UPTEC X 10 014

Examensarbete 30 hp
Juni 2010

SWI-Prolog as a Semantic Web

Tool for semantic querying in
Bioclipse: Integration and performance
benchmarking

Samuel Lampa



Molecular Biotechnology Programme

UPPSALA
UNIVERSITET Uppsala University School of Engineering
UPTEC X 10014 Date of issue 2010-07
Author
Samuel Lampa
Title (English)

SWI-Prolog as a Semantic Web Tool for semantic querying in
Bioclipse: Integration and performance benchmarking

Abstract

The huge amounts of data produced in high-throughput techniques in the life sciences and the
need for integration of heterogeneous data from disparate sources in new fields such as
Systems Biology and translational drug development, require better approaches to data
integration. The semantic web is anticipated to provide solutions through new formats for
knowledge representation and management. Software libraries for semantic web formats are
becoming mature, but there exist multiple tools based on foundationally different technologies.
SWI-Prolog, a tool with semantic web support, was integrated into the Bioclipse bio- and
cheminformatics workbench software and evaluated in terms of performance against non-
Prolog-based semantic web tools in Bioclipse, Jena and Pellet, for querying a data set
consisting of mostly numerical, NMR shift values, in the semantic web format RDF. The
integration has given access to the convenience of the Prolog language for working with
semantic data and defining data management workflows in Bioclipse. The performance
comparison shows that SWI-Prolog is superior in terms of performance over Jena and Pellet
for this specific dataset and suggests Prolog-based tools as interesting for further evaluations.

Keywords
Semantic Web, Prolog, Bioclipse, RDF, SPARQL, NMR shift, Eclipse, Java
Supervisors
Dr. Egon Willighagen
Uppsala University

Scientific reviewer

Prof. Mats Gustafsson

Uppsala University
Project name Sponsors
Language Security

English
Classification
ISSN 1401-2138
Supplementary bibliographical information Pages
37

Biology Education Centre = Biomedical Center =~ Husargatan 3 Uppsala
Box 592 S-75124 Uppsala Tel +46 (0)18 4710000  Fax +46 (0)18 471 4687




SWI-Prolog as a Semantic Web Tool for semantic
querying in Bioclipse: Integration and
performance benchmarking

Samuel Lampa
Sammanfattning

De si kallade livsvetenskaperna stir infér enorma utmaningar betriffande datahantering. Orsaken ar att
det kommit flera nya tekniker inom omradet som producerar enorma mangder data, samt flera nya
imnesoverbryggande forskningsfilt dir man forsdker integrera information frin forskningsfilt med vitt
skilda kulturer och sitt att hantera data. Semantiska webben ir ett koncept som anses kunna hjilpa till att
effektivt mota en del av dessa utmaningar genom smartare sitt att representera och lagra data och
kunskap. Det finns redan flera fullmogna programvaror for semantic web dataformat men det rader en
uppdelning bland verktygen mellan fundamentalt olika grundteknologier. I den hir studien har vi
studerat ett semantic webbverktyg baserat pa logikprogramspraket Prolog mot tvd verktyg baserat pa
programspriket Java. De tva Javabaserade verktygen fanns integrerade i bioinformatikdataprogrammet
Bioclipse och dirfor integrerades aven det Prologbaserade verktyget 1 Bioclipse. Nir detta var gjort
testades prestandan for de tre verktygen genom att utfora en semantisk friga emot ett dataset mestadels
bestiende av numeriska data. Prestandan visade sig vara storst hos det Prologbaserade verktyget for detta
dataset. Integrationen av det Prologbaserade semantic web verktyget har ocksd gett tillging till
kraftfullheten 1 Prolog for att arbeta med semantiska data och definiera arbetsfloden for datahantering 1
Bioclipse.
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1 Introduction

This project is about integrating a Prolog-based semantic web tool into the life science
workbench Bioclipse, and comparing it against other, non-Prolog-based, semantic web
tools available in Bioclipse, in order to highlight differences between these two kinds of
technologies, foremost in terms of performance. For the comparison, a use case is addressed
which is typical to the intended use of Bioclipse, involving data characterized by a relatively
simple structure and with large quantities of similar items, of which most are numerical
values.

