where the sequencing problem is broken down into 

minor parts, the WGS strategy is to fragment the genome randomly without first making the 

physical map. With this approach the shotgun-sequencing step have a lot of randomly 

sequenced fragments (reads) coming from the whole genome. To put all the sequenced pieces 

together to the resulting genome, will demands for powerful computers and smart assembly 

programs. This approach will give rise to more fragments to handle at the same time. To 

finish the sequencing of the genome with WGS strategy, the sequence gaps are filled by using 

the clone-by-clone based strategy. 
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3 Base Calling 
 

The resulting PCR product is placed and analyzed in the sequencing machine called 

MegaBACE
TM

 1000. The MegaBACE
TM

 1000 is a product from Amersham Biosciences and 

is an automated DNA Analysis System with a high-throughput, fluorescence-based DNA 

system utilizing capillary electrophoresis with up to 96 capillaries operating in parallel. The 

separation of the fragments takes place in these capillaries. At the end of these capillaries are 

the fragment laser-beam and the fluorescence are measured and an electrogram is created. See 

figure 2. The basecalling program task is to interpret this chromatogram and decide the 

sequence of the bases. A number of different basecalling programs exists like, Phred, 

LifeTrace, maximum-likelihood base caller (MLB), ABI base caller and the MegaBACE
TM

 

own base caller, the Cimarron base caller. The Genome Analysis Group at the Karolinska 

Institute is using Phred.  

 

3.1 Phred – A Basecalling Program 
 

The MegaBACE
TM

 produces a chromatogram file containing DNA sequence trace data for 

each of the four (different) bases, A, T, C and G. This data is used in a process called 

basecalling, were the trace data is converted into corresponding base sequence. The software 

used for the basecalling process is called Phred. 

Phred uses simple Fourier methods to examine the four base traces, and in order to predict an 

evenly spaced set of peak locations. That is, it determinates where the peaks would be centred 

if there were no compressions, dropouts or other factors shifting the peaks from their ―true‖ 

location. 

Ideally, all peaks in a chromatogram trace file would be spaced an even distance apart. In 

reality, sequence composition and the dye primer chemistry can alter the distance between 

peaks and that way making it difficult to identify bases accurately. 

Phred uses information from the region surrounding each peak to determine the probability 

that a base has been identified correctly. Phred also identifies loop/stem sequence motifs 

based on dye primer data and splits peaks if there are indications that CC or GG peaks have 

merged. 

Phred also assigns quality values, Q, to each base [4]. This Phred quality value is related to  

the probability of an error in base calling by the formula: 
 

Q = - 10 * log10(P) 
 

where P is the estimated error probability for that basecall. A quality value ≥ 20 indicates that 

there is a chance less than a 1 in 100 that the base has been misidentified, that is incorrectly 

called. Note that high quality values correspond to low error probabilities, and conversely. 

The most commonly used method is to count the bases with a quality score of 20 (= Q20) and 

above, these are considered "high quality bases", or 30 and above, "very high quality bases". 

 

After calling all bases, Phred writes the sequence to a file in either FASTA, PHD or the SCF 

("Standard Chromatogram Format") format [4], depending on how you want it. The Quality 

values for the bases are written to a separate file in either FASTA format or to a PHD file, a 

text file which contains base calls and quality information, which can be used by the Phrap 

sequence assembly program in order to increase the accuracy of the assembled sequence. 
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4 Assembly 
 

After the base calling process a lot of sequence fragments have been created. These fragments 

or reads are now put together, assembled, into the original DNA sequence. The sequence 

assembly is the process of constructing the ―best guess‖ contig/clone-sequence from a set of 

overlapping reads of the clone. The assembly process is complicated by a number of 

computational problems, and a sequence assembly program must be able to handle these. [5] 

The most important ones are: repeated regions that can be of two kinds – interspersed repeats 

and tandem repeats, base-calling errors or sequencing errors – of which there are four types, 

substitutions, deletions, insertions and ambiguous base calls, contaminations – sequence from 

host organism used to clone shotgun fragments, unremoved vector sequence – vector 

sequences can be present in reads, and if not removed, these may cause false overlaps 

between reads, unknown orientation – it is not known from which strand each fragment 

originates, polymorphisms and incomplete coverage – coverage varies in different target 

sequence locations due to the nature of random sampling. 

The tools used for sequence assembly are Crossmatch (used for vector screening, and will not 

be describe here), Phrap (used for the fragment assembly) and Consed (a graphical tool for 

sequence finishing). 

 

4.1 Phrap - An Assembly Program 
 

Phrap, Phragment assembly program or Phil's revised assembly program, is for the moment 

the leading program for assembling shotgun DNA sequence data. The Phrap program is 

strongly recommended to be used in conjunction with the base calls and base quality values 

produced by the basecaller, Phred. As input data Phrap uses the two result files produced by 

Phred, the sequence fasta file and the quality file. It uses the quality information provided by 

Phred to discriminate repeats and sequencing errors in the assembly process and to construct 

contig sequences as a mosaic of the highest quality parts of the reads (rather than a 

consensus). If there is a discrepancy at any position, Phrap uses information from Phred to 

assign a quality value to the discrepancy. The program is able to handle very large datasets.  

Phrap also provides extensive information about each assembly (including quality values for 

contig sequences) to assist in troubleshooting. 

 

4.1.1 The Phrap Algorithm 

 

To understand how Phrap work in more detail, the different steps are here described. 

As input to the Phrap program are the two files containing read sequences and quality data. 

