UPTEC X 10 021

Examensarbete 30 hp
November 2010

Clustering of DNA sequence reads
from repeat regions using defined
nucleotide positions (DNPs)

Lennie Fredriksson

UPPSALA Molecular Biotechnology Programme

UNIVERSITET Uppsala University School of Engineering
UPTEC X 10 021 Date of issue 2010-11
Author

Lennie Fredriksson

Title (English)
Clustering of DNA sequence reads from repeat regions using
defined nucleotide positions (DNPSs)

Title (Swedish)

Abstract

Sequencing genomes with a high frequency of repeat regions is a difficult task.

The aim of the project was to develop an algorithm to speed up the sequencing process of
highly repetitive genome. By using specific differences between the repeats called defined
nucleotide positions (DNPs), cluster DNA sequence reads into contigs. The strategy used in
the development of the algorithm resulted in a quite complex algorithm. Test runs of the
algorithm showed that there is still work to be done to get a desirable result.

Keywords

DNP, repeat regions, SolidClusters, algorithm

Supervisors

Erik Arner
Karolinska Institutet, Center for Genomics and Bioinformatics

Scientific reviewer

Siv Andersson
Uppsala Universitet, Evolutionsbiologiskt Centrum

Project name Sponsors

Language Security
English

Classification
ISSN 1401-2138

Supplementary bibliographical information Pages

45

Biology Education Centre Biomedical Center ~ Husargatan 3 Uppsala
Box 592 S-75124 Uppsala Tel +46 (0)18 4710000 Fax +46 (0)18 471 4687

Clustering of DNA sequence reads from
repeat regions using defined nucleotide
positions (DNPs)

Lennie Fredriksson

Sammanfattning

Detta arbete beskriver skapandet av en algoritm som é&r tankt att
anvéandas vid sekvensering av parasiten Trypanosoma cruzi’s genom. Det
specifika med 7. cruzi’s genom &r att det innehaller en ovanligt hog andel
repetitivt DNA. Detta repetitiva DNA dr mycket svart att sekvensera med
dagens sekvenserings-algoritmer. Det som forsvarar arbetet ar likheten som
dessa repetitiva sekvenser har. For att lyckas med sekvenseringen maste
man hitta skillnader hos de repetitiva delarna och sedan anvanda dessa for
sekvenseringen.

Genom att hitta de sma skillnader, sk. naturliga mutationer, som finns
mellan dessa repetitiva delar sa kan dessa anvandas for att separera de
repetetiva delarna fran varandra. Dessa skillnader som man finner kallar
man for Defined Nucleotide Positions (DNPs). Utgaende fran dessa DNPs
skapas objekt som min algoritm tar hand om, och sedan satter ihop till
contig, det vill sdga langre DNA bitar som var och en representerar en
specifik repetitiv del.

Algoritmen testkdrdes mot simulerad data, dar langd och antalet
repetitiva segment kunde varieras.

Examensarbete 30hp
Civilingenjorsprogrammet Molekylar Bioteknik
Hdsten 2001

Contents

Abbreviations 2
1 Introduction 3
2 Shotgun Sequencing Strategies 4
2.1 Hierarchical Sequencing (Shotgun) Strategy, 4
2.1.1 Clone-by-Clone Shotgun Sequencing Steps oo 4
2.1 LA BAC-Ibrary . ..o 5
2.1.1.2 Nebulisation and Insert Selection, 5
2.1.1.3 M13-library Constructiont 5
2.1.1.4 PCR — Polymerase Chain Reaction coivinn... 5
2.1.1.5 MegaBACE™ 6
2.2 Whole-Genome Shotgun Sequencing Strategy co v ii e 6
3 Base Calling 7
3.1 Phred — A Basecalling Program i 7
4 Assembly 8
4.1 Phrap - An Assembly Program 8
4.1.1The Phrap Algorithm 8
4.1.2 Consed — A Graphical Tool for Sequence Finishing 10
4.2 TRAP — Tandem Repeat Assembly Program, 11
4.2.1 DNPs — Defined Nucleotide Positions, and Analysis of the Multiple Alignment 11
4.22The TRAP Algorithmo e e 13
5 The Thesis Project — Algorithm and Clustering 14
5.1 Algorithm Development 14
5.1.0 Finding DNP Candidatest e e 15
5.1.1 Verifying DNP Candidatest e 15
5.1.2 Making SolidCIUSterso 17
5.1.3 Order SolidClusters into ClusterContainer —add cluster................. 17
5.1.4 Arranging the Rows in left_vec after Quality — make_resolve_order 19
5.1.5 Putting SolidClusters together — resolve_cluster — Resolve Process 19
5.1.6 Adding Resulting Modified SCs together — chain_cluster — Chain Process ... 22
5.1.7 Making the Chain into one Unit — Merge Process 22
5.2 Programming: Implementation in C++ 22
5.3TestRUN RESUILS 22
5.4 Algorithm Summary — Objects, Data Structures and Functions 24
5.5 Algorithm Problems and Errors 25
6 Discussion 25
Acknowledgements 26
References 26
Appendix A - The implementation of the algorithm made in C++ 27

Abbreviations

BAC Bacterial Artificial Chromosome
bp base pair

CcC ClusterContainer

DNP Defined Nucleotide Position

HS Hierarchical Sequencing

LLR Log Likelihood Ratio

MA Multiple Alignment

PCR Polymerase Chain Reaction

SC SolidCluster

SCP SolidClusterPosition

SwW Smith-Watermann

TRAP Tandem Repeat Assembly Program
WGS Whole-Genome Shotgun

1 Introduction

Ever since it became clear that it is the DNA molecule which decides how we look, function
and why we get some diseases, scientists around the world have tried to determine it’s
composition of the four different bases; A, T, G and C. This process is called sequencing, that
is, to determine in which order or sequence the bases are.

The sequencing of an organism’s genome, is a large, time consuming and costly process,
since sequencing is a relatively slow process and the genomes are very large. Today the most
common sequencing method for large genomes is the Shotgun Sequencing method. This
method consists of two parts, first a laboratory step followed by a theoretical analytical step.
Sequencing is a difficult task where many different obstacles have to be overcome. Some of
the problems are errors from the first laboratory step, where base separation in the base
calling process and sequencing errors are the two major problems. Even the structure of the
genome can contribute to major problem for the sequenceing process. Specially if the genome
contains a high frequency of repeat regions. These repeats make the shotgun sequncing
method together with its assembly programs less favorable.

Repeat regions are very similar stretches of bases that arise many times in the DNA. These
repeat regions can be of different length and distribution. If the length of the repeat regions
are shorter than the reads produced in the shotgun sequencing method, then they are easier to
handle, but if they are longer, i.e. over 500 base pairs (bp), they can be very hard to separate.
The distribution can also be different, they can either be placed directly after each other, that
is tandem repeats or be present at various locations, so called interspersed repeats.

Some organisms genomes have an higher frequency of repeat regions than others, and the
organism Trypanosoma cruzi (T. cruzi) is an example of a parasite having extensive amount
of repetitive elements. The genome of the T.cruzi is what the Genome Analysis Group at the
Karolinska Institute is sequencing.

When using shotgun sequencing and alignment software tools of today, these repeat regions
are very seldom correctly separated. Instead, these regions will mostly be separated into two
different repeat regions placed next to each other.

To correctly separate the repeat regions, two persons in the Genome Analyzis Group at the
Karolinska Institute, Martti T. Tammi and Erik Arner, have had as their biggest task to come
up with a new sophisticated assembly program that can handle difficult repeat regions. The
result became TRAP, Tandem Repeat Assembly Program.

The new thing with TRAP is that it tries to find the small differences that actually exists
between repeats. The differences are natural mutations. The frequency of these mutations are
in the order of 1-2% in a 500 bp fragment. When using these mutation differences the repeats
can be separated and assembled in the correct way. To find these differences a Multiple
Alignment (MA) is setup. The difficulties is to optimize this multiple alignment as much as
possible, both when it comes to correctness and speed. The mutation differences in the repeats
are defined as Defined Nucleotide Positions (DNPs), and these have to be separated from
errors made in the laboratory step, i.e. errors made in the base calling process. The TRAP
program handles a huge amount of sequencing data and that slows down the assembly
process, so the question is if a clustering process can speed up the run time.

The purpose of this thesis project is to investigate if there exists such a clustering algorithm
and what would it look like and will it speed up the assembly process. The algorithm should
be fast and correct, that is the two main things. If this algorithm turns out to speed up the
assembly process in a desirable way, the clustering module will be put in to the TRAP
program. The demand on the program is to handle special indata and to return special outdata.
To do this a good communication between all software parts is important.

The TRAP program is written in the programming language C++, so the clustering algorithm
will also be in that language.

2 Shotgun Sequencing Strategies

The shotgun sequencing method can be used with many different sequencing strategies. The
two most common strategies are the Hierarchical Sequencing (HS) Strategy also called
Clone-by-Clone Sequencing and the Whole-Genome Shotgun (WGS) Strategy [1].

The differences between these two strategies is how the “target” DNA being sequenced is
organized. In the WGS method the whole genome of the organism is sheared into small
fragments and these fragments are then sequenced. In the Clone-by-Clone Strategy the
genome is sheared to bigger fragments in size of 100 to 200 kb. The fragments are then
inserted into BACs (Bacterial Artificial Chromosomes) to make a BAC-library. The BACs are
then sheared to smaller fragments and sequenced.

The most powerful methods seems to be a combination of these two strategies.

2.1 Hierarchical Sequencing (Shotgun) Strategy

The initial step when using the HS strategy is to create a map, Physical Map [1]. The physical
map gives information about how the different BACs are located in relation to the DNA they
originate from. The physical map is built from the BACs. The ends of the BAC inserts are
sequenced and the sequenced fragments are matched against the origin DNA, see figure 1.
The making of the map prevent multiple coverage of the same region and makes sure that the
whole genome is covered by the BAC-library. The name HS strategy comes from the way of
breaking down the problem into minor parts which is easier to handle e.g. Genome —->
Chromosomes (chromosome specific libraries) - BAC-libraries - Reads. Reads are the
smallest parts, which are sequenced with the MegaBACE ™ machine. When the genome has
significant amount of repeat regions it may cause problems to make the physical map,
because the matching of the BAC ends against the genome will not be consistent.

Chromosome
F—- —Ggil
—Ggil —Ggil —lbzG_
—Ggil —Ggil —_blGu
BAC ends _— _—

- BACs 100 — 140 kb

e pCoalking —

Figure 1: BAC walking. The figure shows how the BACs are building up the Physical Map of the chromosome
of interest for sequencing.

2.1.1 Clone-by-Clone Shotgun Sequencing Steps

The strategy used by the Bjorn Andersson group, the Genome Analysis Group at the
Karolinska Institute, is the HS strategy. The part of the genome sequenced is chromosome 3
from the T. cruzi. Chromosome 3 is represented as BAC-library, where every BAC clone
constitutes a 100-140 kb long part of the chromosome. The following describes the steps in
the sequencing process.

2.1.1.1 BAC-library

The BAC-library system is based on Escherichia coli (E. coli) F factor. Replication of the
factor F in E.coli is strictly controlled and the F plasmid is maintained in low copy number
(one or two copies per cell), thus reducing the potential for recombination between DNA
fragments carried by the plasmid. The BAC system is very stable; it is capable of maintaining
incorporated human genomic DNA fragments over 300 kb pairs long [2]. The inserts from
chromosome 3 are just approx 100 kb long. The size of the mini-F plasmid, pMBO131, from
which the pBAC vector is constructed, is 9000 bp, which is very small when compared to the
insert with a size of 100 kb.

First step is to pick the BAC clone that will be used for sequencing. This BAC clone is grown
to get enough amounts of BACs. After right amount of BACs are achieved, the BAC plasmid
is separated from the E.coli.

2.1.1.2 Nebulisation and Insert Selection

The nebulisation step will shear the chosen BAC clone plasmids into a broad range of minor
linear fragments of different sizes, the fragment size of interest is 2000 bp. After nebulisation
the ends of the fragment are made blunt ended, a step called “end repair”. To make the
fragment ends more specific for the ligation to the sequening plasmid M13 highly efficient,
adaptors are put to the ends of the fragments. The fragments are then run on agarosgel to get
the specific size 2000 bp.

This will result in fragments 2000 bp long coming from both the insert and from the BAC
plasmid, mini-F plasmid [3].

2.1.1.3 M13-library Construction

M13 plasmid is used for the sequence step. The M13 plasmid is split and annealed together
with an adaptor. This way the ligation of insert to the M13 vector becomes highly efficient.
To attain a large amount of M13 vectors with insert they are transformed into Supercompetent
E.coli XL-2 blue cells. (The cells are grown on agar for 20 h in 37°C.)

The cells containing the insert are now visible as placks. These are picked and incubated one
more time for 20 h in 37°C on a shaker. After that the preparation of the M13 vectors
according to protocol “High-throughput of M13 DNA” (ThermoMAX prep) [3].

2.1.1.4 PCR - Polymerase Chain Reaction

The purified M13 constructs (vector and insert) are now ready for PCR-sequencing. The
sequencing is performed with an automated fluorescence method based on cycle sequencing
according to the protocol DYEnamic ET terminator kit (MegaBACE™) from Amersham-
Pharmacia Biotech. In this kit the method of labelling is called Dye Terminator Sequencing.
In this case the terminating (ddNTP) base is the one labelled with the fluorescent dye. There
exists an alternative labeling method where the primer is labelled instead, Dye Primer
Sequencing. During the PCR-sequencing reaction a lot of single stranded fragments of
different lengths and labelled with different dyes are created. These fragments are later
separated by gel electrophoresis.

2.1.1.5 MegaBACE™

The separation of the PCR-sequencing fragments take place in an automated DNA Analyzis
System from Amersham-Pharmacia Biotech called MegaBACE™

All the steps can also be viewed in figure 2.
nebulitation step

insert of interest

/

agarosgel separation
fragment = 2000 bp

fragment ligated to
ML13 wektor
Bac-plasmid with dinsert of T.cruzi
R
U O R
R
R
primer s
MagaBACE TM reagents
A A PR

,_/L_ﬂﬂ__Jﬂﬁﬂ_ - -ﬁf——

— — .
—

s —

DMNA SECUENCE _ "
trace data

Figure 2: Flowchart of the laboratory step. From the BAC library the T.cruzi fragment is split from the factor F.
This 100 kb long fragment is sheared into smaller fragments. To get the length of 2000 bp the mixture is run on
agarosgel and this will separate the fragment. The band of 2000 bp cuts out. The fragments are annealed into the
sequencing vector M13. To get a large amount of M13 vector with insert the is transformed in to E.coli cells for
amplification. The purified M13 with insert are run in the PCR together with primers and PCR-reagents.

2.2 Whole-Genome Shotgun Sequencing Strategy

A different strategy from the HS strategy, where the sequencing problem is broken down into
minor parts, the WGS strategy is to fragment the genome randomly without first making the
physical map. With this approach the shotgun-sequencing step have a lot of randomly
sequenced fragments (reads) coming from the whole genome. To put all the sequenced pieces
together to the resulting genome, will demands for powerful computers and smart assembly
programs. This approach will give rise to more fragments to handle at the same time. To
finish the sequencing of the genome with WGS strategy, the sequence gaps are filled by using
the clone-by-clone based strategy.