The context of the study is thus the semantic web and related technologies, while
the scope is the evaluation of currently available tools for managing semantic data, more
specifically the comparison of a Prolog-based approach with a non-Prolog-based one, as
being integrated in the Bioclipse workbench, and focusing on performance. The focus on
performance is relevant in Bioclipse, since Bioclipse is focused on interactive use rather
than the creation of automated workflows, which is the most typical focus for similar tools
on the market. This will be more explained in the background section.

The appreciation of the relevance of this study requires some background both about
the context of the study and of similar work within the scope of the research question. The
report will therefore start with a discussion of the background that motivates the use of
semantic web technologies in the first place, namely the challenges and need for better data
integration in highly data intensive fields such as systems biology and translational drug
development. Tt will then continue with an overview of earlier comparisons of semantic
web tools, with the tools as independent applications, since no evaluation has previously
been done with the tools integrated into Bioclipse.

Finally, the research question and project aims specific to this study will be presented,
followed by the results section, which describes the integration of SWI-Prolog in Bioclipse
and the results from the performance evaluations against other semantic web tools. The
results section is followed by the discussion and conclusion sections.



2 Background

This section will cover the theory behind the semantic web and related technologies and
the data integration challenges in the life sciences which motivate the use of semantic web
technologies in the life sciences in the first place. The scope of the study will then be
presented and finally the research question and project aims.

2.1 Data integration — a challenge for the life sciences

Data integration is a topic of increasing focus in the life sciences and bioinformatics com-
munities. It is crucial to the success of new fields such as systems biology and translational
drug development which rely on data and knowledge from diverse fields within molecular
biology and biochemistry for its operation [1].

Data integration can mean many things in terms of practical scenarios, so let’s consider
a concrete scenario as an example. One of the “grand visions” for the semantic web is to
be able to perform queries that automatically use multiple information sources to give the
answer [2]. An example scenario of this kind, is the following (adapted from [2]): One
might start with a set of yeast two hybrid protein-protein interactions, or list of highly
interacting proteins, and then use this list to query the Entrez gene database [3] for the
related gene names, resulting in a list of gene names. After the list of gene names is
received, the Ensembl database [4] might be used for converting these to exon coordinates,
which can in turn be checked for conservation scores using a tool such as UCSC Genome
browser [5], with the list of genes annotated with conservation scores as result [2]. The
automation of this kind of queries might serve as a foundation for thinking practically
about the data integration challenges discussed next.

Many fields of the life sciences are today meeting exceptional challenges related to data
integration. Challenges arise from the increasingly huge amounts of data produced [6]
but even more from the heterogeneity of the data [7,8]. The vast data amounts stem
in part from the increasing use of high-throughput techniques such as DNA micro-array
experiments and next generation sequencing [9]. The current pace of data production is
so fast that scientists can no longer analyze the data in the same pace as new data is
pouring in [10], which actualizes the need for better approaches to automated knowledge
management and integration. For example, in order to keep up with the pace and annotate
all new data pouring in, it might be needed to perform thousands of the kind of queries in
the example scenario above, each day, or hour. This easily creates an untenable situations
if the queries can not be executed automatically.

The heterogeneity of data in the life sciences can be exemplified with the highly varying
nature of the entities described, including sequences, genes, proteins, pathways and drugs,
all with intrinsically different means of representation. Adding to the challenges is that
a variety of formats and standards often exist even for the same type of data, not to
mention custom lay-outed spreadsheets or word processor documents completely lacking a
formalized representation. In the example scenario, one can understand that the software
that should automate it, needs to precisely understand all the different data formats used



to describe the different entities involved, and be able to convert between them. And as
soon as an additional data source is to be added, the software needs be adapted to take
care of the intricacies specific to the new data source.

The data integration issues in the life sciences have already been addressed by a num-
ber of approaches. FExamples include standardizations of experiment procedures, data
exchange formats [11] and terminology, as well as wiki systems for community collabora-
tion on integrated data sources [12]. Standardization of the data producing processes and
the expression of the knowledge and data is vital [8] since it enables treating data from
different sources in a uniform way. Standardization efforts in the life sciences have focused
on applications such as protocols for describing biological experiments, XML-based data
exchange formats and not the least the increasing adoption of bio-ontologies [6], which
support knowledge integration by standardization of the terminology within a specific do-
main and its corresponding meaning. Wiki systems allow collaboration on data curation
by many people on the same data, typically through the world wide web. This can make
it realistic to create large integrated data sources manually.