The read ends are in some extent trimmed off if there are any near-homopolymer runs and 

read complements are constructed. The next step is to find, look for, all possible overlaps 

between the reads. This is done by analyzing all reads after words. In Phrap these words are 

normally 14 bases/letters long, but shorter or longer words can be used. These words are 

found by using a ―Sliding Window‖ that runs along the read and every word is registered into 

a structure that keeps track of the word’s first base. The structure can be described as a matrix, 

where the first element is the word’s index, described later, and the rest of the elements are 

pointers to the first base in that word located in different or in the same read. On the same row 

in the matrix all pointers are pointing at the same 14 bases long word but at different locations 

among the reads. As an example: if a read is 500 bp long, that read will give rise to 487 (500-

13) different words and also 487 new pointers. Every time a word appears a pointer is 

connected to it and placed in the matrix. The matrix indexes are composed of the words first 

10 bases like this. The index is an integer with the base 4 and every word give rise to a 
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specific integer. Every base is given a number, A = 0, T = 1, G = 2 and C = 3 (base equal to 

4). As an example can the sequence, ATGGCTATAC be represented by the following 

integer: 
 

4
9
 * 0 + 4

8
 * 1 + 4

7
 * 2 + 4

6
 * 2 + 4

5
 * 3 + 4

4
 * 1 + 4

3
 * 0 + 4

2
 * 1 +  4

1
 * 0 + 4

0
 * 3 =  

262.144*0 + 65.536*1 + 16.384*2 + 4.096*2 + 1.024*3 + 256*1 + 64*0 + 16*1 + 4*0 + 1*3  = 109.843, 

the index for the word ATGGCTATAC is 109.843. 

 

When all reads are analyzed for words it is time to find pairs of reads with matching words. 

All reads with pointers on the same row in the matrix are analyzed at the same time, these 

reads have the 14 bases long word in common. The reads are put into a list, the list is then 

ordered in alphabetical order, with the 14 bases and the following bases at count (see figure 

3). 

 
Figure 3: Arrangement of reads in unsorted and sorted lists in the Phrap assembly program. All read containing 

the same word are put into a list, and ordered in alphabetical order. Reads next to each other have a sequence 

more similar than reads longer away. 

 

After the list has been sorted in alphabetical order, reads next to each other are the ones 

having most similar base sequence. The reads are then pairwise matched with Smith-

Watermann (SW) algorithm [6]. Reads showing high similarity gets a high SW score value 

and reads with lower similarity get lower SW score. Only read pairs with an SW score over a 

certain threshold are further used. When every read pair have got an SW score, the next row 

in the matrix is analyzed, and this is done until all rows are analyzed. 

The kept read pairs are analyzed with the Log Likelihood Ratio (LLR), which gives the read 

pairs a LLR-score [7]. If the LLR-score is ≥ 0, the read pair is statistical possible, and if LLR-

score < 0, the read pair is not possible to align. All read pairs are given a LLR-score and put 

into a list with decreasing LLR-score. 

Next step is to construct contig layouts. The first read pair being used is the one with the 

highest LLR-score, at the top of the list. This read pair is the first part of the contig. Then the 

read pair with second highest LLR-score is used. If this read pair has common reads with the 

contig, all different combinations are examined to see that the LLR-score for those 
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combinations are ≥ 0 (see figure 4). If the LLR-score for some of the different read pairs are 

less than zero, the two read pairs will not be put together into one contig. 

 

 
Figure 4: The assembly of reads into contigs in Phrap. In the LLR-score list are the read pairs ordered in 

increasing LLR-score. The way to pick the read pairs is following the greedy algorithm, the read pair picked is 

always the one highest in list, with the largest LLR-score. In Step 1, the best read pair constitutes the first contig. 

When the second best read pair is used, no common reads are found between the two read pairs, so they can not 

be assembled, instead the result is two contig. In the third step the read pair contains common read with the first 

read pair. To be able to assemble these read pairs together all possible combinations must be analyzed, in this 

case, read 1 with read 28. If the read pair with reads 1 and 28 exists and has a LLR-score bigger or equal to zero 

the pairs can be assembled into one contig.   

 

After all read pairs with LLR-score ≥ 0 have been used, hopefully one big contig is left. But 

most of the time many contigs have been made. The resulting contigs can be further analyzed. 

For example if a read is only assembled into one special place in the contig, it can never be 

assembled into many different regions in the contig. If there exists such reads in the contig, 

those places are further analyzed to get the best resulting contig. The read pairs in those 

regions are all realigned with each other and the best result is chosen and put back into the 

contig. 

When all contigs are optimized the consensus string is determined, and this can be made in 

different ways. Either are those bases with the best quality score put into consensus, or the 

bases in majority put into consensus. In this way consensus will be made like a mosaic of 

different parts of the contig. 

 

4.1.2 Consed – A Graphical Tool for Sequence Finishing 
 

After the fragment assembly with Phrap have been done the result can be visualized and 

edited with Consed. Consed [8] is a program made for editing sequence assemblies created 

with the Phrap assembly program. It was written specifically for the Phrap, where it takes 

advantage of quality values assigned by Phred and Phrap and the consensus sequence created 

by Phrap. In addition to a full set of standard features (view traces, edit reads by inserting a 

base, deleting a base, substituting a base, etc.), it supports an efficient editing procedure 

designed for use by Phrap in subsequent reassemblies of the same data set. 

With Consed it is able to see the alignment, the consensus, the different reads and the quality 

of the bases (figure 5). 
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Figure 5: A view of the Consed Program. After assembly, it can be interesting to view the result, this is done 

with the program Consed. If the assembly is not satisfactory enough it can be edited with Consed. 

 

4.2 TRAP – Tandem Repeat Assembly Program 
 

Even though today’s assembly programs are very complex they still have difficulties in 

assembling different genomes in a correct way. The part that is still difficult to handle is 

repeat regions in different shapes, dispersed and tandem repeated. Some assembly programs 

have the possibility to sort out possible repeat regions but they still lack the abilities to 

separate and assembly them into correct contigs. If the repeat region is shorter than the 

average read length (500 bp) it is easier to solve, but when the repeat length is longer than the 

average read length then it turns out to become a large problem [5]. 