3 Base Calling

The resulting PCR product is placed and analyzed in the sequencing machine called
MegaBACE™ 1000. The MegaBACE™ 1000 is a product from Amersham Biosciences and
is an automated DNA Analysis System with a high-throughput, fluorescence-based DNA
system utilizing capillary electrophoresis with up to 96 capillaries operating in parallel. The
separation of the fragments takes place in these capillaries. At the end of these capillaries are
the fragment laser-beam and the fluorescence are measured and an electrogram is created. See
figure 2. The basecalling program task is to interpret this chromatogram and decide the
sequence of the bases. A number of different basecalling programs exists like, Phred,
LifeTrace, maximum-likelihood base caller (MLB), ABI base caller and the MegaBACE ™
own base caller, the Cimarron base caller. The Genome Analysis Group at the Karolinska
Institute is using Phred.

3.1 Phred — A Basecalling Program

The MegaBACE™ produces a chromatogram file containing DNA sequence trace data for
each of the four (different) bases, A, T, C and G. This data is used in a process called
basecalling, were the trace data is converted into corresponding base sequence. The software
used for the basecalling process is called Phred.

Phred uses simple Fourier methods to examine the four base traces, and in order to predict an
evenly spaced set of peak locations. That is, it determinates where the peaks would be centred
if there were no compressions, dropouts or other factors shifting the peaks from their “true”
location.

Ideally, all peaks in a chromatogram trace file would be spaced an even distance apart. In
reality, sequence composition and the dye primer chemistry can alter the distance between
peaks and that way making it difficult to identify bases accurately.

Phred uses information from the region surrounding each peak to determine the probability
that a base has been identified correctly. Phred also identifies loop/stem sequence motifs
based on dye primer data and splits peaks if there are indications that CC or GG peaks have
merged.

Phred also assigns quality values, Q, to each base [4]. This Phred quality value is related to
the probability of an error in base calling by the formula:

Q =-10* |0g10(P)

where P is the estimated error probability for that basecall. A quality value > 20 indicates that
there is a chance less than a 1 in 100 that the base has been misidentified, that is incorrectly
called. Note that high quality values correspond to low error probabilities, and conversely.
The most commonly used method is to count the bases with a quality score of 20 (= Q20) and
above, these are considered "high quality bases”, or 30 and above, "very high quality bases".

After calling all bases, Phred writes the sequence to a file in either FASTA, PHD or the SCF
("Standard Chromatogram Format™) format [4], depending on how you want it. The Quality
values for the bases are written to a separate file in either FASTA format or to a PHD file, a
text file which contains base calls and quality information, which can be used by the Phrap
sequence assembly program in order to increase the accuracy of the assembled sequence.

4 Assembly

After the base calling process a lot of sequence fragments have been created. These fragments
or reads are now put together, assembled, into the original DNA sequence. The sequence
assembly is the process of constructing the “best guess” contig/clone-sequence from a set of
overlapping reads of the clone. The assembly process is complicated by a number of
computational problems, and a sequence assembly program must be able to handle these. [5]
The most important ones are: repeated regions that can be of two kinds — interspersed repeats
and tandem repeats, base-calling errors or sequencing errors — of which there are four types,
substitutions, deletions, insertions and ambiguous base calls, contaminations — sequence from
host organism used to clone shotgun fragments, unremoved vector sequence — vector
sequences can be present in reads, and if not removed, these may cause false overlaps
between reads, unknown orientation — it is not known from which strand each fragment
originates, polymorphisms and incomplete coverage — coverage varies in different target
sequence locations due to the nature of random sampling.

The tools used for sequence assembly are Crossmatch (used for vector screening, and will not
be describe here), Phrap (used for the fragment assembly) and Consed (a graphical tool for
sequence finishing).

4.1 Phrap - An Assembly Program

Phrap, Phragment assembly program or Phil's revised assembly program, is for the moment
the leading program for assembling shotgun DNA sequence data. The Phrap program is
strongly recommended to be used in conjunction with the base calls and base quality values
produced by the basecaller, Phred. As input data Phrap uses the two result files produced by
Phred, the sequence fasta file and the quality file. It uses the quality information provided by
Phred to discriminate repeats and sequencing errors in the assembly process and to construct
contig sequences as a mosaic of the highest quality parts of the reads (rather than a
consensus). If there is a discrepancy at any position, Phrap uses information from Phred to
assign a quality value to the discrepancy. The program is able to handle very large datasets.
Phrap also provides extensive information about each assembly (including quality values for
contig sequences) to assist in troubleshooting.

4.1.1 The Phrap Algorithm

To understand how Phrap work in more detail, the different steps are here described.

As input to the Phrap program are the two files containing read sequences and quality data.
The read ends are in some extent trimmed off if there are any near-homopolymer runs and
read complements are constructed. The next step is to find, look for, all possible overlaps
between the reads. This is done by analyzing all reads after words. In Phrap these words are
normally 14 bases/letters long, but shorter or longer words can be used. These words are
found by using a “Sliding Window” that runs along the read and every word is registered into
a structure that keeps track of the word’s first base. The structure can be described as a matrix,
Where the first element is the word’s index, described later, and the rest of the elements are
pointers to the first base in that word located in different or in the same read. On the same row
in the matrix all pointers are pointing at the same 14 bases long word but at different locations
among the reads. As an example: if a read is 500 bp long, that read will give rise to 487 (500-
13) different words and also 487 new pointers. Every time a word appears a pointer is
connected to it and placed in the matrix. The matrix indexes are composed of the words first
10 bases like this. The index is an integer with the base 4 and every word give rise to a

specific integer. Every base is given a number, A=0, T=1, G=2and C = 3 (base equal to
4). As an example can the sequence, ATGGCTATAC be represented by the following
integer:

PO+ 42* 1+ 4" %24+ 4°% 24+ 45* 3+ 411+ 3% 0+ 47 %1+ 41 *0+4°*3 =
262.144%0 + 65.536*1 + 16.384*2 + 4.096*2 + 1.024*3 + 256*1 + 64*0 + 16*1 + 4*0 + 1*3 = 109.843,
the index for the word ATGGCTATAC is 109.843.

When all reads are analyzed for words it is time to find pairs of reads with matching words.
All reads with pointers on the same row in the matrix are analyzed at the same time, these
reads have the 14 bases long word in common. The reads are put into a list, the list is then
ordered in alphabetical order, with the 14 bases and the following bases at count (see figure
3).

unsorted 1ist of reads:

L PTEECT AT A ST

- PATEECTAT ACASCTT
- PRTEECTAT ACASTT
o W P TEECT AT ACASTT
- PRTEECTAT ACASTT
S PTEECTAT ACAGTT
- PTEECTAT ACASCTT
- RTEECTAT ACASTT
- PTEECT AT ACASCTT
- RTEECTAT ACASTT
- PATEECTAT ACASCTT
- RTEECTAT ACASTT
- PATEECTAT ACASCTT

PTEECTAT ACASCTT

[T AT AGZAT AGCAT CEEC T AGTAT CEAGCTGTT AGTT A
[T AT AGTAT AGCT TCEEC T AGTAT CEASTGCT AGTT A
[T AT AGCAT OGS T AGC AT CEAG TG T ASTT A

[T AT AGTAT AGCT AGCAT CEASTECTAGCTA,

[T AT AGZAT AGCAT CEEC T AGTAT CEASTGTT AGTT A
[T AT AGZATAGCAT CEEACT AGATCEAGAGTT AGTT A
[CATATATASCATASCAT CSEC T ASCAT CEASTECTASCTT A
[T AT AGZATAGZATCET TAGTAT CEAGTETT AGTT A

[T AT AGZAT ASTAT AT CEECT AGTT A

[T AT AGZAT AGTATCEECT AGTATCEASECTE

[CTAT AETAT ASCT A A A A AT CEEC T ASCAT CEASTECTAGTT A
[T AT AGCTAGCTEECAT CEEC T AGCAT CEAEt G T AGCTA
[T AT AECAT ASCAT GG AT EAS TG T ASCT A

[FoT AT AGZAT AGCAT CEEC T AGTAT CEAGTGTT AGTT A

sorted 1ist of reads (in alphabetical orderl):

JATEECTAT ACASECTT

- W |ATEECITAT ACASCTT
- |ATEECTAT ACAGCTT
- W |ATGEECTAT ACASCTT
- |ATEECTAT ACAGCTT
- W |ATGEECTAT ACASCTT
- W |ATGEECTAT ACAGCTT
- W |ATGEECTAT ACASCTT
- W |ATGEECTAT ACAGCTT
- W |ATGEECTAT ACASCTT
- W |ATGEEITAT ACASTT
o W |ATEECTAT ACAGTT
JATEECTAT A ASTT

[ATATATAG AT AGCAT CEEC T AGCTAT CEAGTGCTAGCTTA
[GCTATAGCATAGCATAT CGECT AT A

[T AT AGZATAGCAT CEEACT AGAT CEAGAGTT AGTT A
[T AT AGCAT AGCAT GG AT ARG T AGCTT A
[ACTATAGZATAGZAT CEECT AGCATCEAGCTE

[T AT AGCAT AGCAT CEEC T AGCAT CEAGTGCT AGCTT A
[T AT AGZATAGCATCEECTAGZAT CGEAGTGIT AGTT A
[T AT AGCAT AGCAT CEEC T AGCAT CEAGTGCT AGCTT A

[TATAGCATAGZATCET TAGCAT CEAGTGTT AGTT A

[T AT AGZATAGCT A" A AT AT AT CGECT AGCAT CEAGTEITAGTTA
[T AT AGZAT AGCT AGZAT CEASTEITAGTT A
[ACTATAGCATAGCT TCEGEC T AGCAT CEAGTGT T AGTT A
[T AT AGCAT OGS T AGC AT CEAGTGCTT AGITT A

JATEECTAT ACASTT

[FCTATAGCTAGCTGECAT CEGC T AGCAT CEAGTECTAGCTA

Figure 3: Arrangement of reads in unsorted and sorted lists in the Phrap assembly program. All read containing
the same word are put into a list, and ordered in alphabetical order. Reads next to each other have a sequence
more similar than reads longer away.

After the list has been sorted in alphabetical order, reads next to each other are the ones
having most similar base sequence. The reads are then pairwise matched with Smith-
Watermann (SW) algorithm [6]. Reads showing high similarity gets a high SW score value
and reads with lower similarity get lower SW score. Only read pairs with an SW score over a
certain threshold are further used. When every read pair have got an SW score, the next row
in the matrix is analyzed, and this is done until all rows are analyzed.

The kept read pairs are analyzed with the Log Likelihood Ratio (LLR), which gives the read
pairs a LLR-score [7]. If the LLR-score is > 0, the read pair is statistical possible, and if LLR-
score < 0, the read pair is not possible to align. All read pairs are given a LLR-score and put
into a list with decreasing LLR-score.

Next step is to construct contig layouts. The first read pair being used is the one with the
highest LLR-score, at the top of the list. This read pair is the first part of the contig. Then the
read pair with second highest LLR-score is used. If this read pair has common reads with the
contig, all different combinations are examined to see that the LLR-score for those

combinations are > 0 (see figure 4). If the LLR-score for some of the different read pairs are
less than zero, the two read pairs will not be put together into one contig.

LLR—-score 1ist

n STEP 1: read 1
[read 1 i — readB
! read B one contig
E read 14
O read 7 STEF 2: read 1
bt read 28 EEE——
I . _ _ reads&
| read & twao contigs
o
- read 35 __ read 14
o read 13 read 7
c
—
m STEP 3:
2 read 1
E read &
H read 26
————————— LLR-scare = 0 line ———— read &
read 14
read 7

Figure 4: The assembly of reads into contigs in Phrap. In the LLR-score list are the read pairs ordered in
increasing LLR-score. The way to pick the read pairs is following the greedy algorithm, the read pair picked is
always the one highest in list, with the largest LLR-score. In Step 1, the best read pair constitutes the first contig.
When the second best read pair is used, no common reads are found between the two read pairs, so they can not
be assembled, instead the result is two contig. In the third step the read pair contains common read with the first
read pair. To be able to assemble these read pairs together all possible combinations must be analyzed, in this
case, read 1 with read 28. If the read pair with reads 1 and 28 exists and has a LLR-score bigger or equal to zero
the pairs can be assembled into one contig.

After all read pairs with LLR-score > 0 have been used, hopefully one big contig is left. But
most of the time many contigs have been made. The resulting contigs can be further analyzed.
For example if a read is only assembled into one special place in the contig, it can never be
assembled into many different regions in the contig. If there exists such reads in the contig,
those places are further analyzed to get the best resulting contig. The read pairs in those
regions are all realigned with each other and the best result is chosen and put back into the
contig.

When all contigs are optimized the consensus string is determined, and this can be made in
different ways. Either are those bases with the best quality score put into consensus, or the
bases in majority put into consensus. In this way consensus will be made like a mosaic of
different parts of the contig.

4.1.2 Consed — A Graphical Tool for Sequence Finishing

After the fragment assembly with Phrap have been done the result can be visualized and
edited with Consed. Consed [8] is a program made for editing sequence assemblies created
with the Phrap assembly program. It was written specifically for the Phrap, where it takes
advantage of quality values assigned by Phred and Phrap and the consensus sequence created
by Phrap. In addition to a full set of standard features (view traces, edit reads by inserting a
base, deleting a base, substituting a base, etc.), it supports an efficient editing procedure
designed for use by Phrap in subsequent reassemblies of the same data set.

With Consed it is able to see the alignment, the consensus, the different reads and the quality
of the bases (figure 5).

10

Aligned Reads | - |J

File Mawigate Info GColor Dim Misc

cosmid_fasta sereenace

[

Contig!

Help
Sore Tags| Pos:

Search for Sting| Compl Cont| Compare Cont| Find Main Win| Ermf Oldo: |715 51
1060

1 1080 1100 1110

ok T Tk Tk T TGokok TR TG T RGOk Tk TLRGRCRKAGT KA TRCHRCHRC AR T Dotk EMEEK Ok ok Lok T TARAR TR AG T RO ROtk TGokok Tokok GGk ok ok ek T ok T Tok TokPisk T ok ik T okor

ktrtgrgkorkAGTRIL)

**TT*T*TT@
EER Tk T TEg
TT*T*TTGt*g ot
ot T Tok Tote T TG HOKE gtikg
ot TT T T Tk TG TG T Hg
TT*T*Ttgt* thptkg
ok TT TR T T Tz ik
ok T T T T T
g ko Lokg

ok TTH T+ T T
ko T Tok Tok T TGk Dok Bk TR

Tt gkERCHk
TT*T*TTGt*g
Kk T TR T T TEHRTRETRSE

o TTor Tk T T

ok TTHTHTHE
ok T TR TR T TGk ke GT*% :
ok T Tk T T T Gokok Tok o :

REREGHGHCRAGTRIERCHORTRIKE ZHokark | THRAKKCHKE
ot T Tk Toke T T Gotote Tok b Tok b Tok ok Lot Tk T ok ok Cotok A G

KOk aktgxkaAxG T xakkCHt
T Dok Dok Dok Akt Boioiearik | Tokaploleaie
Lok ATk

PR LS G TRkt gk takg gk
* CokCorokt Gk bk GGk

WG Tk T T ok Tokok ToREK T ook
KT ok

ook otk ko e
ok otk 5 kot T otk gk SSRITRE B ok £ Tok Toteiok T ok £ ok

T*GT*%x:mtmTGmeEm*angQT*EmEmE*n*TGmxan*GTwn*m:m
kg koiokAGTRa bR C OOk ekt g iokaak G ke

SOk EGRkTRRg g RO kIR THT Tk TR T RAKE R

ok G ToHERIERK T T Ak APk TS5 T L Lk Dok T Bk THAG LAk TG TAT TH Tk

k gf*ttmt,amt*n*t*»
tg**t**gg**c*a*gt*TT*T*Q*T*ﬂ*t*w
T

o ToteFok Tk T
LA THART RQRE
Tt TP BRIk
*E**ts**t**g%* ToteT Toke Totcrioke Toke sk b okt
CROKCRIKEERKIIRGTRARKCHE *a*t*ﬁ! cx:m*tg*xtx*gw ﬁ HT TrT PR ERIEE RS
c*c*c}ka*tg**aa*gt*a**[{j*t-&w Sk LK Tok Tok ok Tk sk L okoh
i Co kg kbt

ok | TohFiol ook Tihapkark Trkam B okooior
kg LHakROKY KT t
SFKG TR CH T £ ke s

*a*gt*TT*T*
*TT*T*Q*T*a*t*»
2k | TRaskkER T
2k | otk ool

Sk | LRIkKD

|_|_u_|_u4_|_n

dismiss

Figure 5: A view of the Consed Program. After assembly, it can be interesting to view the result, this is done
with the program Consed. If the assembly is not satisfactory enough it can be edited with Consed.