While these efforts have facilitated data integration by increasing interoperability of
data and allowing large scale collaboration efforts, they are still far from enabling full
automation of data integration, for example so that the automation of the example scenario
in the beginning of this section could be realized. Integration has still required detailed
knowledge of the schema (a formalized description of the data structure) of each data
source and the construction of mappings between the schemas for the source databases
and the schema used for presentation, for example [13]. This situation is expected to
come to a change with the advent of the semantic web, in part since the semantic web
technologies remove the need for a fixed schema for each data source, as will be discussed
in the next section. This dramatically lessens the need for cooperation between data
providers for integration to happen [2] and thus removes a large barrier to automation of
data integration.

The kind of information integration happening in the example scenario above, also
stresses the demands for high performance in each of the steps, because, since it is typically
organized more or less in a series, any delays in any of these steps will ultimately increase
the total time for answering a query, due to the lack of parallelization. If the query is
part of an interactive workflow, where the user is waiting for the results of a query before
he/she can proceed with the next step, the demands become even more urgent, as will be
discussed in more detail in subsubsection 2.3.1. This is the background for the focus on
performance in this study, since the tools studied are indeed supposed to play a part in
such interactive workflows.

2.2 The semantic web

The semantic web is an ongoing effort to alleviate integration of disparate data sources
on the web through development of standards, formats and ontologies that enable better
machine readability and hence more automation and computational assistance in data
integration [14]. The concept of a “semantic web” was originally envisioned by Sir Tim
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<http://saml.rilspace.com/> <http://purl.org/dc/elements/1.1/title> "Samuel’s Project Blog" .
<http://saml.rilspace.com/> <http://www.example.org/owner> "Samuel Lampa" .

Samuel’s Project Blog

http://purl.ocrg/dc/elements/1.1/title

http://www.example.org/owner

Samuel Lampa

Figure 1: A simple example of an RDF graph, in N-triples format above and graphically
represented below.

Berners-Lee [15], inventor of the World Wide Web and currently the director of the World
Wide Web Consortium (W3C) which is the organization that develops the standards and
technologies for the semantic web, among many other things.

The semantic web technologies are not the only ones that have been addressing the
data integration challenges in the life sciences, but they have been described as the cur-
rently most promising ones [6,8,16] and the only approach able to integrate large amounts
of highly heterogeneous data with a reasonable effort, thus making it appropriate for
widespread use [17,18]. With this background, it might not come as a surprise that the
bioinformatics community has been early adopters of semantic web technologies [19] and
that they are now finding their way into many life science fields [6]. The way semantic
web technologies address data integration challenges will be discussed in more detail in
subsubsection 2.2.1 below.

2.2.1 RDF

At the core of the semantic web is a technology called RDF, “Resource Description Frame-
work” [20] which is a system for expressing knowledge about things, or resources by identi-
fying each resource with a URI or “Unique Resource Identifier” and by defining relationships
between resources and/or explicit data values. Relationships are described by triplets of
URIs where the middle URI functions as a predicate, defining the type of relationship be-
tween the other two URIs, which are referred to as subject and object respectively. By
connecting together resources, an RDF graph is formed, which is a network of intercon-
nected nodes, represented by the URIs.

Since predicates are also identified with unique identifiers, they can be standardized
and linked to a definition of a specified meaning. Such definitions are typically expressed
in ontologies, or vocabularies. It is recommended to use already existing, standardized
predicates as much as possible, as this will increase interoperability of data.

A notable feature of the triple model is that it removes the need for a separate schema
for each data source by instead including the typing information in the data itself, some-
thing which has large consequences for data integration, by taking away the need for time



@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix ex: <http://www.example.org/> .

<http://saml.rilspace.com/> dc:title "Samuel’s Project Blog";
ex:owner "Samuel Lampa"

Figure 2: The RDF in Figure 1 shown in Notation 3 format.

consuming cooperation between data providers in order to enable large scale automation
of data integration |2].

The main format for storing RDF is and XML-format called RDF/XML. RDF /XML
is not very easy to type or read though, and is not intended as a format for manipulating
directly as a notation format. Instead, it is used as stable storage format by software, which
can take advantage of the XML representation by using existing XML parsing libraries for
managing the data.