To be able to separate repeat regions the small and unique differences between them have to 

be found. The differences are very few, can be as low as 1% in 500 bp and are results from 

mutations in the evolution. Other differences between reads depending on sequencing error is 

much higher, it can be up to ten times higher.  

The real differences between the repeats are called Defined Nucleotide Positions, DNPs.  

The program developed in the Björn Anderssons Group by Martti Tammi and Erik Arner is 

called TRAP (Tandem Repeat Assembly Program) and it is using the DNP method to separate 

repeats and assemble them into contigs.  

 

4.2.1 DNPs – Defined Nucleotide Positions, and Analysis of the Multiple Alignment 

 

To separate identical repeat regions is impossible, but to separate nearly identical repeats is 

possible. To do this it is necessary to find unique differences between the repeats and also that 

the difference in frequency is so high that reads 500 bp long at least contain two unique 

differences. 
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To find these differences between repeats, sequenced reads from these repeat regions are 

aligned into a multiple-alignment (MA) together with all of their overlaps with other reads 

[9]. 

The read that begins the construction of the MA is called ―Starting read‖. All reads that the 

starting read overlap with are put into the MA. These reads are called 1
st
-order reads. To get 

as much information out of the MA as possible, even the 1
st
-order reads overlap with reads 

not already in the MA are put into the now total MA. As a clarifying part, the 2
nd

-order reads 

are not overlapping with Starting read. To put the 2
nd

-order reads into the MA is not always 

done, it is just an option. A graphic description of the MA can be pictured in figure 6. To get 

the MA as good as possible it is optimized locally by the ReAligner algorithm. 

 
Figure 6: Multiple Alignment structure. A graphical view of the multiple alignment. The starting read can be 

seen in black, 1
st
-order reads in dark grey and in light grey 2

nd
-order reads. The analyzed area is the length from 

left to right covered by 1
st
-order reads. 

 

The differences between repeat regions depend of sequencing errors and real differences from 

mutations. The sequencing errors can be distinguished by the fact that they are distributed 

randomly, whereas real differences are not. When computing the distributions of true and 

false differences on one column in the MA, the overlap between them will vary depending on 

the rate of sequencing error, coverage, the number of repeats, and the number of differences 

between repeat units. The separation of the distributions is not sufficient for detection of an 

acceptable rate of true differences (Figure 7a). From the diagram in figure 7a it can be seen 

that at least six bases in the column must be computed as true differences to be sure that it is 

not a sequencing error. True differences are also called true positives. If also consideration to 

the rate of coinciding deviations from column consensus between at least a pair of columns in 

the MA is taken, it results in an even better separation (Figure 7b). So from this at least three 

or four coincidences are enough in order to separate error from differences.  
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Figure 7: Distribution of differences in a multiple alignment. (a) The distribution of sequencing errors and real 

differences computed on one column. At least six or seven differences from the consensus must be observed in 

order to separate true differences from sequencing errors. (b) The distribution of coincidences due to sequencing 

errors and real differences computed on two columns. Three or more coincidences are enough in order to 

separate errors from differences.  

 

After the analyzis of the MA, the starting read and the reads with 1
st
-order are labeled 

analyzed. The starting read is totally analyzed and the 1
st
-order reads are partially analyzed. 

The next step is to pick a new starting read from the set of non-analyzed reads or from the 

partially-analyzed reads. If the new starting read is taken from latter set, it should be the read 

less analyzed. This process is repeated until all reads in the data set have been labeled 

analyzed. 

 

4.2.2 The TRAP Algorithm  

 

The TRAP algorithm can be seen as a chain of steps [10]. The five major steps are (1) 

preparation, (2) computation of overlaps, (3) analysis of fragments from repeat regions, (4) 

fragment layout generation, and (5) generation of the consensus sequence. The 

implementation of the algorithm consists of four separate program modules, TRASH, 

INITMATCH, BSW and MAM-1. 

The first step is the preparation, and here the quality of the reads are analyzed. The sequence 

reads are partitioned into good quality, the accuracy level q is 89% < q < 98% and very good 

quality, q > 98%. Reads not in any of these levels are discarded. A good quality of the reads 

are very important for the accuracy of the following step, which is the computation of 

overlaps between reads. In the second step, where a lot of different overlaps between reads are 

computed, a great advantage is if all reads are arranged in a sorted way. To do so all reads are 

stored in a hash table. Next is to compute pair-wise alignments using the SW algorithm, 

finding overlaps among the subsequences in the hash table.  

In these step, also information about the read distribution is given, and since repeat and non-

repeat fragment have different distributions, it is possible to divide most of the fragments into 

two categories, repeats and non-repeats. All different overlaps are scored with a method 

similar to that of Phrap, and the overlaps are sorted with the highest score first.  

The third step of the algorithm is separating nearly identical repeats. To do that single base 

differences between the sequence fragments must be detected, and determined whether these 

differences are sequencing errors or real differences. A real difference in a single base are 

called, Defined Nucleotide Position (DNP), and these positons will be pinpointed in the 

assembly process. To find possible DNPs a read and all of it’s candidate overlap are put into a 

MA. The MA is optimized and then analyzed column by column. The analyzis is based on the 
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fact that the sequencing errors and single base differences between repeats can be separated 

when they are distributed differently. In each column in the MA, the relative frequence of the 

bases and gaps are calculated and these frequencies are compared with the distribution of 

sequencing errors and real differences. Bases registered as real differences can be a DNP, but 

so far they are just DNP candidates. To verify that a DNP candidate is a real DNP, and the 

fact that reads may have differences at several positions can be used to confirm the DNP. In 

the process, all reads with the same DNP candidate are compared to see if they have more 

DNP candidates in common. In the current version of TRAP correlation between at least two 

DNP candidate positions in a read are required to qualify positions as DNPs. 