4.2 TRAP — Tandem Repeat Assembly Program

Even though today’s assembly programs are very complex they still have difficulties in
assembling different genomes in a correct way. The part that is still difficult to handle is
repeat regions in different shapes, dispersed and tandem repeated. Some assembly programs
have the possibility to sort out possible repeat regions but they still lack the abilities to
separate and assembly them into correct contigs. If the repeat region is shorter than the
average read length (500 bp) it is easier to solve, but when the repeat length is longer than the
average read length then it turns out to become a large problem [5].

To be able to separate repeat regions the small and unique differences between them have to
be found. The differences are very few, can be as low as 1% in 500 bp and are results from
mutations in the evolution. Other differences between reads depending on sequencing error is
much higher, it can be up to ten times higher.

The real differences between the repeats are called Defined Nucleotide Positions, DNPs.

The program developed in the Bjorn Anderssons Group by Martti Tammi and Erik Arner is
called TRAP (Tandem Repeat Assembly Program) and it is using the DNP method to separate
repeats and assemble them into contigs.

4.2.1 DNPs — Defined Nucleotide Positions, and Analysis of the Multiple Alignment
To separate identical repeat regions is impossible, but to separate nearly identical repeats is
possible. To do this it is necessary to find unique differences between the repeats and also that

the difference in frequency is so high that reads 500 bp long at least contain two unique
differences.

11

To find these differences between repeats, sequenced reads from these repeat regions are
aligned into a multiple-alignment (MA) together with all of their overlaps with other reads
[9].

The read that begins the construction of the MA is called “Starting read”. All reads that the
starting read overlap with are put into the MA. These reads are called 1¥-order reads. To get
as much information out of the MA as possible, even the 1¥-order reads overlap with reads
not already in the MA are put into the now total MA. As a clarifying part, the 2"-order reads
are not overlapping with Starting read. To put the 2"-order reads into the MA is not always
done, it is just an option. A graphic description of the MA can be pictured in figure 6. To get
the MA as good as possible it is optimized locally by the ReAligner algorithm.

Analyzed area

starting read

2nd-order read

lst-order read

Figure 6: Multiple Alignment structure. A graphical view of the multiple alignment. The starting read can be
seen in black, 1%-order reads in dark grey and in light grey 2"-order reads. The analyzed area is the length from
left to right covered by 1%-order reads.

The differences between repeat regions depend of sequencing errors and real differences from
mutations. The sequencing errors can be distinguished by the fact that they are distributed
randomly, whereas real differences are not. When computing the distributions of true and
false differences on one column in the MA, the overlap between them will vary depending on
the rate of sequencing error, coverage, the number of repeats, and the number of differences
between repeat units. The separation of the distributions is not sufficient for detection of an
acceptable rate of true differences (Figure 7a). From the diagram in figure 7a it can be seen
that at least six bases in the column must be computed as true differences to be sure that it is
not a sequencing error. True differences are also called true positives. If also consideration to
the rate of coinciding deviations from column consensus between at least a pair of columns in
the MA is taken, it results in an even better separation (Figure 7b). So from this at least three
or four coincidences are enough in order to separate error from differences.

12

2.5

0.3 - Distribution: Sequencing errors -
045

Y
N

&

=
w

n==6

Frequency
Frequency
i

o
5]

0.1} Distribution: True differences

o
o]

=
-

R

01 23 456706 710111210141516171010 20812228024 E5 0 1 2 3 4 s & T] 9 10 11 12 13 14 15
Number of observed deviations from consensus Number of observed coinciding deviations from consensus

Figure 7: Distribution of differences in a multiple alignment. (a) The distribution of sequencing errors and real
differences computed on one column. At least six or seven differences from the consensus must be observed in
order to separate true differences from sequencing errors. (b) The distribution of coincidences due to sequencing
errors and real differences computed on two columns. Three or more coincidences are enough in order to
separate errors from differences.

After the analyzis of the MA, the starting read and the reads with 1%-order are labeled
analyzed. The starting read is totally analyzed and the 1%-order reads are partially analyzed.
The next step is to pick a new starting read from the set of non-analyzed reads or from the
partially-analyzed reads. If the new starting read is taken from latter set, it should be the read
less analyzed. This process is repeated until all reads in the data set have been labeled
analyzed.

4.2.2 The TRAP Algorithm

The TRAP algorithm can be seen as a chain of steps [10]. The five major steps are (1)
preparation, (2) computation of overlaps, (3) analysis of fragments from repeat regions, (4)
fragment layout generation, and (5) generation of the consensus sequence. The
implementation of the algorithm consists of four separate program modules, TRASH,
INITMATCH, BSW and MAM-1.

The first step is the preparation, and here the quality of the reads are analyzed. The sequence
reads are partitioned into good quality, the accuracy level q is 89% < q < 98% and very good
quality, g > 98%. Reads not in any of these levels are discarded. A good quality of the reads
are very important for the accuracy of the following step, which is the computation of
overlaps between reads. In the second step, where a lot of different overlaps between reads are
computed, a great advantage is if all reads are arranged in a sorted way. To do so all reads are
stored in a hash table. Next is to compute pair-wise alignments using the SW algorithm,
finding overlaps among the subsequences in the hash table.

In these step, also information about the read distribution is given, and since repeat and non-
repeat fragment have different distributions, it is possible to divide most of the fragments into
two categories, repeats and non-repeats. All different overlaps are scored with a method
similar to that of Phrap, and the overlaps are sorted with the highest score first.

The third step of the algorithm is separating nearly identical repeats. To do that single base
differences between the sequence fragments must be detected, and determined whether these
differences are sequencing errors or real differences. A real difference in a single base are
called, Defined Nucleotide Position (DNP), and these positons will be pinpointed in the
assembly process. To find possible DNPs a read and all of it’s candidate overlap are put into a
MA. The MA is optimized and then analyzed column by column. The analyzis is based on the

13

fact that the sequencing errors and single base differences between repeats can be separated
when they are distributed differently. In each column in the MA, the relative frequence of the
bases and gaps are calculated and these frequencies are compared with the distribution of
sequencing errors and real differences. Bases registered as real differences can be a DNP, but
so far they are just DNP candidates. To verify that a DNP candidate is a real DNP, and the
fact that reads may have differences at several positions can be used to confirm the DNP. In
the process, all reads with the same DNP candidate are compared to see if they have more
DNP candidates in common. In the current version of TRAP correlation between at least two
DNP candidate positions in a read are required to qualify positions as DNPs.

When all DNPs are verified, it is time for the fourth step, fragment layout generation, in
which contigs are constructed.

In this part a heuristic algoritm is used, and the starting point is the highest scoring read pairs
from the list mentioned above. All pairs matching either of the two reads in the starting pair
are identified, and the candidate read with the highest score is chosen for inclusion in the
contig. Reads with confirmed DNPs are required to have DNPs and are not allowed to
mismatch at a DNP, i.e. DNPs are pinpointed. This process continues until no more reads can
be included to the contig. If there exists reads not part of a contig a new contig is started, and
this is done until no more reads are left in the database.

In the fifth and final step all contigs are assamble into a concensus sequences. How this part is
best made is under further investigation.

5 The Thesis Project — Algorithm and Clustering

Even though the TRAP program is very robust it can still be modified. One wishful thing is to
speed up the program, to make it faster. One of the ideas is to cluster reads together to make
the number of read comparings in the assembly process become fewer. Instead of comparing
all reads to each other, base by base, reads with the same DNP candidates are clustered into a
container or structure called a SolidCluster (SC) and all these SCs are then compared in the
assembly process instead.

The thesis project aim is to develop an algorithm which takes the SCs and arrange them into a
structure and then from that structure cluster the SCs in the assembly process into a correct
contig.

5.1 Algorithm Development

The plan from the beginning is to concentrate on the pure differences between the repeat
regions, the DNPs, instead of putting a lot of time and effort on analyzing overlaps between
reads and their scoring like in TRAP. The way of doing this is to find DNP candidates and
verify them pairwise and just compare these specific positions in the construction of contigs
and consensus sequences. This way you do not have to compare all the base pairs which is a
very time consuming part in the overlap investigation. If this strategy is functional, a large
time reduction of the process of putting reads together to contigs and consensus sequences can
be made.

This algorithm would be a nice transfer from TRAP and its multiple alignment (MA), where
all the DNPs are found and later verified. But instead of continue with TRAP’s fourth step,
each pair of DNP verification is represented by this new object called SC. The SC objects are
the objects the algorithm is given to work with.

The optimized MA in TRAP, finds DNP candidates, the DNP candidates are verified in pairs,
and each DNP pair forms a SC with the two DNPs and a list with reads containing the DNPs,
and finally the SCs are arranged into a structure containing all SCs formed from this multiple

14

alignment. The approach of this project is to investigate a way of arranging the SCs, and how
to cluster these SC into bigger parts, arranging these parts into contigs and finally into
consensus sequences.

Add SolidCluster Even this algorithm, like TRAP, will be developed in several steps, five
Make Resolve Order steps are distinguished, (1) adding SolidClusters, (2) make resolve
Resolve Process N

Chain Process order, (3) resolve process, (4) chain process, and (5) merge process.
Merge Process Step 3 is the main step, where most of the work is done making contigs.

5.1.0 Finding DNP Candidates

The process of finding DNP candidates is the same as in the TRAP algorithm. The analysis of
the optimized MA will return all possible DNP candidates found in the MA. Each DNP
candidate found in the MA is given an identification (id) number, specific for that DNP
candidate. All reads in the MA containing some of these DNP candidates will have this
information added to their DNP list. All DNP candidates found must now be investigated if
they really are DNPs, and that is the next part, verifying the DNP candidates.

5.1.1 Verifying DNP Candidates

The verification of DNP candidates is a very important part in the process of developing the
new algorithm. The understanding of this part gives the basic knowledge for the development
of the algorithm. It is important that each verification is correct and that all possible
verifications are done (see figure 8).

The MA has found DNP candidates, and it is time to verify them. Start by getting the first
found DNP candidate from the MA, the one with the lowest id number. Since the analysis of
the MA is made from left to right, the first found DNP candidate will get the lowest id
number. All reads with this DNP candidate id in their list are grouped and will be analyzed.
This first DNP candidate is the core of the group of reads, it is called Start DNP in the
verification process, but called left DNP in a DNP pair if the verification became true. The
other DNP candidates on the reads, are called Target DNPs in the verification process, but
right DNPs in a DNP pair. The verification is made in pairs, where the Start DNP candidate
verify the Target DNP candidate. The verification the other way around, Target DNP to Start
DNP is not necessary, since the result will be the same. Due to this the verification is said to
work in the direction, left to right.

The number of reads in the group must be at least three, otherwise this DNP candidate, the
start DNP, will be classified as false, and be discarded. If that happens the analyzis of the
reads in the group will be interrupted, and the verification step continues with the next found
DNP candidate id from the MA, and so on. If the group contains three or more, the
verification of the group continues. As mentioned before the verification is made in pairs, the
start DNP verifies the target DNP. The start DNP is known, so the next part is to find a target
DNP, and if this is the first verification in the group, find a DNP candidate with an id number
closest above the start DNP id, that’s the target DNP. The target DNPs are always positioned
to the right on a read, in relation to the start DNP. If at least three reads have this target DNP,
the verification is positive, or called true, and a DNP pair is found. The start DNP is called the
pair’s left_ DNP, and the target DNP is called the right DNP. This process continues, try to
find a second target DNP, verify if it is true or false, and make a second DNP pair. This is
repeated until no more target DNPs can be find among the reads in the group. When this is
done, look in the MA for the next DNP candidate id, call it the new start DNP, group all reads
with that DNP in common, and find target DNPs and verify DNP pairs. Contiune this until no

15

more DNP candidate ids are found in the MA. Figure 8 will hopefully make the process a bit
clearer.

verification

wverification

verification

reads tagged to
the second DNP-pair

reads tagged to
the first DNP-pair

grouped reads = read
second, target DNP candidate

start DNP ﬁ_rst. target DNP candidate

read:id315

Figure 8: The verification process. Reads grouped with their first DNP, start DNP, in common. The verification
of DNP candidates, target DNPs, are in the order left to right. All reads with the two DNP candidates are tagged
to be part of that DNP pair. DNPs which have already been verified, first target DNP candidate, can also verify
already verified DNPs and new target DNP candidates. This is marked with the blue verification arrow. This
way, one more one-step verification is made and also the read with id 315 will be tagged. This read was not
tagged in the first verification process, because it lacks the first DNP, marked in the figure as start DNP.

Each time a target DNP is verified as true, all reads containing these two DNPs are tagged
with that DNP pair. This information is also what is going to be used in the algorithm.

By giving the verification a direction from left to right, a start DNP can only verify target
DNP candidates to its right.

Hopefully all reads grouped together will come from the same repeat sequence. If a
sequencing error happens giving a read a false DNP candidate, it becomes part of a group by
mistake, and is also tagged to a verification and then also being part of a verification by
mistake.

An important thing to note (as seen in figure 8) is that a verification between two DNPs next
to each other in a read, where the distance between them are relatively short, will have a
higher probability of being true, than a verification between two DNPs further apart from
each other. For example, in figure 8 a verification between start DNP and first target DNP
candidate is more likely than a verification between the start DNP and second target DNP
candidate. This is the case since a higher number of reads will cover a shorter distance than a
longer distance. If more reads are part of a verification between two DNPs, the verification
will be more probable to be true. This feature will be used in the algorithm. Depending on
how the verification is done, i.e. if the DNPs are next to each other or if there is one or more
DNPs in between, the result are called one-step or two-step, and so on. If the start DNP is the
same, the one-step verification should be more or equally probable than the two-step
verification.

Due to the higher probability of one-step verifications the strategy from the outset was
changed. The original idea was to let the first DNP on the read, known as start DNP, confirm
all the following DNPs on the same read. But that was not the best idea. If a read (in figure
10, read:id315) just overlap with the first target DNP and second target DNP, that one would
be excluded, even if it was correct. But if the reads above it are part of the verification, it will
be tagged as part of a DNP-pair.

16

That is why it is so important to let all DNP candidates, in the MA to be the start DNP. After
the first DNP with the lowest id number from MA is analyzed, the next DNP with the second
lowest id number from the MA is analyzed. This way all DNP candidates in the MA are given
a chance to verify other DNPs.

It is also important to understand that verification of DNPs and DNP candidates only can be
done in the read and not between reads. That is since a DNP could be verified between reads
one have to 100% be sure that the alignment between them is correct, which is not possible.