For the purpose of manipulating RDF directly, there exists multiple notation formats.
One of the most widely used one is Notation 3 [21] (see Figure 2). Other common formats
are N-Triples (see Figure 1) and Turtle [22] where N-triples is a subset of Turtle and Turtle
is a subset of Notation 3 [23].

2.2.2 RDF Schema (RDFS)

While RDF provides a system for defining properties and relationships between entities,
it provides no mechanism for describing these properties and relations [24]. In order to
describe the meaning of properties and relations, vocabularies have to be introduced that
connect properties and relations with a defined meaning. It is not realistic though to collect
all possible semantics in one single vocabulary. Instead, the W3C provides a “language for
expressing vocabularies” that allows the creation of specialized vocabularies and ontologies
within all kinds of fields as complements to more general standardized vocabularies. This
language for describing vocabularies is called RDFS or “Resource Description Framework
Schema” [24] and contains predicates such as subClassOf, type, and isDefined By which can
be used to define vocabularies.

We have mentioned ontologies, and RDFS can also be seen as a minimal ontology
description language [25]. It serves partly the same role as ontology languages such as OWL
(described in the next section) while not being as comprehensive. The terms “ontology”
and “vocabulary” have some overlap in their use [26].

2.2.3 Web Ontology Language (OWL)

For the construction of advanced ontologies, e.g. for precisely defining the meaning of med-
ical terms and how they relate to each other, the semantics of RDFS is not enough. In fact,
the expressivity of RDF and RDF Schema is deliberately very limited [27|. Instead OWL,
or “Web Ontology Language”, was created for defining ontologies of arbitrary complexity.



@prefix : <http://www.example.com>
@prefix people: <http://www.example.com/people#>

SELECT ?grandson WHERE {
people:grandpa :hasSon 7son .
?son :hasSon 7grandson .

}

Figure 3: SPARQL example of a query for the grandson of a person. The query will look
up any item that has the hasSon relationship with grandpa. Then it will consequently
look up the item that has the hasSon relationship to that person. This last one will then
be the grandson of grandpa.

OWL has powerful features for expressing semantics by the use of logical operations such
as union, disjoininess etc.

OWL is available in three versions; OWL-Lite, OWL-DL and OWL-Full, with increasing
degree of expressivity. This is because with increasing expressivity it is harder to create
tools that provide full support for a language [27]. OWL-Lite is created to enable most
tool-makers to fully support at least a basic level of OWL, while OWL-DL is the language
with enough expressivity for most ontology building tasks. DL stands for “Description
Logics”. The most expressivity is provided by OWL-Full but it is assumed that no tool
will be able to completely support OWL-Full [27].

2.2.4 SPARQL

SPARQL [28] is the W3C recommended language for querying of RDF data, or “RDF
graphs”. It is much like SQL, the query language for relational databases, but for querying
RDF graphs instead of database structures. In SPARQL, one expresses an RDF graph
pattern which includes variables that should be bound, indicated with a question mark,
“?”. A query for the grandson of a person could look like the SPARQL code shown in
Figure 3. This code shows how one can select for a grandson even though there is no
explicit hasSon predicate, by instead constructing a query that uses the hasSon two times
in combination.

2.2.5 Reasoning

The semantic web way of storing knowledge, enables letting computers do more high-level
knowledge processing tasks In addition to allowing integration and data querying, especially
when using an expressive language such as OWL. One example is drawing conclusions that
are not explicitly stated as facts but require several pieces of knowledge to be combined
i.e. making implicit knowledge explicit [29].

A typical example where there exists implicit knowledge that could made explicit is the
following three facts: (i) Isac is the son of Abraham, (i) Jacob is the son of Isac and (iii)
the son of someones son is that persons grandson. An implicit fact based on this knowledge,
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is that Jacob is the grandson of Abraham, and this is something that a computer program,
or so called reasoner, can infer. This example is similar to the SPARQL query in Figure 3,
with the difference that the SPARQL query does not produce a new RDF triple, it only
returns the item that conforms to the query pattern. The process of performing this kind
of higher-level knowledge processing is often called “reasoning” and software that performs
it are referred to as “reasoners”.