When all DNPs are verified, it is time for the fourth step, fragment layout generation, in 

which contigs are constructed. 

In this part a heuristic algoritm is used, and the starting point is the highest scoring read pairs 

from the list mentioned above. All pairs matching either of the two reads in the starting pair 

are identified, and the candidate read with the highest score is chosen for inclusion in the 

contig. Reads with confirmed DNPs are required to have DNPs and are not allowed to 

mismatch at a DNP, i.e. DNPs are pinpointed. This process continues until no more reads can 

be included to the contig. If there exists reads not part of a contig a new contig is started, and 

this is done until no more reads are left in the database. 

In the fifth and final step all contigs are assamble into a concensus sequences. How this part is  

best made is under further investigation. 

 

5 The Thesis Project – Algorithm and Clustering 
 

Even though the TRAP program is very robust it can still be modified. One wishful thing is to 

speed up the program, to make it faster. One of the ideas is to cluster reads together to make 

the number of read comparings in the assembly process become fewer. Instead of comparing 

all reads to each other, base by base, reads with the same DNP candidates are clustered into a 

container or structure called a SolidCluster (SC) and all these SCs are then compared in the 

assembly process instead. 

The thesis project aim is to develop an algorithm which takes the SCs and arrange them into a 

structure and then from that structure cluster the SCs in the assembly process into a correct 

contig.  

 

5.1 Algorithm Development 
 

The plan from the beginning is to concentrate on the pure differences between the repeat 

regions, the DNPs, instead of putting a lot of time and effort on analyzing overlaps between 

reads and their scoring like in TRAP. The way of doing this is to find DNP candidates and 

verify them pairwise and just compare these specific positions in the construction of contigs 

and consensus sequences. This way you do not have to compare all the base pairs which is a 

very time consuming part in the overlap investigation. If  this strategy is functional, a large 

time reduction of the process of putting reads together to contigs and consensus sequences can 

be made. 

This algorithm would be a nice transfer from TRAP and its multiple alignment (MA), where 

all the DNPs are found and later verified. But instead of continue with TRAP’s fourth step, 

each pair of DNP verification is represented by this new object called SC. The SC objects are 

the objects the algorithm is given to work with. 

The optimized MA in TRAP, finds DNP candidates, the DNP candidates are verified in pairs, 

and each DNP pair forms a SC with the two DNPs and a list with reads containing the DNPs, 

and finally the SCs are arranged into a structure containing all SCs formed from this multiple 
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alignment. The approach of this project is to investigate a way of arranging the SCs, and how 

to cluster these SC into bigger parts, arranging these parts into contigs and finally into 

consensus sequences. 

Even this algorithm, like TRAP, will be developed in several steps, five 

steps are distinguished, (1) adding SolidClusters, (2) make resolve 

order, (3) resolve process, (4) chain process, and (5) merge process. 

Step 3 is the main step, where most of the work is done making contigs. 

 

5.1.0 Finding DNP Candidates 

 

The process of finding DNP candidates is the same as in the TRAP algorithm. The analysis of 

the optimized MA will return all possible DNP candidates found in the MA. Each DNP 

candidate found in the MA is given an identification (id) number, specific for that DNP 

candidate. All reads in the MA containing some of these DNP candidates will have this 

information added to their DNP list. All DNP candidates found must now be investigated if 

they really are DNPs, and that is the next part, verifying the DNP candidates.  

 

5.1.1 Verifying DNP Candidates 
 

The verification of DNP candidates is a very important part in the process of developing the 

new algorithm. The understanding of this part gives the basic knowledge for the development 

of the algorithm. It is important that each verification is correct and that all possible 

verifications are done (see figure 8). 

The MA has found DNP candidates, and it is time to verify them. Start by getting the first 

found DNP candidate from the MA, the one with the lowest id number. Since the analysis of 

the MA is made from left to right, the first found DNP candidate will get the lowest id 

number. All reads with this DNP candidate id in their list are grouped and will be analyzed. 

This first DNP candidate is the core of the group of reads, it is called Start DNP in the 

verification process, but called left_DNP in a DNP pair if the verification became true. The 

other DNP candidates on the reads, are called Target DNPs in the verification process, but 

right_DNPs in a DNP pair. The verification is made in pairs, where the Start DNP candidate 

verify the Target DNP candidate. The verification the other way around, Target DNP to Start 

DNP is not necessary, since the result will be the same. Due to this the verification is said to 

work in the direction, left to right.  

The number of reads in the group must be at least three, otherwise this DNP candidate, the 

start DNP, will be classified as false, and be discarded. If that happens the analyzis of the 

reads in the group will be interrupted, and the verification step continues with the next found 

DNP candidate id from the MA, and so on. If the group contains three or more, the 

verification of the group continues. As mentioned before the verification is made in pairs, the 

start DNP verifies the target DNP. The start DNP is known, so the next part is to find a target 

DNP, and if this is the first verification in the group, find a DNP candidate with an id number 

closest above the start DNP id, that’s the target DNP. The target DNPs are always positioned 

to the right on a read, in relation to the start DNP. If at least three reads have this target DNP, 

the verification is positive, or called true, and a DNP pair is found. The start DNP is called the 

pair’s left_DNP, and the target DNP is called the right_DNP. This process continues, try to 

find a second target DNP, verify if it is true or false, and make a second DNP pair. This is 

repeated until no more target DNPs can be find among the reads in the group. When this is 

done, look in the MA for the next DNP candidate id, call it the new start DNP, group all reads 

with that DNP in common, and find target DNPs and verify DNP pairs. Contiune this until no 
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more DNP candidate ids are found in the MA. Figure 8 will hopefully make the process a bit 

clearer. 