Verifying rules:

1) A DNP can only verify a DNP after it self (in our case to the left of it). The verifying
DNP is called the start DNP and the DNP verified is called target DNP.

2) A DNP can only verify DNPs on the same read, and not between reads. i.e. the start
DNP and the target DNP has to be on the same read.

To enable merging of DNP reads into contigs, each read must have at least two DNPs. When
a read has more than one DNP candidate, it becomes more probable to separate real repeat
differences than differences due to sequencing errors.

5.1.2 Making SolidClusters

Each time a verification is true, a specific object called a SolidCluster (SC) for that
verification is made. The SC contains the information about the two DNPs and a list with all
reads tagged for that verification. Since the threshold for a verification to be true is at least
three reads, the list in the SC will always contain information from at least three reads.

When programming in areas where the amount of data is very large, it is very important that
not many copies of the data in use are made. The list in the SC only contains the reads ids, not
the actual data object of the reads. This approach will be used to the largest extent throughout
the algorithm.

Since the SC object contains a list of read ids, the SC can be seen as a subcluster of these
reads. Compared to TRAP, these reads do not have to be compared to each other which
speeds up the process. To separate DNPs in SC they are called left. DNP and right DNP. A
graphical picture of a SC’s structure can be seen in figure 9.

Each MA creates a large number of SCs. Reads containing more than two DNPs will be

members of more than one SC. The maximum number of true verifications a read with n DNP
candidates can be tagged to is v(n) = n - (nT_l) That is also true for the maximum number of

possible SCs this read can be member of.

5.1.3 Order SolidClusters into ClusterContainer —add_cluster.

- All different SCs must be stored in a data structure, and the structure

= MakeResaive order | ChOOSEN i @ two dimensional list. The way the SCs are added to this
Resolve Process list, should make the following steps go fast and be as correct as
Merge Process possible. The filled structure very much looks like a matrix. The
structure is called left_vec. The name come from the fact that each row
in the two dimensional list contains SCs with their left. DNP in common. This left vec
structure is it self part of a larger object called ClusterContainer (CC). The CC also contains
the structures; right_vec, work_vec, rest_vec and resolve_vec (figure 9). A description for

each of the substructures comes along the way.

17

The SCs are added to left_vec based on their left DNPs. The order of the SCs on the row is
the smallest step first (to the left), and with increasing step length, to the right. This
arrangement will came natural if the MA is analyzed as described before, no sorting of SCs is
needed.

At the same time a SC is added to left_vec, an object corresponding to that SC called
SolidClusterPosition (SCP) is made and added to right_vec. Each SC contributes to one SCP.
The SCP contains two pieces of information, the left_vec row number, and what position on
that row the SC is placed. And this SCP object is added to right_vec on the same row as the
SC’s right_ DNP. After all SCs are added into left_vec the number of rows are equal to the
total number of different left_ DNPs. The number of SCs on each row are different, depending
on how many right_DNPs that particular left DNP was able to verify.

This part of the algorithm ended up quite complex. From the start it was just planed to be one
structure, the left_vec. But after some thinking and after going through some smaller
examples of MAs and working out different scenarious of what can happen in the processes
of producing SCs, right_vec and finally even work_vec and rest_vec were produced.

During the process of verifing DNP candidates, a relatively high number of SCs are produced
and added to left vec. The order the SCs are added to left vec is important for how the
continuing of the algorithm turns out. And to be able to use as much information from all the
different SCs, right_vec is used to keep SC coming from the same verification areas grouped
together. SCPs on the same row in right_vec are all referring to SC in left_vec with the same
right DNP ids. The information stored in right vec will be used in future steps in the
algorithm.

ClusterContainer:

(" solidCluster: Y Figure 9: The ClusterContainer structure.
(_ The structure of the class ClusterContainer
left DN et onP with it is five substructures; left_vec,
MAOAF10NSample67ad.read right_vec, resolve_vec, WOTk_VeC and
MAAFONSample07ad e rest_vec. To the ClusterContainer has some
MAQAFLONSsmplctdad.read SolidClusters (SCs) been added, and also

some related SolidClusterPositions (SCPs).
This is how it can look like after the
SolidClusterPosition: Add C|UStEI’ step.

] /1 5,0
| 2] 2
| 3| B
| 4] | 4]
| 5] | 5|30
& | €l2[0)
-z 7aDED
8
[10|o=n)M=21n=2 0D mE
141 FoBan
112 | 12
118 [13]
114 [14]
115 | [15]7 D)
|16 | 16
left_vec th_vec
work_vec resolve_vec:
rest_vec
. v

18

5.1.4 Arranging the rows in left_vec after quality — make_resolve_order

ad SoridCiuster After adding all SCs to left_vec it is time to start resolve them into

m#- Make Resolve Order bigger SCs, which means that all SCs on the same row in left_vec will
Resolve Process be put into just one big SC. Instead of just representing two different
Merge Process DNPs, left_DNP and right_DNP, the bigger SC will represent all DNPs

on that particular row.

In the beginning, the order the resolving process was done, just from left vec’s first row to its
last row, from top to bottom. But after some test runs with the resolve process, it became clear
that this was not the right way to do it. Since the rows in left_vec all have different quality,
some rows are better than other, that information should be used. Instead of starting resolve
rows with minor quality, it is better to first score the rows after increasing quality and start
resolving the rows with highest score. This approach is generally called the “greedy
algorithm” approach.

One incident that triggered this part of investigation of row quality, was when a SC turned out
to be false, e.g. false positive. That SC messed up the whole resolve process. Hopefully,
during quality calculations false positives will have really low quality values, and be resolve
really late, or preferably not at all.

The function calculating the quality of the rows in left vec is called make resolve order.
What makes good quality? Since each row contains a number of SCs, a row with high quality,
is a row with high quality SCs. High quality SCs are SCs which have a high probability to be
true. The probability of a SC to be true is determined by the DNP verification process. The
outcome and quality of a DNP verification process is determined by how many reads
containing both DNP candidates in the particular verification. A higher number of reads
containing the DNPs, gives a higher quality of the verification. But as mentioned before, a
true verification needs to contain at least three reads. That is what determine the quality of a
row, the number of reads.

A reminder before continuing. A SC with DNPs positioned next to each other in the DNA
sequence (i.e. one-step SC) , has a higher probability to be true, than a SC with the same
left._ DNP as the former, but with a right DNP more distant than the former’s right_DNP (big-
step SC). That is because a read is more likely to cover a short stretch, then a long stretch of
DNA. That is why the first SC on a left_vec row should have the highest quality, exception
exists, and this is when the first SC is a false positive.

The quality can be calculated either by the mean value of the quality of all SCs on the row, or
just the quality value of the first SC on the row. The last option is not so good because the risk
of false positive. If this happens the SC is flagged with an error and added to error_vec. The
approach used is that the best SC on the row represents the quality of the row. That SC is also
added to a structure called resolve_vec. In the end of the making of resolve order, all rows
will be scored and added to resolve_vec.

The next step, which is the Resolve Process, resolves the rows in left_vec according to the
SCs in resolve_vec.

One thing to remember is that, the resolve order only tells in what order the rows in left_vec
should be resolved, not how the SCs on the rows are resolved.

5.1.5 Putting SolidClusters together — resolve_cluster — Resolve Process

A dd SolidCluster After all SCs have been added to the left_vec and the resolve order have
‘MakelResalve Order been calculated then comes the next step in the algorithm, the Resolve
Resolve Process

Chain Process Process. In this step the goal is to cluster all SCs on the same row into
Merge Process just one big SC. This big SC is also a SC but it differ in that way that it

19

contains more than two DNPs, it contains all DNPs represented on that row.

The first strategy was to start with the SC at the end of the row, and cluster it with the SC to it
is left. This approach was soon discarded. Also here the “greedy algorithm” approach turned
out to be the best way to continue. | start with the most probable SC, the one-step SC first on
the row, and add the second most probable, and so on. This is why the resolve process of a
left_vec row is given the direction from left to right. Meanwhile this resolving process
happens, other SC in left_vec can also be clustered into the resulting big SC. These SCs are
representing one-steps, two-steps, and so on, inside the resulting big SC. The way these extra
SC are connected to the resolving process is by the right_vec and all its SCP objects. Each
time a SC is clustered in the resolve process, its corresponding SCP in right_vec will be
looked up, and all SCP on that row in right_vec will be analyzed. An explanation of the
different kinds of SCPs on the row in right_vec; one of the SCP is the one corresponding to
the SC taking part in the resolve process, some of the other SCPs on the row correspond to
SCs not taking part of the resolve process. These SCs have a left DNP id less than the
resulting big SC, these SC are discarded and because they are not errors they are added to the
rest_vec. The rest_vec will contain SCs which never have been analyzed as errors, but they
have also never been used in any resolving process. Finally the SCPs corresponding to SCs
taking part of the resolve process, these SC are added to work_vec. The work_vec will contain
all SCs which represent steps inside the resulting big SC from the resolving process. After all
SCs on a row in left_vec are clustered into the resulting big SC, the process continues to
resolve all SCs added to the work_vec into the resulting big SC. (See figure 10)

In the resolve process, all DNPs are stored in the resulting big SC. During the clustering of
two SC, both their lists of read ids are compared to each other to keep reads which are correct
and discard reads which lack some important DNP. To do this, information about where a
DNP is positioned and where a read ends is necessary, this check is called left_check. This
can be compared to the resolve process with the SCs coming from the work_vec, where the
information about where a DNP is positioned and where a read starts is necessary. This check
is called right_check.

The goal of left_check and right_check is to analyze if a read lack a particular DNP. If that is
the case it should not stretch over that position, neither to the left nor to the right.

The Resolve Process turned out to be quite complex, especially with the right_vec structure.
The reason why right_vec was made, was to add as much verification information as possible
and to cluster as many reads into the resulting big SC. The extra information comes from the
verifications inside the resulting big SC. These SCs were not placed on the same row in
left_vec, just beeing resolved.

During the resolve process, both when finding the resolve order, and the clustring of SCs it is
very important that the structure of left_vec never changes. That is because the right_vec is
holding a lot of SCP and each SCP is corresponding to a SC on a particular row and position.
That is why a SC can never be added or deleted from left_vec in the resolve process. When a
SC is used it will be flagged in some way depending on how it has been used. E.g. if a SC is
found to be false during the resolve process, the SC is flagged whit an error flag and will not
be part of any resulting big SC. Also if a SC is added to work_vec during the resolve process,
it is flagged with the used flag. Finally if a SC is put into the rest_vec it is flagged with the
rest flag.

When a row in left_vec is going to be resolved, the first SC on the row must be a one-step SC.
If the first SC already has been used in the resolve process of another row, the rest of the SCs

20

on that particular row will never be used. Instead these SCs will be added to rest_vec. What to
do with those SCs have not yet been decided. The question is, should a SC be able to be
resolved more than once and thereby be part of many resulting big SCs. But for now a SC can

only be resolved once.

When a big SC is completely resolved it wi

Il be the first one on that row. The resolve process

continues until all SCs in revolve_vec are used. (See figure 11.)

[1] [1]

| 2] | 2]

| 3] | 3]

| 4] | 4]

| 5L 5G9

| 6] | 6](2[0)

| 7] 7 2l1 W 5(0]
| 8| | 8]

| 9| | 9|(2[1)C6[0)
|10 10[a{2s[1l7]0]
[11] [41i(8]1
[12] [12]

[13] [13]

14 14

|15 |[15=21)[15 = 23 115 711

16 16

E\IEC ﬁt_vec

work_vec [5 == I‘J [5 == 10] [7 == lOJ

rest vec |7 =15

resulting big SC
resolve_vec: |, ebig

resolve left_vec row number 1:

I. [1=5]inleft_vec, and in right_vec.

One element i right_vec, nothing extra happens.

1. in left_vec, and in right_vec, and also .
Two element in right_vec, sends to work_vec.

work_vec:[5 =7
clustring of and[1= 7 resultin = resulting big SC.

. in left_vec, and in right_vec, and also ,and[7]0),
Three element in right_vec, sends towork_vec,and [7]0],
sends to work_vec.

work_vec: [5 = 7[5 =10][7 =10]

clustering of and result in = resulting big SC.

The row is resolved, and it's time for the work_vec, add those SCs into resulting
modified SC. This part don't change the 'look’ it just put som extra data into it, extra
reads which haven't been there before.

The resulting big SC will end up on row ones first position.

Also 5C, on row 7 in left_vec will, with current version of the algorithm, never
be used in any resolve process. Because it ends up alone on the row, and a row starting
with a two-step SC will not be resolved. That's why this SC are added to rest_vec.
Rest_vec is a structure that holds SCs that will never be used in any resolve process, it
gives the information of what SCs and how many. That information can be used to
maybe change to resolve strategy. One that came up was if a SC should be allowed to
take part in more than one resolve process.

Figure 10: The start of the Resolve Process. How the first row in left_vec is resolved. SCs on the row in left_vec

that are clustered together are marked with red. The

positions in right_vec that are being used marked with blue.

What SCs in left_vec those positions (SCP) in right_vec, are added to work_vec (those SCs are marked with
green). And also what kind of SCs that can end up in rest_vec.

Figure 11: The result of the Resolve

[1] = resulting big SC. [1] Process. left_vec after the resolve
| 2] = resulting big SC. | 2] process. Row 1, 2, 9, and 10

| 3] | 8] contains resulting big SCs. These
| 4] | 4] resulting big SCs are chained

| S| | S|[1]0) together in the next step in the
:: :g algorithm, called Chain Process.

8 8

E =resulting big 5C. E

|10 |[10,15, 21 = 29) =resulting big SC. 110 | 1[2)(5[1)(7 o)

11 11

12 12

[13] 13]

[14] 14

(15| [E=m15=129 (15|

16| 16|

left_vec right_vec
work_vec

resolve_vec:

21

5.1.6 Adding Resulting Modified SCs together — chain_cluster — Chain Process

A dd SotidCiuster The Chain Process is a straight forward process. It goes through left_vec,
Make Resolve Order from top to bottom and looks for resulting big SCs. When one is found, it
b Chain Process marks that row and looks at the resulting big SC’s right_DNP. It then
Merge Process goes to that position in left_vec and if there is a SC there, it picks that out
and places that after the SC on the marked row. When this is done a check similar to the one
done in the resolve process is made, left_check and right_check. Next it looks at the latest
added SC’s right_DNP, looks in the left_vec on that position, and does this until no more SC
can be added. Now this row is done and the SCs on that row is now part of a contig. Unmark
the row and continue go through left_vec to a row containing a SC not part of a contig and

repeat the process. This is done until all rows in left_vec is check for SCs. (se figure 12).

The number of contigs in left_vec should now be equal to the number of repeats in the
multiple alignment, one contig representing one part of each repeat. If there are less number
of contigs, maybe a DNP has been verified to belong to a false repeat sequence, or if there are
more number of contigs a DNP has not been verified as a true DNP, despite it was. And
therefore an important DNP is missing, which are splitting the contig into two pieces.

(1,57 =10][10, 15, 21 == 29) =contig

- contig

e e e
(5 [5]5[8[5]5[8[o0||o|w|a]w[n]w|

left_vec

Figure 12: The result of the Chain Process. On row number 1 in left_vec two resulting big SCs are placed, and
these two res. big SCs are representing a contig from one of the repeat sequences. Also on row number 2 there is
a contig representing another repeat sequence.

5.1.7 Making the Chain into one Unit — Merge Process

Add SolidClustor The fifth and final step in the algorithm is a light-weight step where all
Make Resolve Order SCs on a chained row are merged together in to one large contig SC.
Resolve Process

Chain Process This contig SC now contains all DNPs and all reads specific for that
=~ Merge Process particular repeat sequence.