There are different approaches to reasoning and the expression of knowledge that can be
used for reasoning. The main approach for reasoning within the W3C recommended stan-
dards is so called “Description Logics” supported by OWL-DL, which provides means to
describe relationships between classes and instances, by using logical constructors. Exam-
ples of typical such constructors are disjointness, cardinality and transitivity. An OWL-DL
reasoner typically allows operations such as wvalidation, which is about checking that all
expressed knowledge in a knowledge base are logically consistent with each other, classi-
fication, which is to assign a class membership to an entity, based on a class description
expressed in OWL, and finally realization, which is to create instances, based on a class
description. [30]

2.2.6 Rule languages

Not everything is possible [31] or easy [25] to represent using description logics and OWL-
DL though. Because of this there are also other approaches to inference and reasoning, most
notably different rule-based formalisms. Rule-based systems have long been appreciated
to be the best available means for representing the knowledge of human experts |32].

Rule-based formalisms typically work by specifying a pattern of facts and/or relations
that should be satisfied in order for a certain so called “goal” statement to be true. Rules
are in other words a way to express conditional knowledge.

Since there are already a number of different rule-based formalisms, including logic
programming languages such as Prolog, which will be discussed below, higher-order logics,
production systems etc [25], W3C has chosen not to endorse any specific rules language but
instead to provide the “Rule Interchange Format” (RIF), developed by the RIF working
group [33]. Some W3C members are also developing SWRL [34], which is a rule language
compatible with the other W3C recommended standards for Semantic Web data, having
the status of a “member submission”, i.e. it is not endorsed by W3C.

2.3 Tools for managing semantic data

This section will give the background for the scope of the current study, which is to study a
Prolog-based tool for dealing with semantic web data and compare it to other, non-Prolog-
based tools available in the Bioclipse workbench. This overview will cover comparisons
of the tools as independent applications, since no previous study have compared them as
integrated into Bioclipse.



2.3.1 Importance of performance of tools in Bioclipse

This study focuses on the performance of studied tools. Performance is of special impor-
tance in Bioclipse since it is focused on interactive use in contrast to some other related
software such as Taverna, which is more focused on the creation of automated workflows.
When using tools in an interactive fashion, response times are important. For example
there are three typical time limits known [35] that has to be considered for avoiding dif-
ferent types of distractions in the workflow of a user: 0.1 seconds for making the user feel
that things are happening instantaneously, 1 second for not interrupting the user’s flow of
thought, and 10 seconds for keeping the user’s attention to a dialog. Depending on the
type of task, one of these limits might be important to keep. An example policy could
be that, updating information about the currently selected item in a list while scrolling,
should not take more than 0.1 seconds, the most common data retrievement tasks should
not take more than 1 seconds, and no query that is not seen as a batch operation that is
not expected to be monitored by the user, should exceed 10 seconds etc |35].

2.3.2 Non-Prolog-based tools

The Semantic web field is maturing and mature tools, both proprietary and open-source,
are starting to be available. Among reasoners, the most widely used ones include FaCT,
FaCT++ [36], Pellet [30], Racer [37], RacerPRO [38], KAON2 [39] and Vampire [40].
Among more general RDF tools, the Jena RDF framework [41,42] is a popular one, built
in Java and open source.

An open source software for the life sciences with support for semantic web formats
is the Bioclipse workbench. The aim of Bioclipse is integration of data and tools in a
desktop application that is easy to use for scientists without extensive computer knowledge.
Bioclipse supports the semantic web formats recommended by W3C by incorporating two
mature and popular tools with somewhat complementary functionality; Jena and Pellet.
Jena [41, 42] implements an RDF API, ability to read and write RDF in RDF/XML,
Notation 3 and N-Triples formats and a SPARQL query engine [41] as well as RDF data
stores, both for in-memory and disk-based storage. Pellet is a reasoner for the OWL-DL
language [30] that can operate on RDF stores created in Jena. Pellet supports SPARQL
querying and even though it is focused against OWL-DL queries it supports general RDF
querying too via Jena. These tools, integrated into Bioclipse, have been applied to use
cases in the life sciences before, for the purpose of demonstration [43].

A key difference of these semantic web tools as compared to Prolog-based ones, is that,
by reflecting W3Cs partitioning of data formats into separate ones for storage, querying
and inference, these tools are also almost always separated into modules directed at one of
these formats at a time.