 

 
 

Figure 8: The verification process. Reads grouped with their first DNP, start DNP, in common. The verification 

of DNP candidates, target DNPs, are in the order left to right. All reads with the two DNP candidates are tagged 

to be part of that DNP pair. DNPs which have already been verified, first target DNP candidate, can also verify 

already verified DNPs and new target DNP candidates. This is marked with the blue verification arrow. This 

way, one more one-step verification is made and also the read with id 315 will be tagged. This read was not 

tagged in the first verification process, because it lacks the first DNP, marked in the figure as start DNP.  

 

Each time a target DNP is verified as true, all reads containing these two DNPs are tagged 

with that DNP pair. This information is also what is going to be used in the algorithm. 

By giving the verification a direction from left to right, a start DNP can only verify target 

DNP candidates to its right. 

 

Hopefully all reads grouped together will come from the same repeat sequence. If a 

sequencing error happens giving a read a false DNP candidate, it becomes part of a group by 

mistake, and is also tagged to a verification and then also being part of a verification by 

mistake. 

 

An important thing to note (as seen in figure 8) is that a verification between two DNPs next 

to each other in a read, where the distance between them are relatively short, will have a 

higher probability of being true, than a verification between two DNPs further apart from 

each other. For example, in figure 8 a verification between start DNP and first target DNP 

candidate is more likely than a verification between the start DNP and second target DNP 

candidate. This is the case since a higher number of reads will cover a shorter distance than a 

longer distance. If more reads are part of a verification between two DNPs, the verification 

will be more probable to be true. This feature will be used in the algorithm. Depending on 

how the verification is done, i.e. if the DNPs are next to each other or if there is one or more 

DNPs in between, the result are called one-step or two-step, and so on. If the start DNP is the 

same, the one-step verification should be more or equally probable than the two-step 

verification. 

Due to the higher probability of one-step verifications the strategy from the outset was 

changed. The original idea was to let the first DNP on the read, known as start DNP, confirm 

all the following DNPs on the same read. But that was not the best idea. If a read (in figure 

10, read:id315) just overlap with the first target DNP and second target DNP, that one would 

be excluded, even if it was correct. But if the reads above it are part of the verification, it will 

be tagged as part of a DNP-pair. 
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That is why it is so important to let all DNP candidates, in the MA to be the start DNP. After 

the first DNP with the lowest id number from MA is analyzed, the next DNP with the second 

lowest id number from the MA is analyzed. This way all DNP candidates in the MA are given 

a chance to verify other DNPs. 

It is also important to understand that verification of DNPs and DNP candidates only can be 

done in the read and not between reads. That is since a DNP could be verified between reads 

one have to 100% be sure that the alignment between them is correct, which is not possible.   

 

Verifying rules: 

 

1) A DNP can only verify a DNP after it self (in our case to the left of it). The verifying  

DNP is called the start DNP and the DNP verified is called target DNP. 

2) A DNP can only verify DNPs on the same read, and not between reads. i.e. the start 

DNP and the target DNP has to be on the same read. 

 

To enable merging of  DNP reads into contigs, each read must have at least two DNPs. When 

a read has more than one DNP candidate, it becomes more probable to separate real repeat 

differences than differences due to sequencing errors.  

 

5.1.2 Making SolidClusters 

 

Each time a verification is true, a specific object called a SolidCluster (SC) for that 

verification is made. The SC contains the information about the two DNPs and a list with all 

reads tagged for that verification. Since the threshold for a verification to be true is at least 

three reads, the list in the SC will always contain information from at least three reads.  

When programming in areas where the amount of data is very large, it is very important that 

not many copies of the data in use are made. The list in the SC only contains the reads ids, not 

the actual data object of the reads. This approach will be used to the largest extent throughout 

the algorithm. 

Since the SC object contains a list of read ids, the SC can be seen as a subcluster of these 

reads. Compared to TRAP, these reads do not have to be compared to each other which 

speeds up the process. To separate DNPs in SC they are called left_DNP and right_DNP. A 

graphical picture of a SC’s structure can be seen in figure 9. 

Each MA creates a large number of SCs. Reads containing more than two DNPs will be 

members of more than one SC. The maximum number of true verifications a read with   DNP 

candidates can be tagged to is         
   

 
 . That is also true for the maximum number of 

possible SCs this read can be member of.  

 

5.1.3 Order SolidClusters into ClusterContainer – add_cluster. 

 

All different SCs must be stored in a data structure, and the structure 

choosen is a two dimensional list. The way the SCs are added to this 

list, should make the following steps go fast and be as correct as 

possible. The filled structure very much looks like a matrix. The 

structure is called left_vec. The name come from the fact that each row 

in the two dimensional list contains SCs with their left_DNP in common. This left_vec 

structure is it self part of a larger object called ClusterContainer (CC). The CC also contains 

the structures; right_vec, work_vec, rest_vec and resolve_vec (figure 9). A description for 

each of the substructures comes along the way.  
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The SCs are added to left_vec based on their left_DNPs. The order of the SCs on the row is 

the smallest step first (to the left), and with increasing step length, to the right. This 

arrangement will came natural if the MA is analyzed as described before, no sorting of SCs is 

needed. 

At the same time a SC is added to left_vec, an object corresponding to that SC called 

SolidClusterPosition (SCP) is made and added to right_vec. Each SC contributes to one SCP. 

The SCP contains two pieces of information, the left_vec row number, and what position on 

that row the SC is placed. And this SCP object is added to right_vec on the same row as the 

SC’s right_DNP. After all SCs are added into left_vec the number of rows are equal to the 

total number of different left_DNPs. The number of SCs on each row are different, depending 

on how many right_DNPs that particular left_DNP was able to verify. 

 

This part of the algorithm ended up quite complex. From the start it was just planed to be one 

structure, the left_vec. But after some thinking and after going through some smaller 

examples of MAs and working out different scenarious of what can happen in the processes 

of producing SCs, right_vec and finally even work_vec and rest_vec were produced.  