5.2 Programming: Implementation in C++

The actual C++ code of the algorithm is presented in the Appendix A - The implementation of
the algorithm made in C++.

5.3 Test Run Results

Some simple test runs of the algorithm have been done on data coming from a program
simulating repeat sequences. The program simulates the production of repeat sequences with

22

different number of repeats, different repeat length, and with different seeds for generation of
random numbers in the program.

Because all effort has been on making the algorithm to work correctly, the part of
investigating how much faster it is have been limited or been taken away by time constraints.

A total of 5 different test runs were made. The results are presented in table 1.

Tablel. Presentation of test run results.

No. repeats | Repeat length | No. contigs | No. spec contigs | No. contigs w. sub | No.of contigs w. errors | No. contigs not comp
10 1000 21 11 7 2 1
10 2000 24 12 8 1 1
15 2000 18 12 6 1 1
20 2000 24 16 7 1 2
5 2000 12 7 4 3 2

The first two columns contain the input data to the program simulating the repeat sequences.
Column three shows how many contigs that were produced in the test run of the algorithm.
Column four is how many specific contigs that were made in the test run.

The difference between column 3 and 4 depends on that some contigs are accually
representing the same specific contig from one repeat sequence. (Figure 13.)

[2,068,114, 120, 141 === 213]
114, 120 == 141
120 == 141

Figure 13: Contig consisting of three subparts. These three (number of (no.) contigs is 3) contigs are all
representing one (no. spec contigs is 1) specific contig. This contig will also be one of the contigs with
subcontigs, column 5.

Results where many contigs represent the same repeat region happen when the resolve
process is done to rows containing SCs with high DNP ids before rows containing SCs with
low DNP ids. In figure 13 the SC 120—141 is resolved before 114,120—140, and 2,...141—
213 is resolved last.

Column 5 (no. contigs w. sub) represents how many specific contigs that is being represented
by more than one subcontig, fig 13.

Column 6 shows how many contigs that contain an error DNP, fig 14.

[17,22,64,69 == 74| (47,58, 60,80 ==(33)]

(T63/ 170 ==208)

Figure 14: Contigs containing error DNPs. Shows how two different DNP errors could look like. In the left case,
DNP-id 69 is part of two different sequences. The first two coming from the same sequence and the last from
another sequence. The SC 69,170 and 208 is resolved first, maybe 74 is an error DNP-id despite it been part of
two SCs. In the right case there is also some kind of DNP error. 83 is not part the second SC. The SC 80 and 113
is resolved before the first SC. This can be an indication that 83 is an error DNP. Which of 83 or 113 is the error,
or maybe both, can not be determind here.

This situation occurs when SCs contain a DNP which is not common for all SCs in the
sequence area. It happens in the verification process. What caused this “error” DNP SC
should be investigated more. This shows how important it is that the SCs made must be

23

correct. If an error occurs it is hard to decide which mismatch that is the real error. But the
main strategy should be to take care of all problems as close to the source as possible.

The last column shows how many contigs that have not been chained to its fully length, see
fig 15.

(20,21, 77, 105 === 115]
(105, 115, 138 === 143

Figure 15: Contig not reaching full length. These two subcontigs have not been chained together to become a
contig from 20 to 143. Situations like this are the worst result for the algorithm. These kind of result shows that
the resolve process and the chaining process are not done the optimal way.

In addition this result happens in situations like the one separating column 3 and 4, i.e. when
rows with higher DNP ids are resolved before those with lower DNP ids. For the strategy
make_resolve_order to work, then the chain process must be changed.

5.4 Algorithm Summary — Objects, Data Structures and Functions

Obijects and Data Structures:

Reads

SolidCluster

SolidClusterPositions

ClusterContainer: left_vec
right_vec
work_vec
rest_vec
resolve_vec

Functions Tree:

add_cluster()
add_position()

make_resolve_order()

resolve_clusters()
resolve_left_vec_row()
compare_row()
resolve_start()
merge_clusters()
compare_read_IDs()
resolve_reads()
check_right_end()
add_read_IDs()
add_work_clusters()
add_work_clusters()
compare_work()
give_dnp_num_end()
check_left_end()

chain_clusters()
check()

merge_chains()

24

5.5 Algorithm Problems and Errors

From the test runs it is clear that there are some things that must be futher investigated. The
algorithm test result shows some problems. In one the repeat is represented by more than one
contig and another where the repeat is not represented by at least one fully covered contig.
These problems are a result of left_vec being very sensitive to how it is resolved.

The algorithm is also sensitive to false positive SCs. If the situation of getting false positive
SCs is high then a better strategy must be developed to take care of these. If that part should
be in algorithm or in the step before, the verification process, can be discussed.

6 Discussion

The way the algorithm works as of today is not satisfying. Some issues are still to be
investigated. The question is, is it enough with some smaller changes to the current strategy or
must the strategy involve a bigger change. Personally | think something in between can be a
working alternative. Some information from this strategy can be used. Instead of making
these subclusters on each row, where all kind of SCs are used, one-step, two-step and so on,
just concentrate on using the high quality one-step SCs. Instead of trying to take longer steps
with a higher risk of containing errors, take smaller steps with less error probability. If the
longer steps can give any additional information to the clustring process, which one-step can
not, it can be in finding DNP errors. By comparing quality of different steps, one-step, two-
step, and so on, with the starting DNP in common, finding a shorter step having less quality
then a longer step indicates an error. If this situation is found or even necessary in clustering
with just one-step SCs remains unclear.

The problem with false positive SCs may be solved by increasing the number of reads to four
to make the verification true.

In the strategy of using only one-step SCs maybe the quality value has to be more specific
than just based on the number of reads, maybe even the number of bases between the DNPs
can affect the value, a shorter distance higher value.

The current strategy is also very sensitive to the order of how things are done. There is a
conflict between left_vec’s structural order and its quality order. It turns out that something
which is highly dependent on its structural order maybe was not so useful for this problem.

Also if only one-step SCs are used maybe the right_vec structure can be removed from the
algorithm, or any way be used in a less central role, and there by making the algorithm less
complex.

To be able to use this DNP strategy to build contigs each read must at least contain two
DNPs. It is not only important for the verification process but also for the chaning process.
One DNP must connect to the preceding SC and one DNP connect to the following SC. That
is also in favour for just using one-step SCs to build contigs representing each repeat
sequence.

Because this strategy of using DNPs is very dependent on the process of founding DNP
candidates and also verifying DNP pairs, an investigation on what kind of difficulties that
process can be involved in. Optimizing this part so that the making of false positive SCs are
minimized or eliminated.

25

One thing that must be taken care of in the development of an algorithm is how to handle any
possible false positive SCs. How to identify an error and how to eliminate it.

If you look at the big picture how this strategy is done, you can see the DNPs as dots you
want to connect with lines. And of course you what to connect them in the right way. Maybe a
new strategy in the area of graph theory is possible for solving this problem.

Acknowledgements
Thanks to,
Erik Arner and Martti Tammi, who came up with this project.

My good friend Daniel Oberg, who gave me valuable advice in the writing process.

References

[1] Tammi, MT. Center for Genomics and Bioinformatics, Karolinska Institutet, Stockholm,
Sweden, February 2, (2003). The Principles of Shotgun Sequencing and Automated Fragment
Assembly. (Special excerpt for lecture)

[2] Garg, K. February 10, (1998), Lecture Notes of Phil Green, Lecture 11 — Sequence
Assembly (76 — 81)

[3] Boman, P. Master of Thesis (2001). Storskalig DNA-sekvensering av Trypanosoma cruzi.

[4] WWW-dokument: Copyright (C) 1993-2002 by Green, P and Ewing, B.
http://www.phrap.org/phrap.docs/phred.html. Hamtad 2001

[5] Tammi, M T. Uppsala University (2002), Ph D Thesis: Software Tools and Algorithms for
Shotgun Sequence Assembly.

[6] WWW-dokument: Copyright (C) 1994-1999 by Green, P.
http://www.phrap.org/phrap.docs/phrap.html. Hamtad 2001

[7] Sharma, N. February 12, (1998), Lecture Notes of Phil Green, Lecture 12 — Sequence
Assembly, Il - DRAFT (82 — 87).

[8] Gordon, D., Abajian, C., Green, P. (1998) Consed: A Graphical Tool for Sequence
Finishing. Genome Research, 8, 195-202.

[9] Tammi MT, Arner E, Britton T, Andersson B. (2002) Separation of nearly identical
repeats in shotgun assemblies using defined nucleotide positions, DNPs. Bioinformatics
Mar;18(3):379-88

[10] Tammi, MT, Arner, E and Andersson, B. (2003) TRAP: Tandem Repeat Assembly

Program produces improved shotgun assemblies of repetitive sequences. Computer Methods
and Programs in Biomedicine, Jan:70(1):47-59.

26

http://www.phrap.org/phrap.docs/phred.html
http://www.phrap.org/phrap.docs/phrap.html

Appendix A — The implementation of the algorithm made in C++

May 28, 04 15:02 ClusterContainer.h Page 1/2

// Location: lennief/Xjobb/cluster

// Filename: ClusterPosition.h

// Auther: LENNIE FREDRIKSSON

// Project: Master of Thesis at Bjoérn Andersson’s group, KI.
// Project name:

// Supervisors: BJORN ANDERSSON & Erik Arner, Martti T. Tammi
// Start date: 2001 09 25

// Latest change date: 2002 04 03

// Program/Class/File information:

#ifndef CLUSTERCONTAINER_H
#define CLUSTERCONTAINER_H
#include "solidc.h"

#include "SolidClusterPosition.h"
#include <vector.h>

/* __
_______________ */
class ClusterContainer (
// Methods.
public:
e e e e s S S S o CONSETUKEOLS ———————m— e

/* ClusterContainer(); */

void add_cluster(SolidCluster &s, int left); /* Adds a SolidCluster to the con
tainer. */

void add_position(SolidClusterPosition &scp, int right); /* Adds s SolidCluste
rPosition to the right_vec. */

void make_resolve_order(); /* */

void resolve_clusters();

void resolve_left_vec_row(int row) ;

void compare_row(int row) ;

int resolve_start(int row);

void compare_read_IDs(SolidCluster &sca, SolidCluster &scb);

void resolve_reads(SolidCluster &sca, SolidCluster &scb, int &tal);

void compare_work(int row) ;

void add_work_cluster (int row, int start_index, int index);

void merge_clusters(int row, int &start_index, int index, int &control_number)

void check_right_end(SolidCluster &temp, SolidCluster &sca, int right_DNP_numb
er);

void add_read_IDs(SolidCluster &temp, SolidCluster &sca);

void check_left_end(SolidCluster &s, int DNP_pos, int row);

int give_dnp_num_end(SolidCluster &s, int dnp_number) ;

e S S s chain clusters() ————————————————=rm———

Friday May 28, 2004 ClusterContainer.h

27

Printed by Lennie Fredriksson

May 28, 04 15:02 ClusterContainer.h Page 2/2

void chain_clusters();

void merge_chains();

int get_size();

int get_num clusters(int index) ;

1/ const SolidCluster& get_cluster(int row, int index);
SolidCluster get_cluster(int row, int index);

void check(SolidCluster &first_sc, SolidCluster &second_sc);
void add(SolidCluster &s, int row, int column);

SolidCluster left_check(SolidCluster &s, int right_DNP_pos) ;

e e e e e e e e e Xtra functions() —-————=—ssm———amm=ce=—

void print(ostream & os);

void print_reads(ostream & os);

void print();

void print_reads() ;

void erasel();

void print_SolidCluster (SolidCluster &s);

void get_reads_in_chain(vector<int> &v);

void print_read_vector (vector<int> &v) const;

void set_left_and_rightmost_DNP_nums(int row, int index, int read_index, int 1
eft, int right);

// Members.
private:

vector< vector<SolidCluster> > left_vec; // left_vec[0] points to SolidCluster
s with left_DNP_number=0 etc.

vector< vector<SolidClusterPosition> > right_vec;

vector<SolidCluster> work_vec;

vector<SolidCluster> rest_vec; // in this structur are SolidClusters put, left
overs from the resolving step.

vector<SolidCluster> error_vec;

vector< vector<SolidCluster> > resolve_vec; // this structur will keep the res
olve order.

vector<int> error_readlID_vec; // this structur will keep track of the readID f
rom the error reads.

/ R e e e e e e e e e e e e e
_______________ */
Y
#endif
/* __
_______________ */
ClusterContainer.h 11

28

#i
#1i
#i
#i
/*
/*
/*

/*

Vo

Location: lennief/Xjobb/erikcluster/
Filename: ClusterContainer.cpp

Auther: Lennie Fredriksson

Project: X-arbete at Bjdrn Andersson’s group.
Project name:

Handledare: Erik Arner & Martti T. Tammi
Start date: 2001 11 29

Latest change date: 2002 04 16

= File Information =%/

Program/Class/File information:

This information was written 2001 12 something. Allot have happened afterwards.

The main information about the Program can be found i file Information_ClusterContainer.cpp.
This PART have been tested for different kinds of data:

n IMPORTANT!!! One important thing for the user to think of is to add the SolidClusters to
the ClusterContainer in increasing order of left_DNP_numbers. Just to get the SolidCluster-
Positions in right_vec in right order, so the order in work_vec later on get right.

n It has been tested for data coming from just one repeat region and the result came out OK.
The main-program used was "ProjectTest_one_repeat_region.cpp".

DNPs from repeat region 1: (8) - 10 - 13 - 15 - 18 - 21 - 23— 26 = 29 —~ 32

n And it has been tested for data coming from different repeart regions

(four different regions) and the result came out OK.

The main-program used was "ProjectTest_four_repeat_region.cpp".

DNPs from repeat region 1: (8)- 10 - 13 - 15 - 18 - 21 — 23 - 26 - 29 - 32.

repeat region 2: 9 - 11 - 14 - 17 - 19 - 22 - 28 — 33

repeat region 3: 12 - 16 - 20 - 25 - 30.

repeat region 4: 24 - 27 - 31 —(34).

n And it has been tested for data coming from different repeart regions (four different
regions) and where one repeat region have had an NOT OK DNP position (repeat region 1 got
DNP 14 to it), and the result came out gquite OK. The NOT OK DNP was located in the inner
part of the alignment, which makes it easier to resolve than if the NOT OK DNP had come from
the first part of the alignment (then you have nothing to compare with) .The main-program used
was "ProjectTest.cpp".

x THE USE OF FLAGS in the function, add_work_cluster().

Flags:

10000: This flag indicates that the SolidCluster have been used in the resolving process.
The SolidCluster have put in the work_vec for later use.

20000: This flag indicates that the SolidCluster have been registered as a not okej
SolidCluster.

30000: This flag indicates that the SolidCluster have been added to the rest_vec.

% And it HAVE been tested for data, when the SolidCluster in the start have alot of reads
containing another DNP-position or an unknown DNP-position. And the result turned out god.
But more testing have to be done. */

——— */
nclude "ClusterContainer.h"
nclude <iostream.h>
nclude <assert.h>
nclude <stdlib.h>
constructors === =%/

ClusterContainer::ClusterContainer(){} */

== add_clusters() == ¥/
This function will add SolidClusters to left_vec.

At the same time this happens related SolidClusterPosition objects will be created and added
to right_vec. Each SolidCluster added to the left_vec will be "creating" a related
SolidClusterPosition added to the right_vec.