2.3.3 Prolog

Prolog is a popular general purpose logic programming language first released in 1972 [44],
which uses rules as a means of expressing conditional knowledge. A typical Prolog rule,
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5 == Some facts ==

has h bond donors( substanceX, 3 ).
has_h bond donors( substanceY, 5 ).
has_h bond donors( substanceZ, 7 ).

has h_ bond acceptors( substanceX, 7 ).
has h bond acceptors( substanceY , 10 ).
has h bond acceptors( substanceZ , 13 ).

has molecular weight( substanceX, 320 ).
has molecular weight( substanceY, 500 ).
has molecular weight( substanceZ , 500 ).

% —— A Rule ("Rule of five" ala Prolog) —
is_drug like( Substance ) :—
has_h bond donors( Substance, HBDonors ),
HBDonors <= 5,
has h bond acceptors( Substance, HBAcceptors ),
HBAcceptors <= 10,
has molecular weight( Substance, MW ),
MW < 500.

Figure 4: Example Prolog knowledge base, containing a number of facts (lines 2-12) and
a rule (lines 15-21), consisting of a head (line 15), including the implication marker (*:-)
and a body (line 16-12). Variables start with a capital letter, while atoms (“constants”)
start with a lower-case letter. Commas denote conjunction (logical AND). Lines starting
with a '%’ character are comments.

like the one in Figure 4, consists of a head and a body, of which the semantics can be
expressed as “if [body|, then [head]”, or equivalently; “To show |head|, show [body|”. The
body can consist of multiple predicates which can be either simple facts, or refer to still
other rules. The statements in the body can be combined together with comma characters
which means logical “AND”. Such a Prolog rule can be queried from inside Prolog in the
way demonstrated in Figure 5.

Prolog allows carrying out RDF storage, querying and inference all within the same
environment, which is not typically the case for conventional semantic web tools, where
the storage and querying are often carried out in separate modules or applications. This
unified environment in Prolog enables a more efficient execution of many tasks in Prolog
than with conventional programming tools [45] by taking advantage of the reduced number
of technological layers.

This study is focused on the performance for executing typical semantic data queries.
Prolog is interesting in this regard, since, compared with traditional software, Prolog and
prolog-based software have some uniquely attractive features that are very interesting
when dealing with semantic data, and which have consequences for performance. Firstly,
through the semweb package of the SWI-Prolog Prolog distribution, semantic data can
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1 % == Querying the Rule ==

2 7— is _drug like( substanceX )
3 true.

4 7— is_drug like( X )

5 X = substanceX ;

6 X = substanceY .

Figure 5: Example of querying the Prolog rule in Figure 4, by sending an existing atom
as input parameter (line 2), and by sending a variable (denoted with a capital first letter)
as input parameter (line 4), which returns two results that satisfy the pattern (lines 5 and
6). Lines starting with a "%’ character are comments.

be dealt with directly at the syntax of the Prolog language [46]. This is in contrast to
conventional languages such as Java, where one has to explicitly program algorithms that
can deal with the semantics — there is no way to deal with it directly in the Java language
itself. This of course requires much more development time if starting from scratch with
no previous Java code. And even if using preexisting Java code software than can deal
with semantic data, the additional layer (of algorithms) above the Java language itself,
can reasonably be anticipated to result in more complexity and thus slower programs in
general. This is an underlying hypothesis in this study, which concentrates mainly on the
execution speed of Prolog-based versus non-Prolog-based software, when applied to the
same data and the same task.

The main disadvantages of Prolog and Prolog-based software, have been identified as
the lack of easy-to-use resources for dealing with web protocols and documents and the
limited availability of skilled Prolog programmers [46]. The former has been addressed,
with the development of the semweb package for SWI-Prolog.

It should be mentioned that Prolog offers some unique characteristics compared to non-
Prolog-based tools, that are important to take into account when using them. One such
is the closed world assumption, as opposed to the open world assumption taken by most
non-Prolog-based semantic web tools. A tool taking the closed world assumption basically
assumes that it has all knowledge, with the consequence that it if can not prove the validity
of a certain fact, it concludes that this fact is wrong. Under the open world assumption,
it would instead only have concluded that it does not know whether the fact is true or
wrong [30]. This is a problem for implementing semantic web applications in Prolog, since
it effectively causes incompatibility with other semantic web tools, which support the W3C
format /technology stack, which take the open world assumption [47].