 

During the process of verifing DNP candidates, a relatively high number of SCs are produced 

and added to left_vec. The order the SCs are added to left_vec is important for how the 

continuing of the algorithm turns out. And to be able to use as much information from all the 

different SCs, right_vec is used to keep SC coming from the same verification areas grouped 

together. SCPs on the same row in right_vec are all referring to SC in left_vec with the same 

right_DNP ids. The information stored in right_vec will be used in future steps in the 

algorithm. 

 
 

Figure 9: The ClusterContainer structure. 

The structure of the class ClusterContainer 

with it is five substructures; left_vec, 

right_vec, resolve_vec, work_vec and 

rest_vec. To the ClusterContainer has some 

SolidClusters (SCs) been added, and also 

some related SolidClusterPositions (SCPs). 

This is how it can look like after the 

Add_cluster step. 
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5.1.4 Arranging the rows in left_vec after quality – make_resolve_order 

 

After adding all SCs to left_vec it is time to start resolve them into 

bigger SCs, which means that all SCs on the same row in left_vec will 

be put into just one big SC. Instead of just representing two different 

DNPs, left_DNP and right_DNP, the bigger SC will represent all DNPs 

on that particular row. 

In the beginning, the order the resolving process was done, just from left_vec’s first row to its 

last row, from top to bottom. But after some test runs with the resolve process, it became clear 

that this was not the right way to do it. Since the rows in left_vec all have different quality, 

some rows are better than other, that information should be used. Instead of starting resolve 

rows with minor quality, it is better to first score the rows after increasing quality and start 

resolving the rows with highest score. This approach is generally called the ―greedy 

algorithm‖ approach.  

One incident that triggered this part of investigation of row quality, was when a SC turned out 

to be false, e.g. false positive. That SC messed up the whole resolve process. Hopefully, 

during quality calculations false positives will have really low quality values, and be resolve 

really late, or preferably not at all. 

The function calculating the quality of the rows in left_vec is called make_resolve_order. 

What makes good quality? Since each row contains a number of SCs, a row with high quality, 

is a row with high quality SCs. High quality SCs are SCs which have a  high probability to be 

true. The probability of a SC to be true is determined by the DNP verification process. The 

outcome and quality of a DNP verification process is determined by how many reads 

containing both DNP candidates in the particular verification. A higher number of reads 

containing the DNPs, gives a higher quality of the verification. But as mentioned before, a 

true verification needs to contain at least three reads. That is what determine the quality of a 

row, the number of reads.  

A reminder before continuing. A SC with DNPs positioned next to each other in the DNA 

sequence (i.e. one-step SC) , has a higher probability to be true, than a SC with the same 

left_DNP as the former, but with a right_DNP more distant than the former’s right_DNP (big-

step SC). That is because a read is more likely to cover a short stretch, then a long stretch of 

DNA. That is why the first SC on a left_vec row should have the highest quality, exception 

exists, and this is when the first SC is a false positive. 

The quality can be calculated either by the mean value of the quality of all SCs on the row, or 

just the quality value of the first SC on the row. The last option is not so good because the risk 

of false positive. If this happens the SC is flagged with an error and added to error_vec. The 

approach used is that the best SC on the row represents the quality of the row. That SC is also 

added to a structure called resolve_vec. In the end of the making of resolve order, all rows 

will be scored and added to resolve_vec. 

The next step, which is the Resolve Process, resolves the rows in left_vec according to the 

SCs in resolve_vec. 

One thing to remember is that, the resolve order only tells in what order the  rows in left_vec 

should be resolved, not how the SCs on the rows are resolved. 

 

5.1.5 Putting SolidClusters together – resolve_cluster – Resolve Process 

 

After all SCs have been added to the left_vec and the resolve order have 

been calculated then comes the next step in the algorithm, the Resolve 

Process. In this step the goal is to cluster all SCs on the same row into 

just one big SC. This big SC is also a SC but it differ in that way that it 



 20 

contains more than two DNPs, it contains all DNPs represented on that row. 

The first strategy was to start with the SC at the end of the row, and cluster it with the SC to it 

is left. This approach was soon discarded. Also here the ―greedy algorithm‖ approach turned 

out to be the best way to continue. I start with the most probable SC, the one-step SC first on 

the row, and add the second most probable, and so on. This is why the resolve process of a 

left_vec row is given the direction from left to right. Meanwhile this resolving process 

happens, other SC in left_vec can also be clustered into the resulting big SC. These SCs are 

representing one-steps, two-steps, and so on, inside the resulting big SC. The way these extra 

SC are connected to the resolving process is by the right_vec and all its SCP objects. Each 

time a SC is clustered in the resolve process, its corresponding SCP in right_vec will be 

looked up, and all SCP on that row in right_vec will be analyzed. An explanation of the 

different kinds of SCPs on the row in right_vec; one of the SCP is the one corresponding to 

the SC taking part in the resolve process, some of the other SCPs on the row correspond to 

SCs not taking part of the resolve process. These SCs have a left_DNP id less than the 

resulting big SC, these SC are discarded and because they are not errors they are added to the 

rest_vec. The rest_vec will contain SCs which never have been analyzed as errors, but they 

have also never been used in any resolving process. Finally the SCPs corresponding to SCs 

taking part of the resolve process, these SC are added to work_vec. The work_vec will contain 

all SCs which represent steps inside the resulting big SC from the resolving process. After all 

SCs on a row in left_vec are clustered into the resulting big SC, the process continues to 

resolve all SCs added to the work_vec into the resulting big SC. (See figure 10) 

 

In the resolve process, all DNPs are stored in the resulting big SC. During the clustering of 

two SC, both their lists of read ids are compared to each other to keep reads which are correct 

and discard reads which lack some important DNP. To do this, information about where a 

DNP is positioned and where a read ends is necessary, this check is called left_check. This 

can be compared to the resolve process with the SCs coming from the work_vec, where the 

information about where a DNP is positioned and where a read starts is necessary. This check 

is called right_check. 