When new SolidClusters are added to left_vec, two different cases can occur:

1) left_vec have free space and

2) no space are available so more space have to created. */

id ClusterContainer::add_cluster(SolidCluster &s, int left)({
for(int i = left_vec.size(); 1 < left+l; i++){
vector<SolidCluster> temp;
left_vec.push_back (temp) ;
}
left_vec[left] .push_back(s);
SolidClusterPosition temp_scp(left, left_vec([left].size()-1); // creats a SCP.
add_position (temp_scp, s.get_right_DNP_num()); // put the SCP in right_vec.

29

/* This function will add SolidClusterPosition to right_vec.
This function, add_position(...), looks like add_cluster(...)
When new SolidClusterPosition are added to right_vec,
even here two different cases can occur:
1) right_vec have free space and
2) no space are available so more space have to be created. */

void ClusterContainer::add_position(SolidClusterPosition &scp, int right){
for(int i = right_vec.size(); i < right+1; i++) {
vector<SolidClusterPosition> temp;
right_vec.push_back (temp) ;
}
right_vec([right] .push_back (scp);
}

// This make_resolve_order () is build from left_vec.

void ClusterContainer: :make_resolve_order () {
cerr<<"make_resolve_order () "<<endl;
for(int 1 = 0; 1 < left_vec.size(); 1++){
if (left_vec([l].size() !'= 0){

// This for-loop, if the first SolidCluster desides!
// for(int m = resolve_vec.size(); m < left_vec([1][0].get_num _reads()+1; m++) {

// This for-loop, if the best SolidCluster on the row desides!

int best_element_on_row = resolve_start(l);

for (int m = resolve_vec.size(); m<left_vec[l] [best_element_on_row] .get_num_reads () +1; m++) {
vector<SolidCluster> temp;
resolve_vec.push_back (temp) ;

}

// resolve_vec| left_vec[l][O].get_num_reads()].push_back(left_vec[l][0]);

resolve_vec[left_vec[l][best_element_on_row].get_num_reads()].push_back(left_yec[l][O]);

}
}
}

/* === resolve_clusters() = =%/
/* This function resolves left_vec. The way this is done have changed during development. */

void ClusterContainer::resolve_clusters() {

cout<<"\n RESOLVE_CLUSTERS () ===\n";
if (resolve_vec.size() > 0){
for(int i = resolve_vec.size()-1; i > -1; i--){
cerr<<"========= RAD "<<i<<" I RESOLVE_VEC ========= "<<endl;
if (resolve_vec([i].size() != 0){
for(int j = 0; j < resolve_vec[i].size(); J++){
cerr<<"———————-— Resolve rad "<<resolve_vec[i][]j].get_left_DNP_num()<<" —-——————- "<<endl;

resolve_left_vec_row(resolve_vec[i] [j].get_left DNP_num());

// This part erase the empty rows in right_vec after the resolvning process.
for(int 1 = 0; i < right_vec.size(); i++)({

if (right_vec[i].size() == 0){
right_vec.erase(right_vec.begin() + i, right_vec.begin() + i + 1);
i--;

}
}
}

// This function resolves a row i left_vec.

void ClusterContainer::resolve_left_vec_row(int row) {

cerr<<M"~~~nnnnan COMPARE_ROW ("<<row<<") ~~m~~an~n~ "<<endl;
compare_row(row); // resolves the row "row" in left_vec.
cerr<<"~~nnnnnnn COMPARE_WORK ("<<row<<") ~~~~an~nn~ "<<endl;

compare_work (row); // resolves SolidClusters coming from the right_vec and put in the work_vec.

30

/* kA KA AKK KKKk A KA hAA KA KK ARk hkhkhkhk kA kA khkkkx k% Compare row() R R LR EREE R R RS SRR R R RS R R R R R R R R RS */

/* When a row is compared TWO different cases can occur:

CASE I. Rows starting with a TAKEN SolidCluster (flag 10000) WILL NOT BE resolved.
CASE II. Rows starting with a ERROR SolidCluster (flag 20000) WILL BE resolved.

This function resolves SolidClusters in one row (the same row). At the same time are related
SolidClusters (coming from the SolidClusterPositions in right_vec) added to the work_vec,
rest_vec or just flagged if they are error-SolidCluster. The SolidClusters in work_vec are
resolve later in compare_work(row) .

The way the resolve process is done is like follow: The first correct SolidCluster becomes
the start_position SolidCluster. When two SolidClusters are resolved, the result ends up in
the start_position SolidCluster. When the hole row is resolved, the start_position
SolidCluster is added to the first position on that row. After that are SolidClusters put

in work_vec resolved to the resolved row. */

void ClusterContainer::compare_row(int row) {

}

assert (row < left_vec.size());
/* This integer, first_merge_control,
contain the number of merge_cluster taking place on that row. */
int first_merge_control = 0;
int start_position = resolve_start(row);

/* This if-sentence is a check that the start SolidCluster has an OK left_DNP_num (<10000) and
that there are SPC for that SolidCluster in right_vec,

otherwise this left_vec row i NOT CORRECT!!! */
if (left_vec[row] [start_position] .get_left DNP_num() < 10000 &&
right_vec[left_yec[row][start_position].get_right_DNP_num()].size() = 0){

if (left_vec([row] .size() > start_position + 1){ // the following element on the row.
for(int i = start_position + 1; i < left_vec[row] .size(); i++){
if (left_vec([row] [i].get_left_DNP_num() < 10000)
/* This function resolves the first element (element [0]) in row with
element [i] on the same row. */
merge_clusters(row, start_position, i, first_merge_control);
}
}

if (first_merge_control == 0) // This means that this is the first merge on this row.
add_work_cluster (row, start_position, start_position);

// the resolved SolidCluster should always be in position zero on the row.

left_vec([row] [0] = left_vec[row] [start_position];

}

/* The row is intepreted as NOT OK! */
else if(left_vec[row] [start_position].get_left DNP_num() < 10000 &&
right_vec[left_vec[row][start_position].get_right_DNP_num()].size() == 0){
for(int j = 0; J < left_vec[row].size(); J++)({
error_vec.push_back (left_vec[row] []]);
cerr<<"error_vec next!!! —-———-————— compare_row "<<endl;
left_vec[row] [j] .set_left_DNP_num(20000);
}
}

/* All SolidClusters are already used. */
else
cerr<<"raden ir redan anvidnd till sista SolidClustret !!"<<endl;

/* This function return the position i left_vec[row] for the SolidCluster which have most

number of reads. */

int ClusterContainer::resolve_start (int row) {

cerr<<"resolve_start () "<<endl;
int resolve_start = 0;
while (left_vec[row] [resolve_start].get_left DNP_num() >= 10000 &&
left_vec[row] .size() > resolve_start+l){
resolve_start++;
cerr<<"row = "<<row<<" och resolve_start = "<<resolve_start<<endl;
}
if (left_vec[row] .size() > resolve_start) {
for(int l=resolve_start+l; 1 < left_vec([row].size(); 1++){

31

’

if(left_vec[row] [1] .get_left_ DNP_num() < 10000 &&
left_vec[row][resolve_start].get_num_reads() < left_vec[row] [1].get_num_reads())
resolve_start = 1;
}
}

cerr<<"Row = "<<row<<" och Resolve_Start = "<<resolve_start<<endl;
cerr<<"Antal reads i Start_SolidCluster = "<<left_vec[row][resolve_start].get_num_reads()<<endl

for(int 1=0; 1 < left_vec([row].size(); 1l++)
cerr<<"Antal reads fdr SolidCluster ("<<1l<<") = "<<left_vec[row] [1] .get_num_reads()<<" och lef

t_DNP_number = "<<left_vec[row] [1].get_left_DNP_num()<<endl;;

}

return resolve_start;

/* This function should for each SolidCluster[row (row i left_vec), index (position/coloum in

row)] look in right_vec on the row, related to the SolidCluster’s right_DNP_number.

The SolidClusters related there will be added to work_vec, rest_vec or not be used at all,
that’s depending on it’s left_DNP_number. If the left_DNP_number is smaller than the
left_vec’s row the SolidCluster should be added to rest_vec otherwise it will be added to
work_vec or not. SolidClusters not added to work_vec are/can be NOT OK SolidClusters.

The SolidClusters in work_vec are later used in compare_work (row) and the SolidClusters in
rest_vec are for now not used at all.

The SolidClusters added to work_vec and rest_vec are copies of the SolidClusters in left_vec.
The reason why copies are made is not to change the positions of the SolidClusters in
left_vec. It is because each SolidCluster’s position is "registrered"/mapped in some way in
right_vec. So no changes in left_vec are allowed.

The way of marking that a SolidCluster is "taken" is to set it’s left_DNP_number to 10000.
And if the SolidCluster is added to rest_vec it’s left_ DNP_number is set to 30000.

And if the SolidCluster is an error, it’s left_DNP_number is set to 20000. */

void ClusterContainer::add_work_cluster(int row, int start_index, int index) {

cerr<<"left_vec["<<row<<"].size() = "<<left_vec[row] .size()<<" och Index = "<<index<<endl;
assert (row < left_vec.size());

assert (index < left_vec[row].size());

int right_vec_row = left_vec[row] [index] .get_right_DNP_num() ;

/* ~~~ */
/* Go through the right_vec on row = right_vec_row. Start from the end and go to position 0. */
for(int i = (right_vec([right_vec_row].size() - 1); 1 > =1; 1==){

/* add to rest_vec *of

if(right_vec[right_vec_row][i].get_left_DNP_number() < row) {

/* Must control that the SolidClusters added to work_vec have bigger left_DNP_number than
the row(number) they are related from. If they have smaller left_DNP_number they will
be added to rest_vec. And if they have the same number it will be ignored, because
that’s the row being resolved. After that the SolidClusterPosition in right_vec is
deleted.

This part is not valid NOW! */

}
/* add to work_vec */
if (right_vec[right_vec_row] [i] .get_left DNP_number () > row) {
/* check_number is an int-flag.
When a SolidCluster has an OK left_DNP_number, check_number will be set to 99999. */
int check_number = 0;

BB B B L0 o 2 o 2
F++++++++++++++++++++++++ KOLLAR UPP ATT KORREKTA DNPs FINNS +++++++++++++++++++tttttt+
I NI NS R MR SRV AU RO SUET U RY AT OURUAY SIS NSNS SRRV AU AU L S S SRS S S
In this part the left_DNP_number of the SolidCluster related from right_vec most be
check that it is part of the resolved SolidCluster’s DNPs being formed. If it’s OK
(the left_DNP_number is a part of the resolved SolidClusters DNPs) it will be added
to work_vec, and if it’s NOT OK it will just be flaged, 20000, and not be used. */

if(start_index != index) {
for(int j = 0; 3 < left_vec[row] [start_index] .get_num DNP_nums (); J++) {
if(left_vec[row] [start_index].get_DNP_num(j) ==
right_yec[right_vec_row][i].get_left_DNP_number()){
work_yec.push_back(left_vec[right_vec[right_vec_row][i].get_left_DNP_number()][right_

vec[right_vec_row] [i].get_left_vec_position()]);

/* If the SolidCluster is used, added to work_vec, it will be flagged with a
left_DNP_number equal to 10000. */

32

left_vec[right_vec[right_vec_row] [i].get_left_DNP_number()] [right_vec[right_vec_row] [
i) .get_left_vec_position()].set_left DNP_num(10000);

check_number = 99999;
break;

[F e e e e R R e A0 ED! EBIOE SEIC) e e e i s e e e e e *f
/* If the check_number is equal to 99999, the SolidCluster is part of the DNPs and
have been added to work_vec, otherwise not and will just be flaged, 20000. */

if (check_number != 99999) {
error_vec.push_back(left_vec[right_yec[right_vec_row][i].get_left_DNP_number()][right_vec
[right_vec_row] [i] .get_left_vec_position()]);

// If the SolidCluster is wrong it will be flagged with a left_DNP_number equal to 20000.
left_vec([right_vec[right_vec_row] [i].get_left_DNP_number ()] [right_vec[right_vec_row] [i].g
et_left_vec_position()].set_left_DNP_num(20000);
}
}
/* NO move of SC */
if (right_vec[right_vec_row] [i] .get_left_DNP_number () == row) {}

right_vec[right_vec_row] .erase (right_vec[right_vec_row] .begin() + i, right_vec[right_vec_row]
.begin() + i + 1); // This part erases the SolidClusterPosition.
}
}

/* This function resolves two SolidClusters. The SolidClusters are element [0] on row and
element [index] on the same row and the result is then put in SolidCluster [O0].
In this function it will be investigated if the next SolidCluster on the row contains more,
less or equal number of reads. The next SolidCluster should contain less or maybe equal
number of reads. If it contains more number of reads something wrong maybe in the air.
And if the number/procentage of equal reads is low, then an error is more probable to have
happened. In this function there are TWO cases!! */

void ClusterContainer::merge_clusters(int row,int &start_index, int index, int &control_number) {

assert (row < left_vec.size());

assert (index < left_vec([row].size());

cerr<<"merge_cluster - start_index["<<row<<"] ["<<start_index<<"] readnumber = "<<left_vec[row] [
start_index] .get_num_reads () <<" och index["<<row<<"] ["<<index<<"] readnumber = "<<left_vec[row] [i
ndex] .get_num_reads () <<endl;

/* This part investigate if the next SolidCluster contains less or equal number of reads than
the former, which it should. Otherwise it is removed and replaced with the following/next
SolidCluster. */

if(left_vec[row] [start_index].get_num_reads() < left_vec[row] [index] .get_num_reads()) {

cerr<<®——————==—— 1010 OBSEVERA ! 11!l —weeme————— "<<endl;
int common_reads = 0;
for(int i = 0; i < left_vec[row] [start_index].get_num_reads(); i++) {

for(int j = 0; j < left_vec[row] [index].get_num reads(); J++) {
if (left_vec[row] [start_index].get_read_ID(i) == left_vec([row] [index].get_read _ID(J)) {
common_reads++;
break;