A search on Google scholar [48] reveals numerous applications of life science use cases for
Prolog. There are, however, not many reported that take the semantic web approach. One
example is a Prolog-based toolkit developed for bioinformatics tasks [49], named BLIPKIT
for “Biological Loglc Programming toolKIT”. Blipkit builds upon the semweb package in
SWI-Prolog and is available at http://www.blipkit.org.
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2.4 Research question and project aims

Based on the limited experience of using Prolog for semantic web based approaches in
the life sciences, and with using Prolog as an integrated part of a workbench system like
Bioclipse in particular, it was decided to integrate SWI-Prolog into Bioclipse and evaluate
it against life science use cases comparing it with the already available semantic web tools
in Bioclipse. Furthermore, since most previous Prolog/semantic web use cases focus on
discrete types of data, while the life sciences often uses highly quantitative, numerical data,
the use case was chosen as to contain numerical data.

The research question for the project is formulated as follows:

“How do biochemical questions formulated as Prolog queries compare to other solutions
available in Bioclipse in terms of speed?”
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3 Methods

In this section, the methods used in this study to answer the research question will be
presented. The methods include open standards, open source software and open data, as
well as the procedure used in the performance tests in the study.

3.1 Used Open Standards

The main semantic web standard used was RDF, “Resource Description Framework” [20],
which is the foundational language for data and knowledge on the semantic web, provided
and recommended by the World Wide Web Consortium (W3C). Therefore, all data used
in this study was made available in the RDF format, specifically in RDF /XML, which is
an XML serialization of RDF graphs.

A second standard used is SPARQL, the W3C recommended language for querying
of RDF data, or “RDF graphs”. It has many similarities with SQL, while it describes
RDF graph patterns instead of database schema patterns, and uses common bounding
variables instead of the join keyword in SQL, for merging of sub graphs/tables. SPARQL
is supported by Jena and Pellet, and was used for RDF querying in these tools in this
study [28].

3.2 Used Open Source software

Bioclipse |50] is a free and Open Source workbench for the life sciences, and was used as
the framework in which the evaluated tools were integrated and the querying experiments
performed. The Bioclipse version used in this study was 2.2.0.RC2.

Bioclipse is based on Eclipse [51] which is mostly known as a software development
platform, but today it is a highly modular framework that can be extended in many
directions, and is today used by many software vendors as a foundation for derivative end
products and software development platforms. On top of Eclipses modular framework
Bioclipse adds a modular system for integration of existing software through so called
managers, which expose the software’s functionality into the graphical user interface (GUI),
as demonstrated by the screen-shot in Figure 6. Bioclipse additionally provides a Javascript
based scripting environment into which managers expose functionality [52]. The scripting
environment was utilized for the software evaluations in this study.

Bioclipse is designed for easy integration of existing software. Some kinds of integration,
such as via command line is trivial while more programmatic integration can be eased with
the help of a recently developed plug-in SDK (Software Development Kit) wizard, which
guides the developer through a set of choices and automatically creates all the required file
structure to let the developer start adding code to a plug-in [53]. The SDK was used for
creating the SWI-Prolog integration plug-in used in this study.

Jena [41,42] is a semantic web framework for Java that was already available in Bioclipse
where it accounts for most of the RDF related functionality. Since Jena is an established
and readily available RDF framework developed in a conventional programming language,
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Figure 6: A Screenshot of the Bioclipse workbench. Here the JMol 3D structure viewer
is open in the graphical user interface and used to visualize the 3D structure of a piece of
DNA (the double-helical formed structure) and a DNA-binding protein.

it was chosen for evaluation in this study against the technically quite different SWI-Prolog,
for querying RDF data. The version used was 2.6.2.

Jena provides an RDF API, ability to read and write RDF in RDF/XML, Notation
3 and N-Triples formats and a SPARQL query engine [41|. Jena provides both one in-
memory, and two types of persistent RDF storage. The SDB storage engine utilizes a
mySQL database for the storage, while the TDB storage is a specialized store, and has
in general better performance than SDB [54]. In this study, the in-memory store and the
TDB disk-based store were used in the evaluations.