The goal of left_check and right_check is to analyze if a read lack a particular DNP. If that is 

the case it should not stretch over that position, neither to the left nor to the right. 

 

The Resolve Process turned out to be quite complex, especially with the right_vec structure. 

The reason why right_vec was made, was to add as much verification information as possible 

and to cluster as many reads into the resulting big SC. The extra information comes from the 

verifications inside the resulting big SC. These SCs were not placed on the same row in 

left_vec, just beeing resolved. 

 

During the resolve process, both when finding the resolve order, and the clustring of SCs it is 

very important that the structure of left_vec never changes. That is because the right_vec is 

holding a lot of SCP and each SCP is corresponding to a SC on a particular row and position. 

That is why a SC can never be added or deleted from left_vec in the resolve process. When a 

SC is used it will be flagged in some way depending on how it has been used. E.g. if a SC is 

found to be false during the resolve process, the SC is flagged whit an error flag and will not 

be part of any resulting big SC. Also if a SC is added to work_vec during the resolve process, 

it is flagged with the used flag. Finally if a SC is put into the rest_vec it is flagged with the 

rest flag. 

 

When a row in left_vec is going to be resolved, the first SC on the row must be a one-step SC. 

If the first SC already has been used in the resolve process of another row, the rest of the SCs 
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on that particular row will never be used. Instead these SCs will be added to rest_vec. What to 

do with those SCs have not yet been decided. The question is, should a SC be able to be 

resolved more than once and thereby be part of many resulting big SCs. But for now a SC can 

only be resolved once. 

 

When a big SC is completely resolved it will be the first one on that row. The resolve process 

continues until all SCs in revolve_vec are used. (See figure 11.) 

 

 
 

Figure 10: The start of the Resolve Process. How the first row in left_vec is resolved. SCs on the row in left_vec 

that are clustered together are marked with red. The positions in right_vec that are being used marked with blue. 

What SCs in left_vec those positions (SCP) in right_vec, are added to work_vec (those SCs are marked with 

green). And also what kind of SCs that can end up in rest_vec.  

 
Figure 11: The result of the Resolve 

Process. left_vec after the resolve 

process. Row 1, 2, 9, and 10 

contains resulting big SCs. These 

resulting big SCs are chained 

together in the next step in the 

algorithm, called Chain Process. 
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5.1.6 Adding Resulting Modified SCs together – chain_cluster – Chain Process 
 

The Chain Process is a straight forward process. It goes through left_vec, 

from top to bottom and looks for resulting big SCs. When one is found, it 

marks that row and looks at the resulting big SC’s right_DNP. It then 

goes to that position in left_vec and if there is a SC there, it picks that out 

and places that after the SC on the marked row. When this is done a check similar to the one 

done in the resolve process is made, left_check and right_check. Next it looks at the latest 

added SC’s right_DNP, looks in the left_vec on that position, and does this until no more SC 

can be added. Now this row is done and the SCs on that row is now part of a contig. Unmark 

the row and continue go through left_vec to a row containing a SC not part of a contig and 

repeat the process. This is done until all rows in left_vec is check for SCs. (se figure 12). 

 

The number of contigs in left_vec should now be equal to the number of repeats in the 

multiple alignment, one contig representing one part of each repeat. If there are less number 

of contigs, maybe a DNP has been verified to belong to a false repeat sequence, or if there are  

more number of contigs a DNP has not been verified as a true DNP, despite it was. And 

therefore an important DNP is missing, which are splitting the contig into two pieces.   

 
Figure 12: The result of the Chain Process. On row number 1 in left_vec two resulting big SCs are placed, and 

these two res. big SCs are representing a contig from one of the repeat sequences. Also on row number 2 there is 

a contig representing another repeat sequence. 
 

5.1.7 Making the Chain into one Unit – Merge Process 
 

The fifth and final step in the algorithm is a light-weight step where all 

SCs on a chained row are merged together in to one large contig SC. 

This contig SC now contains all DNPs and all reads specific for that 

particular repeat sequence. 

 

5.2 Programming: Implementation in C++ 
 

The actual C++ code of the algorithm is presented in the Appendix A - The implementation of 

the algorithm made in C++. 
 

5.3 Test Run Results 
 

Some simple test runs of the algorithm have been done on data coming from a program 

simulating repeat sequences. The program simulates the production of repeat sequences with 
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different number of repeats, different repeat length, and with different seeds for generation of 

random numbers in the program. 

Because all effort has been on making the algorithm to work correctly, the part of 

investigating how much faster it is have been limited or been taken away by time constraints. 

 

A total of 5 different test runs were made. The results are presented in table 1. 

  

Table1. Presentation of test run results. 
No. repeats Repeat length No. contigs No. spec contigs No. contigs w. sub No.of  contigs w. errors No. contigs not comp 

10 1000 21 11 7 2 1 

10 2000 24 12 8 1 1 

15 2000 18 12 6 1 1 

20 2000 24 16 7 1 2 

5 2000 12 7 4 3 2 

 

The first two columns contain the input data to the program simulating the repeat sequences. 

Column three shows how many contigs that were produced in the test run of the algorithm. 

Column four is how many specific contigs that were made in the test run. 

The difference between column 3 and 4 depends on that some contigs are accually 

representing the same specific contig from one repeat sequence. (Figure 13.) 

 
Figure 13: Contig consisting of three subparts. These three (number of (no.) contigs is 3) contigs are all 

representing one (no. spec contigs is 1)  specific contig. This contig will also be one of the contigs with 

subcontigs, column 5.  