}
}
}

cerr<<"common reads = "<<common_reads<<endl;
cerr<<"common read$% = "<<(common_reads*1.0)/(left_vec[row] [index].get_num_reads()*1.0)<<endl;
cerr<<"control_number = "<<control_number<<endl;
cerr<<"kvoten (< 2.4) = "<<double (left_vec[row] [start_index].get_num_reads())/double(left_ve
c[row] [index] .get_num_reads()) <<endl;
/* This part controls if common reads is the bigger part of the next SolidCluster
(in this case 60%).
If not, the FIRST SolidCluster is taken to be an error-SolidCluster. */

if (double ((common_reads*1.0)/(left_vec[row] [index] .get_num_reads () *1.0)) <= 0.6 || double(lef
t_vec[row] [start_index].get_num_reads())/double (left_vec[row] [index].get_num_reads()) > 2.4 ¥
error_vec.push_back (left_vec[row] [index]);
cerr<<"error_vec next!!! "<<endl;

left_vec[row] [index] .set_left_DNP_num(20000);
}

33

else{
cerr<<"===== CASE I: ====="<<endl;
cerr<<"antal reads innan = "<<left_vec[row] [start_index] .get_num_reads () <<endl;
compare_read_IDs (left_vec[row] [start_index], left_vec[row] [index]);
control_number++;
cerr<<"control_number CASE1l = "<<control_number<<endl;
if (control_number == 1) {
add_work_cluster(row, start_index, start_index);
add_work_cluster(row, start_index, index);
left_vec[row] [start_index] .set_right_DNP_num(left_vec[row] [index].get_right_DNP_num());
}
if (control_number > 1) {
add_work_cluster(row, start_index, index);
left_vec[row] [start_index] .set_right_DNP_num(left_vec[row] [index].get_right_DNP_num());
}
cerr<<"antal reads efter = "<<left_vec[row] [start_index].get_num_reads () <<endl;
}
}

else{
cerr<<"===== CASE II: ====="<<endl;
cerr<<"kvoten (< 2.6) = "<<double(left_vec[row] [start_index].get_num_reads())/double (left_v

ec[row] [index] .get_num_reads ()) <<endl;
if (double (left_vec([row] [start_index].get_num_reads ())/double(left_vec[row] [index].get_num_rea
asi{)) < i2.6)1
cerr<<"kvoten (< 2.6) = "<<double(left_vec[row] [start_index].get_num_reads())/double(left
_vec[row] [index] .get_num_reads ())<<endl;
int common_reads = 0;
for(int i = 0; i < left_vec[row] [start_index].get_num reads(); i++){
for(int j = 0; j < left_vec[row] [index].get_num_reads(); J++) {
if (left_vec[row] [start_index].get_read_ID(i) == left_vec[row] [index] .get_read_ID(J)) {
common_reads++;
break;
}
}
}

cerr<<"common reads = "<<common_reads<<endl;
cerr<<"antal reads innan = "<<left_vec(row] [start_index] .get_num_reads () <<endl;
compare_read_IDs (left_vec[row] [start_index], left_vec([row] [index]);
control_number++;
cerr<<"control_number CASE2 = "<<control_number<<endl;
// the first resolve-process on the row differs a little from the second resolve-process.
if (control_number == 1) {
/* adds related SolidClusters coming from the first SolidCluster in left_vec with a
left_DNP_number other then 10000,20000 or 30000 (element Jj) in row to work_vec. *x/
//cerr<<"row = "<<row<<", start_index = "<<start_index<<" och index = "<<index<<endl;
add_work_cluster(row, start_index, start_index);
add_work_cluster(row, start_index, index);
left_vec([row] [start_index].set_right_DNP_num(left_vec[row] [index].get_right_ DNP_num()) ;
}
if (control_number > 1) {
// add work-cluster to work_vec coming from "right_vec" (row, i)
add_work_cluster(row, start_index, index);
left_vec([row] [start_index].set_right_DNP_num(left_vec[row] [index].get_right_DNP_num()) ;
}

cerr<<"antal reads efter = "<<left_vec[row] [start_index] .get_num_reads () <<endl;

e compare pead, TDEH() s e e S *]

/* This function compares read_IDs between two SolidClusters. These two SolidClusters are also
the parameters of the function. THE RESULT WILL BE ADDED TO THE SOLIDCLUSTER SCA.
The right_DNP_number_control is a number which keep control if the SolidClusters compared
have common reads. Just to be shore if the resulting SolidCluster should have sca’s
right_DNP_number (right_DNP_number_control == 0) or scb’s right_DNP_number
(right_DNP_number_control > 0). */

void ClusterContainer: :compare_read_IDs(SolidCluster &sca, SolidCluster &scb) {
int right_DNP_number_control = 0;
resolve_reads(sca, scb, right_DNP_number_control);

}

34

/* This function take two SolidClusters and compare there read_IDs (sca —> scb). Save common
reads and investigate if not common reads should be saved or not.
THE RESULT WILL BE ADDED TO SCA. */

void ClusterContainer: :resolve_reads(SolidCluster &sca, SolidCluster &scb, int &control_number) {
SolidCluster temp_solidcluster(sca.get_left_DNP_num(), sca.get_right DNP_num());
assert (scb.get_num_reads () > 0);
for(int i=0; i < scb.get_num_reads(); i++){ // the outer for-loop. scb’s reads.
assert (sca.get_num_reads () >= 0);
for(int j=0; j < sca.get_num_reads(); j++){ // the inner for-loop. sca’s reads.
if (scb.get_read_ID(i) == sca.get_read_ID(]j)) {

/* scb.read_IDs[i] = int and means: that’s the number of the read which is placed in
read_IDs on position i. If the read is common, it will be added to the temporary
SolidCluster temp_solidcluster. */

temp_solidcluster.add_read(sca.get_read_ID(]j),sca.get_leftmost_DNP_num(Jj),sca.get_rightmo

st_DNP_num(3j));

/* The read is added to the temp_solidcluster.

This event is registered by the right_DNP_number_control. */

control_number ++;

sca.delete_read(3j);

/* If the read is common it will be added to temp_solidcluster and then deleted from
sca, just so it will be easier to see what reads in sca who’s not common.

These reads will be further investigated. */
break; // breaks the inner for-loop.
}

}
}
if (sca.get_num_reads() != 0) // Futher investigation of not common reads.

check_right_end(temp_solidcluster, sca, scb.get_right_DNP_num());
add_read_1IDs (temp_solidcluster, sca); // The result is put in sca (element [0] in row).

}

/* This function investigates not common reads.
If they end before or after next DNP position, and if they should be saved or not. */

void ClusterContainer::check_right_end(SolidCluster &temp, SolidCluster &sca, int right_DNP_numbe
r){
while (sca.get_num_reads() > 0) {
if (sca.get_rightmost_DNP_num(0) < right_DNP_number) {
/* Check if read[i] stops before next DNP-position. If it does, the read is correct, and
it will be added to the temporary SolidCluster. */
temp.add_read(sca.get_read_ID(0),sca.get_leftmost_DNP_num(0),sca.get_rightmost_DNP_num(0));
// sca.get_read_ID(i) gives the read number at position [i] in sca’s vector<int> read_IDs.

}

else{
// If the read is NOT correct, it’s readID will be added to error_readID_vec.
cerr<<"check_right_end() - L461 sca.get_read_ID(0) = "<<sca.get_read_ID(0)<<endl;

error_readID_vec.push_back(sca.get_read_ID(0));
}
sca.delete_read(0); // the read is then deleted from SolidCluster sca.
}
}

/* This function will add the resulting reads in SolidCluster temp to a SolidCluster sca */

void ClusterContainer::add_read_IDs(SolidCluster &temp, SolidCluster &sca) {
assert (sca.get_num_reads() == 0); // check that sca has no reads, that’s important.
for(int i = 0; i < temp.get_num _reads(); i++)
sca.add_read(temp.get_read_ID(i),temp.get_leftmost_DNP_num(i),temp.get_rightmost_DNP_num(i));

/* IR R R R R R SRS R RS E RS E R SRS R RS R R R R R RS RS compare work() KAk KA Ak KA KA AkA KR AR KAKKAKAK KA KA KAA KA AR Ak hkhkkhkhkkkkhhk */

/* This function will compare SolidClusters placed in work_vec with the resolved SolidClusters
in left_vec. And the control is made with: check_left_end() .
This work_vec will work as a queue, first-in-first-out. So when a element is done it’s
deleted and. That’s why always the element [0] is taken. */

void ClusterContainer: :compare_work (int row) {
cerr<<"work_vec.size() = "<<work_vec.size()<<endl;

35

if (work_vec.size () == 0){
cerr<<"00"<<endl;

/* If a resolved row not have related SolidCluster in work_vec, you can suspect that
something is wrong or less good. */

}
while (work_vec.size() > 0){

int dnp_num_end = give_dnp_num_end (left_vec[row] [0], work_vec([0] .get_left_DNP_num());

/* at this time the left_vec([row] [0]-element will contain all the different DNP’s for the
resolved row SolidCluster. The DNP-numbers must be placed in DNP_nums in increased order.
First all common reads are deleted from the SolidCluster from work_vec. */

// The outer for-loop, temp_wsc reads.

for(int j=0; j < work_vec([0].get_num reads(); J++) {

// The inner for-loop, left_vec[row]’s last elements reads.
for(int k=0; k < left_vec[row] [0].get_num_reads(); k++) {
// This part delete reads which are common.

if (work_vec[0] .get_read_ID(j) == left_vec[row] [0].get_read ID(k)) {
work_vec[0] .delete_read(3j);
Jrip
break;

}
}

/* Second, this part take care of the not common reads. */
if (work_vec([0] .get_num_reads() != 0){
/* if the read in temp_wsc (the outer for-loop) is not common it should be investigated
that it ends before the former DNP number. */
check_left_end(work_vec[0], dnp_num_end, row);
}
// erase the first SolidCluster i work_vec.
work_vec.erase (work_vec.begin(), work_vec.begin() + 1);
}
cerr<<"RESULTAT efter WORK_VEC - antal reads kvar = "<<left_vec[row] [0].get_num _reads () <<endl;

}

/* This function will return the DNP position from the vector<int> DNP_nums which is before the
DNP position given as a parameter. The vector DNP_nums always comes from the resolved row. *

int ClusterContainer::give_dnp_num_end(SolidCluster &s, int dnp_number) {
assert (s.get_num_DNP_nums () >= 2);
for(int i=1; i < s.get_num DNP_nums(); i++)
if (dnp_number == s.get_DNP_num(i)) {
assert (s.get_DNP_num(i-1) >= 0);
return s.get_DNP_num(i-1);
}
}

/* This function will investigate not common reads, if they end or not end before the former DNP
number (DNP_num). If they end before, they will be added to left_vec[row] [0].read IDs. *x/

void ClusterContainer::check_left_end(SolidCluster &s, int DNP_num, int row) {
for(int i = 0; i < s.get_num_reads(); i++) {
if(s.get_leftmost_DNP_num(i) > DNP_num) {
left_vec[row] [0] .add_read(s.get_read_ID(i),s.get_leftmost_DNP_num(i),s.get_rightmost_DNP_nu
m(i));
}

else{
// this part collect error readIDs, just for a check !!!!!!!
cerr<<"check_left_end() - L537 s.get_read_ID(i) = "<<s.get_read_ID(i)<<endl;

error_readID_vec.push_back(s.get_read_ID(i));

}
}
}

/******‘k**/

1 chain_clusters() = =%/

/* This function will put together the resolved SolidCluster formed. This will be done as follow:
First find a row which is resolved in left_vec, start from the top of left_vec.
The SolidCluster on that row will give information to which row to go to next.
That information comes from it’s right_DNP_number. The SolidCluster on the next row will be

36

added to the first row after the first SolidCluster. This will be done until a row is empty.
Each time this is done (that a SolidCluster is added to the first row), it must be CHECKED
that no reads in the next SolidCluster reach through the former SolidCluster’s
right_DNP_position. This control will be a form of left_check().

This function will also delete used SolidClusters. */

void ClusterContainer::chain_clusters() {

cout<<"\n=== == CHAIN_CLUSTERS () ===\n";
for(int 1 = 0; i < left_vec.size(); i++){ // i = the row in left_vec which is being chained.
int j = 0;
if (left_vec([i] .size() !'= 0 &&
(left_vec[i][0] .get_left_DNP_num() == 10000 ||
left_vec[i] [0] .get_left_DNP_num() == 20000 ||
left_vec[i][0] .get_left_DNP_num() == 30000)) {

/* This part erase all SolidClusters which have been used,
that have a left_DNP_number equal to 10000 or bigger. */
left_vec[i].erase(left_vec[i].begin(), left_vec[i].end());
}

/* This should investigate that the row [i] in left_vec is not empty and that the first
element is not already used. */

if (left_vec[i] .size() !'= 0 && left_vec[i][0].get_left_DNP_num() < 10000) {
left_vec[i] .erase(left_vec[i].begin() + 1, left_vec[i].end());

/* This part erase all SolidClusters except the first one in the row [i]. */
int right_dnp_num = left_vec[i][0].get_right_DNP_num();

/* This should investigate that the row [right_dnp_num] in left_vec is not empty and that
the next row in left_vec exists. */
while(right_dnp_num < left_vec.size() &&
left_vec[right_dnp_num].size() != 0 &&
left_vec([right_dnp_num] [0] .get_left_DNP_num() < 10000) {

/* THE FIRST ELEMENT LEFT_VEC[I][O0] AND
THE SECOND ELEMENT LEFT_VEC[RIGHT_DNP_NUM] [0] .

the check_function should remove reads from the first element (=SolidCluster) which
reach through the next DNP-number in the next resolved SolidCluster AND remove reads
from the second element which reach through the former DNP-number in the former
resolved SolidCluster. This should be done like follow:

FIRST RIGHT_CHECK (First SolidCluster -> Second SolidCluster):

Now the reads from the first SolidCluster are controlled if they have a
rightmost_DNP_num bigger than the next SolidCluster’s left_ DNP_num, and if that’s

the case, the reads have to be checked if they also have a rightmost_DNP_num even
bigger or equal to the DNP-number to the right of that left_DNP_number. If both cases
occur, then the reads should be members of the next SolidCluster. So if a read have
both cases and is member of two SolidClusters, it’s deleted from the next
SolidCluster, and if it has both cases and is not a member of the next SolidCluster
it is deleted from the first SolidCluster.

SECOND LEFT_CHECK (Second Solidcluster -> First SolidCluster):

Now the reads from the second SolidCluster are controlled if they have a
leftmost_DNP_num less than the former SolidCluster’s right_DNP_num, and if that’s

the case, the reads have to be checked if they also have a leftmost_DNP_num even
smaller or equal to the DNP-number to the left of that right_DNP_number. If both cases
occur, then the reads should be members of the next SolidCluster. So if a read have
both cases and is member of two SolidClusters, it’s deleted from the former
SolidCluster, and if it has both cases and is not a member of the former SolidCluster
it is deleted from the second SolidCluster. */

if (left_vec[right_dnp_num] [0] .get_left_DNP_num() < 10000) {

left_vec[right_dnp_num] .erase(left_vec[right_dnp_num].begin() + 1,left_vec[right_dnp_nu
m] .end());

check (left_vec([i] [j], left_vec[right_dnp_num] [0]);

J++;

left_vec[i] .push_back(left_vec[right_dnp_num] [0]);

// left_vec[right_dnp_num] .erase (left_vec[right_dnp_num] .begin(), left_vec[right_dnp_nu
m] .begin() + 1);

assert (left_vec[right_dnp_num] [0] .get_right_DNP_num() != 0);

left_vec[right_dnp_num] [0] .set_left_DNP_num(10000);

37

right_dnp_num = left_vec[i][]].get_right_DNP_num();

void ClusterContainer: :check (SolidCluster &first_sc, SolidCluster &second_sc) {

2)

/*========== FIRST, RIGHT_CHECK: The read in first_sc which is not OK is deleted. ===========%/
for(int 1=0; i < first_sc.get_num_reads(); i++){ // check read [i] in first SolidCluster.
/* this part checks if the read reaches through the next SolidClusters left DNP_num, if so
it must be futher controlled. */
if (first_sc.get_rightmost_DNP_num(i) > second_sc.get_left DNP_num()) {
int k=0;
/* this part checks if the read reaches through even the second next DNP_num,
if so it must be a member of the next SolidCluster. */
if (first_sc.get_rightmost_DNP_num(i) >= second_sc.get_DNP_num(1l)) {
/* check if read is a member in second SolidCluster. */
for(int j=0; J < second_sc.get_num_reads(); Jj++){

/* if this is true, read [i] in SolidCluster first_sc is a member of SolidCluster
second_sc, and this advent is registered with the int k.. And just continue with
next read in first_sc. */

if (first_sc.get_read_ID(i) == second_sc.get_read_ID(])) {

k4
second_sc.delete_read(]);
break;

}

}
/* if k=0, then the read is not common for the two SolidCluster and it will be deleted.
That’s because it’s missing one importanted DNP-number */
if(k == 0){
cerr<<"check (right) L651 first_sc.get_read_ID(i) = "<<first_sc.get_read_ ID(i)<<endl;
error_readID_vec.push_back (first_sc.get_read _ID(i));
first_sc.delete_read(i);
=~z

/*========== SECOND, LEFT_CHECK: The read in second_sc which is not OK is deleted. ==========%/
for(int i=0; i < second_sc.get_num_reads(); i++){ // check read [i] in second SolidCluster.
/* this part checks if the read reaches through the former SolidClusters right_DNP_num,
if so it must be futher controlled. */
if (second_sc.get_leftmost_DNP_num(i) < first_sc.get_right_DNP_num()) {
int k=0;
/* this part checks if the read reaches through even the second former DNP_num,
if so it must be a member of the former/first SolidCluster. */
if (second_sc.get_leftmost_DNP_num(i) <= first_sc.get_DNP_num(first_sc.get_num DNP_nums() -
) {
// check if read is a member in first SolidCluster.
for(int j=0; j < first_sc.get_num_reads(); J++) {
/* if this is true, read [i] in SolidCluster second_sc is a member of SolidCluster
first_sc. And just continue with next read in second_sc. */

if (second_sc.get_read_ID(i) == first_sc.get_read_ID(])) {
k++;
second_sc.delete_read(i);
break;

}
} 5
// if k=0, then the read is not common for the two SolidCluster and it will be deleted.
if(k == 0){
cerr<<"check (left) L680 second_sc.get_read_ID(i) = "<<second_sc.get_read_ID(i)<<endl;
error_readID_vec.push_back (second_sc.get_read_ID(i));
second_sc.delete_read(i);
1=rf

== merge_chains () */

38

void ClusterContainer: :merge_chains() {

cout<<"\n === MERGE_CHAINS() = ===\n";
for(int 1 = 0; i < left_vec.size(); i++){ // i1 = the row in left_vec which is being chained.
if(left_vec[i].size() >= 2){
for(int j = 1; j < left_vec[i].size(); J++){
for(int k = 1; k < left_vec([i] [J].get_num_DNP_nums(); k++)
left_vec([i] [0] .add_DNP_num(left_vec[i] [Jj].get_DNP_num(k));
for(int 1 = 0; 1 < left_vec[i] []j].get_num_reads(); 1l++)
left_vec[i] [0] .add_read(left_vec[i] [j].get_read ID(l), left_vec[i][]].get_leftmost DNP_
num(l), left_vec[i][j].get_rightmost_DNP_num(l));
}
left_vec([1i][0] .set_right_DNP_num(left_vec[i] [0].get_DNP_num(left_vec([i] [0].get_num DNP_nums
=100
left_vec[i][0].remove_DNP_num(left_vec[i] [0].get_DNP_num(left_vec[i] [0].get_num_DNP_nums () -
1));

}
}

left_vec[i] .erase(left_vec[i].begin()+1, left_vec[i].end());

}

/% = Xtra functions() = =%/

/* Here are some Xtra functions written for the testrun.
This function will print the structur of the SolidCluster-element in left_vec, right_vec,
resolve_vec, work_vec and rest_vec. Every SolidCluster-element will be represented by a R
and each SolidClusterPosition in right_vec will be represented by a "+". */

void ClusterContainer::print () {
// printing left_vec structur.
cout <<"LEFT_VEC: \n";
for(int i = 0; i < left_vec.size(); i++){
if (left_vec(i].size() < 1) continue;
cout <<"rad ¥ << 1 <<": *;
for(int j = 0; J < left_vec[i].size(); Jj++)
cout <<"SC: "<<left_vec[i] [j].get_left_ DNP_num()<<" "<<left_vec[i] []j].get_right_DNP_num() <<

’
cout <<"\n";

}
cout <<"\n";
// printing right_vec structur.
cout <<"RIGHT_VEC: \n";
for(int i = 0; i < right_vec.size(); i++){
if (right_vec([i].size() < 1) continue;
cout <<"rad " << i <<": ";
for(int j = 0; J < right_vec[i].size(); j++)
cout <<"SCP: "<<right_vec[i][j].get_left_DNP_number ()<<" "<<right_vec[i] []J].get_left_vec_po
sition ()< My
cout<g"\n";
}
cout <<\
// printing resolve_vec struktur.
cout <<"RESOLVE_VEC: \n";
for(int i = 0; i < resolve_vec.size(); i++){
if (resolve_vec[i].size() < 1) continue;
cout <<"rad " << 1 <<": %;
for(int j = 0; j < resolve_vec[i].size(); Jj++)
cout <<"SC: "<<resolve_vec[i][]j].get_left_DNP_num()<<" "<<resolve_vec([i] [j].get_right DNP_n
ami() e N
cout<<"\n";
}
cout <<"\n";
// printing work_vec struktur.
cout <<"WORK_VEC: \n";
for(int i = 0; i < work_vec.size(); i++)
cout <<"*\n";
cout <<"\n";
// printing rest_vec structur.
cout <<"REST_VEC: \n";
for(int 1 = 0; i < rest_vec.size(); i++){
cout <<"SC: "<<rest_vec[i].get_left_DNP_num()<<" "<<rest_vec[i].get_right_ DNP_num() ;

39

}

cout<<"\n";

}

cout <<"\n";

// printing error_vec structur.

cout <<"ERROR_VEC: \n";

for(int i = 0; i < error_vec.size(); i++){
cout <<"SC: "<<error_vec[i].get_left_ DNP_num()<<" "<<error_vec[i].get_right_DNP_num();
cout<<"\n";

}

cout <<"\n";

// printing readID_vec structur.

cout <<"ERROR_READID_VEC: \n";

for(int i = 0; i < error_readID_vec.size(); i++){
cout <<"readID: "<<error_readID_vec[i];
cout<<"\n";

}

cout <<"\n";

void ClusterContainer::print(ostream & os) {

// printing left_vec structur.
os <<"LEFT_VEC: \n";
for(int i = 0; i < left_vec.size(); i++){
if (left_vec[i].size() < 1) continue;
o8 <<"rad ¥ << 1 << W;
for(int j = 0; J < left_vec[i].size(); j++)
0s <<"SC: "<<left_vec[i][j].get_left_DNP_num()<<" "<<left_vec[i] [j].get_right_DNP_num()<<"

os <<"\n";
}
os <<"\n";
// printing right_vec structur.
0os <<"RIGHT_VEC: \n";
for(int 1 = 0; i < right_vec.size(); i++){
if (right_vec([i].size() < 1) continue;
08 <<Mrad " << 1 <<": "
for(int j = 0; j < right_vec([i].size(); J++)
08 <<"SCP: "<<right_vec([i][j].get_left DNP_number()<<" "<<right_vec([i][j].get_left_vec_posi

tloni) <& %3

}

os <<"\n";

}

os <<"\n";

// printing work_vec struktur.

os <<"WORK_VEC: \n";

for(int i = 0; i < work_vec.size(); i++)
os <<"*\n";

os <<"\n";

// printing rest_vec structur.

o0s <<"REST_VEC: \n";

for(int 1 = 0; i < rest_vec.size(); i++){
0s <<"SC: "<<rest_vec[i].get_left_DNP_num()<<" "<<rest_vec[i].get_right_DNP_num();
os <<"\n";

}

os <<"\n%;

// printing error_vec structur.

0s <<"ERROR_VEC: \n";

for(int 1 = 0; i < error_vec.size(); i++){
0s <<"SC: "<<error_vec([i].get_left_DNP_num()<<" "<<error_vec[i].get_right_ DNP_num();
os <<"\n";

}

os <<"\n";

// printing readID_vec structur.

0s <<"ERROR_READID_VEC: \n";

for(int i = 0; i < error_readID_vec.size(); i++) {
os <<"readID: "<<error_readID_vec[i];
os <<"\n";

}

os <<"\n";

// This function prints the reads coming from the resulted CONTIG.

40

void ClusterContainer: :print_reads () {
for(int i=0; i < left_vec.size(); i++){
if (left_vec([i] .size() != 0){
cout <<"Reads in SolidCluster on row "<<i<<"\n";
cout <<"The row have "<<left_vec[i].size()<<" SolidCluster \n";
for(int 3j=0; j < left_vec([i].size(); J++){
cout <<"The read in SolidCluster "<<j<<" are follow: \n";
cout <<"DNP number’s are ";
for(int 1=0; 1 < left_vec([i][j].get_num_DNP_nums(); 1++)
cout <<left_vec[i][j].get_DNP_num(l)<<" ";
cout <<"and the\nread numbers are: ";
for(int k=0; k < left_vec[i][]j].get_num_reads(); k++)
cout <<left_vec[i][]].get_read_ID(k)<<",";
cout<<"\n\n";
cout<<"leftmost:"<<endl;
for(int k = 0; k < left_vec[i][]].get_num_reads(); k++)
cout<<left_vec[i] [j] .get_leftmost_DNP_num(k)<<"\t";
cout<<endl;
cout<<"rightmost:"<<endl;
for(int k = 0; k < left_vec[i][]].get_num_reads(); k++)
cout<<left_vec([i] [j] .get_rightmost_DNP_num(k)<<"\t";
cout<<endl;
}
}
}
cont <<"\n";

}

void ClusterContainer: :print_reads(ostream & os) {
for(int i=0; i < left_vec.size(); i++){
if (left_vec([i] .size() != 0){
0s <<"Reads in SolidCluster on row "<<i<<"\n";
08 <<"The row have "<<left_vec[i].size()<<" SolidCluster \n";
for(int j=0; j < left_vec[i].size(); J++){
0s <<"The read in SolidCluster "<<j<<" are follow: \n";
0s <<"DNP number’s are ";
for(int 1=0; 1 < left_vec[i][]j].get_num DNP_nums(); 1l++)
os <<left_vec[i] [Jj].get_DNP_num(l)<<" ";
os <<"and the\nread numbers are: ";
for(int k=0; k < left_vec([i][j].get_num_reads(); k++)
os <<left_vec[i] []j].get_read_ID(k)<<",";
os<<"\n\n";
os<<"leftmost:"<<endl;
for(int k = 0; k < left_vec[i][]J].get_num_reads(); k++) {
os<<left_vec([i] [j].get_leftmost_DNP_num(k)<<\ E";
}
os<<endl;
os<<"rightmost:"<<endl;
for(int k = 0; k < left_vec([i][]J].get_num_reads(); k++) {
os<<left_vec[i] [j].get_rightmost_DNP_num(k)<<"\t";
}

os<<endl;

}
}
08 <<"\nH";

}
// This function prints the reads coming from the resulted SolidCluster.

void ClusterContainer::print_SolidCluster(SolidCluster &s) {
for(int i=0; i < s.get_num DNP_nums(); i++)
cerr<<"SolidCluster resolved : ";
for(int 3=0; Jj < s.get_num_reads(); j++)
cerr<<s.get_read_ID(j)<<",";
cerr<<"\n";
}
}

/* This function erase the ClusterContainer’s inner structurs, the left_vec, the right_vec,
the resolve_vec, the work_vec and the rest_vec. */

41

ff smmmmmmmm—— erase left_vec ————————————————————
while (left_vec.size() > 0){
while(left_vec([0].size() > 0)
left_vec[0] .erase(left_vec[0].begin(), left_vec([0].begin() + 1);
left_vec.erase (left_vec.begin(), left_vec.begin() + 1);

}
/] ———————————— erase right_vec —-—————————————————-
while(right_vec.size () > 0){
while(right_vec[0] .size() > 0)
right_vec[0] .erase(right_vec[0].begin(), right_vec[0].begin() + 1);
right_vec.erase(right_vec.begin(), right_vec.begin() + 1);

// ——————————— erase resolve_veCc ——————————————————
for(int i = 0; i < resolve_vec.size(); i++)
resolve_vec[i] .erase(resolve_vec([i] .begin(), resolve_vec([i].end());
resolve_vec.erase (resolve_vec.begin(), resolve_vec.end());
// ——————————— erase work_vec ————————————————————
while (work_vec.size() > 0)
work_vec.erase (work_vec.begin(), work_vec.begin() + 1);

fif wmmm— erase rest_vec ————————————————————

rest_vec.erase (rest_vec.begin(), rest_vec.end());

fifp m—————— erase errotr Ve€ —————————mmmesmmmee

error_vec.erase (error_vec.begin(), error_vec.end());

e erase readID_vec ———————————————————

error_readID_vec.erase (error_readID_vec.begin(), error_readID_vec.end());

cout<<"= DONE ERASING = =\n";

}
/* This function will give a list/vector with all reads part of the CONTIG/chain on the row. %y

void ClusterContainer::get_reads_in_chain(vector<int> &v) {
for(int i=0; i < left_vec.size(); i++)
if (left_vec([i].size() !'= 0)
for(int 3j=0; j < left_vec[i].size(); Jj++)
for(int k=0; k < left_vec[i] [j].get_num_reads(); k++)
v.push_back (left_vec[i] []].get_read ID(k));
}

void ClusterContainer::print_read_vector(vector<int> &v) const ({
cout<<"Read i CONTIG : ";
for(int i=0; i < v.size(); i++)
cout<yrri] <™, "
cout<<"\n\n";

int ClusterContainer::get_size () {
return left_vec.size();

}

int ClusterContainer::get_num_clusters (int index) {
assert (index < (int)left_vec.size());
return left_vec[index].size();

}

//const SolidCluster& ClusterContainer::get_cluster(int row, int index) {
//assert (row < (int)left_vec.size());

//assert(index < (int)left_vec[row].size());

//return left_vec[row] [index];

//}

SolidCluster ClusterContainer::get_cluster (int row, int index) {
assert (row < (int)left_vec.size());
assert (index < (int)left_vec[row].size());
return left_vec[row] [index];

void ClusterContainer: :set_left_and_rightmost_DNP_nums (int row, int index, int read_index, int
ft, int. right)
{

42

le

assert(row < (int)left_vec.size());
assert (index < (int)left_vec[row].size());
assert (read_index < left_vec[row] [index].get_num_reads());

left_vec([row] [index] .set_leftmost_DNP_num(read_index, left);
left_vec[row] [index] .set_rightmost_DNP_num(read_index, right);

43

I
I
I
I
I
/1
I
I
I
I

i

Location: lennief/¥jobb/

Filename: SolidClusterFosition.h

Zuther: Lennie Fredriksson

Project: X-arbete at Bjdrn Andersson's group.
Eroject name:

Handledare: Erik Arner & Martti T. Tammi
Start date: 2001 10 13

Latest change date: 2001 11 15
Program/Class/File information:

fndef SCLIDCLUSTERFOSITICN H

fdefine SOLIDCLUSTERPOSITION H

i

cl
=

P

[
f=

nclude <vector.h>

ass SolidClusterPosition |

ublic:

SolidClusterPosition(int left num, int left_pos);
int get left DNF number () const;

int get left vec position() const;

rivate:
int left DNP number, left vec position;

ndif

44

/f Liocation: lennief/Xjobb/

// Filename: SolidClusterPosition.cpp

// Buther: Lennie Fredriksson

/{ Project: X-arbete at Bjdrn Andersson's group.
/f Project name:

/{ Handledare: Erik Arner & Martti T. Tammi

// Start date: 2001 10 15

/{ Latest change date: 2001 11 15

/{ Program/Class/File information:

I

finclude "SolidClusterPosition.h"
finclude <iostream.h>
finclude <assert.h>

// kontruktor.
SolidClusterPosition::SolidClusterPosition(int left_num, int
left pos) |

left DNP number = left num;

left vec position = left pos;
}

// returnerar SolidClusterPosition elementeta left vec

po=sition/rad.

int SolidClusterPosition::get left DNP number () const |
return left DNP number;

}

{// returnerar SolidClusterPosition elementets left vec

po=sition/kolumn.

int SolidClusterPosition::get left vec position() const {
return left vec position;

}

45