 

Results where many contigs represent the same repeat region happen when the resolve 

process is done to rows containing SCs with high DNP ids before rows containing SCs with 

low DNP ids. In figure 13 the SC 120—141 is resolved before 114,120—140, and 2,…141—

213 is resolved last.  

 

Column 5 (no. contigs w. sub) represents how many specific contigs that is being represented 

by more than one subcontig, fig 13. 

 

Column 6 shows how many contigs that contain an error DNP, fig 14. 

 
Figure 14: Contigs containing error DNPs. Shows how two different DNP errors could look like. In the left case, 

DNP-id 69 is part of two different  sequences. The first two coming from the same sequence and the last from 

another sequence. The SC 69,170 and 208 is resolved first, maybe 74 is an error DNP-id despite it been part of 

two SCs. In the right case there is also some kind of DNP error. 83 is not part the second SC. The SC 80 and 113 

is resolved before the first SC. This can be an indication that 83 is an error DNP. Which of 83 or 113 is the error, 

or maybe both,  can not be determind here.   

 

This situation occurs when SCs contain a DNP which is not common for all SCs in the 

sequence area. It happens in the verification process. What caused this ―error‖ DNP SC 

should be investigated more. This shows how important it is that the SCs made must be 



 24 

correct. If an error occurs it is hard to decide which mismatch that is the real error. But the 

main strategy should be to take care of all problems as close to the source as possible. 

 

The last column shows how many contigs that have not been chained to its fully length, see 

fig 15. 

 
Figure 15: Contig not reaching full length. These two subcontigs have not been chained together to become a 

contig from 20 to 143. Situations like this are the worst result for the algorithm. These kind of result shows that 

the resolve process and the chaining process are not done the optimal way.  

 

In addition this result happens in situations like the one separating column 3 and 4, i.e. when 

rows with higher DNP ids are resolved before those with lower DNP ids. For the strategy 

make_resolve_order to work, then the chain process must be changed.  

 

5.4 Algorithm Summary – Objects, Data Structures and Functions 
 

Objects and Data Structures: 
 

Reads 

SolidCluster 

SolidClusterPositions 

ClusterContainer: left_vec 

right_vec 

  work_vec 

  rest_vec 

  resolve_vec 

 

Functions Tree: 
 

add_cluster( ) 

          add_position( ) 
 

make_resolve_order( ) 
 

resolve_clusters( ) 

          resolve_left_vec_row( ) 

                    compare_row( ) 

                              resolve_start( ) 

                              merge_clusters( ) 

                                        compare_read_IDs( ) 

                                                  resolve_reads( ) 

                                                            check_right_end( ) 

                                                            add_read_IDs( ) 

                                        add_work_clusters( ) 

                              add_work_clusters( ) 

                    compare_work( ) 

                              give_dnp_num_end( ) 

                              check_left_end( ) 

 

chain_clusters( ) 

          check( ) 
 

merge_chains( ) 
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5.5 Algorithm Problems and Errors 
 

From the test runs it is clear that there are some things that must be futher investigated. The 

algorithm test result shows some problems. In one the repeat is represented by more than one 

contig and another where the repeat is not represented by at least one fully covered contig. 

These problems are a result of left_vec being very sensitive to how it is resolved. 

The algorithm is also sensitive to false positive SCs. If the situation of getting false positive 

SCs is high then a better strategy must be developed to take care of these. If that part should 

be in algorithm or in the step before, the verification process, can be discussed. 

 

6 Discussion 
 

The way the algorithm works as of today is not satisfying. Some issues are still to be 

investigated. The question is, is it enough with some smaller changes to the current strategy or 

must the strategy involve a bigger change. Personally I think something in between can be a 

working alternative. Some information from this strategy can be used. Instead of making 

these subclusters on each row, where all kind of SCs are used, one-step, two-step and so on, 

just concentrate on using the high quality one-step SCs. Instead of trying to take longer steps 

with a higher risk of containing errors, take smaller steps with less error probability. If the 

longer steps can give any additional information to the clustring process, which one-step can 

not, it can be in finding DNP errors. By comparing quality of different steps, one-step, two-

step, and so on, with the starting DNP in common, finding a shorter step having less quality 

then a longer step indicates an error. If this situation is found or even necessary in clustering 

with just one-step SCs remains unclear. 

 

The problem with false positive SCs may be solved by increasing the number of reads to four 

to make the verification true. 

 

In the strategy of using only one-step SCs maybe the quality value has to be more specific 

than just based on the number of reads, maybe even the number of bases between the DNPs 

can affect the value, a shorter distance higher value.  

 

The current strategy is also very sensitive to the order of how things are done. There is a 

conflict between left_vec’s structural order and its quality order. It turns out that something 

which is highly dependent on its structural order maybe was not so useful for this problem. 

 

Also if only one-step SCs are used maybe the right_vec structure can be removed from the 

algorithm, or any way be used in a less central role, and there by making the algorithm less 

complex. 

 

To be able to use this DNP strategy to build contigs each read must at least contain two 

DNPs. It is not only important for the verification process but also for the chaning process. 

One DNP must connect to the preceding SC and one DNP connect to the following SC. That 

is also in favour for just using one-step SCs to build contigs representing each repeat 

sequence. 

Because this strategy of using DNPs is very dependent on the process of founding DNP 

candidates and also verifying DNP pairs, an investigation on what kind of difficulties that 

process can be involved in. Optimizing this part so that the making of false positive SCs are 

minimized or eliminated. 
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One thing that must be taken care of in the development of an algorithm is how to handle any 

possible false positive SCs. How to identify an error and how to eliminate it. 

 

If you look at the big picture how this strategy is done, you can see the DNPs as dots you 

want to connect with lines. And of course you what to connect them in the right way. Maybe a 

new strategy in the area of graph theory is possible for solving this problem. 
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          Appendix A – The implementation of the algorithm made in C++ 
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