The Bioclipse manager methods used in this study, of which the functionality is provided
by Jena, are the following:

o rdf.createStore() — Creates a new (in-memory) RDF store. This method was used to
create in-memory RDF stores for performance testing Jena.

e rdf.importFile( IRDFStore store, String target, String format ) — Loads an RDF file
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in the given content format (“RDF/XML” “N-TRIPLE”, “TURTLE” and “Notation
3”) into the given store. This method was used to load RDF in RDF /XML format
into an RDF Store.

e rdf.sparql( IRDFStore store, String query ) — Returns the results matching the SPARQL
query. This method was used for executing the SPARQL code used for performance
testing of Jena.

Pellet [30] is an Open Source reasoner for the OWL-DL language written in Java and
available in Bioclipse prior to this study. Pellet can operate on RDF stores (in-memory
or disk-based ones) of the Jena RDF framework. Pellet supports SPARQL querying, and
even though it is focused against OWL-DL queries, it also supports general RDF querying
via Jena. Therefore it was included in the RDF querying evaluations in this study.

The Bioclipse manager methods used in this study, of which the functionality is provided
by Pellet, are the following:

e pellet.createStore( String tripleStoreDirectoryPath ) — Creates a new scalable Pellet-
targeted store, (using the Jena TDB package, which stores on disk as a complement
to memory, for scalability). The tripleStoreDirectoryPath is the path (relative to the
Bioclipse workspace) to a folder to use for the triple store. This method was used
for creating the disk-based stores for use with Pellet and Jena.

e pellet.reason(IRDFStore store, String query) — Returns the results matching the
SPARQL query using the Pellet reasoner. This method was used for executing
SPARQL code for performance testing of Pellet.

SWI-Prolog |55, 56] is an open source Prolog environment with mature support for
handling RDF data at the triple level [57]. SWI-Prolog also provides a Java programming
level APT for easy integration of the Prolog engine in Java programs. The mature RDF
support and the Java APl made SWI-Prolog the Prolog environment of choice for integra-
tion in Bioclipse for evaluation against the already available RDF tools. The version of
SWI-Prolog used in this study was 5.7.15.

3.3 Used Open Data

NMRShiftDB [58,59] is a free community built web database (available at http://www.
nmrshiftdb.org) for organic chemical structures and their corresponding NMR data. As
of September, 2009, NMRShiftDB contained 25712 searchable spectra.

An example 3C NMR spectrum can be seen in Figure 7 which shows the 3C NMR
spectrum itself above and the corresponding molecule below, where each magnetically
unique carbon atom in the molecule corresponds to one peak in the spectrum.

An RDF-ized version of the NMRShiftDB data was used in this study, but with empty
NMR shift value nodes filled with zeros, to avoid errors in Jena, and by substituting
a custom type definition, nmr:ppm, which was not properly recognized by Jena, with
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Figure 7: An example of a 3C NMR Spectrum, showing the corresponding molecule
below. Each carbon atom in the molecule corresponds to one peak in the spectrum. Each
peak has an intensity (peak height) and a shift value (horizontal placement), which is a
relative value (relative to a standard sample) and is measured in ppm.

http://www.w3.0org/2001/XMLSchema#decimal, taking into account also that prefixes do
not work for data type definitions.

A histogram showing the distribution of shift values in the full data set can be seen in
Figure 8. As can be seen, the largest values have few other values close to them.

The resulting data describes molecules connected to '3C NMR spectra, which each
contains a number of peaks, each of which has a shift value. Peaks in fact have both
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Figure 8: Normalized histogram of NMR peak shift values in the biggest data set, contain-
ing 25000 spectrum, or over 1 million peak shift values. The histogram shows only values
up to 300 ppm, and excludes 75 peaks, with values between 300 and 578.3 ppm.

intensity (peak height) and shift (peak placement) but in this study we are only looking
at the shift values it is common use for *C spectra to assume that the shift values contain
enough information to discriminate between spectra, and therefore to omit intensity values
[59]. Intensity could easily be included if wanted, in the same way as the shift values are
included [60]. An extract of the final data, in Notation 3 format, can be seen in Figure 9
where a spectrum and three of its peaks with their corresponding shift and intensity values
have been included for demonstration.

Five differently sized data sets were created by copying the data set into five copies
and truncating to different sizes, containing 5000, 10000, 15000, 20000 and 25000 spectra
each. The full RDF-ized dataset, which was using data retrieved from NMRShiftDB in
September 2009, contained 25712 spectra, but it was chosen to stop at 25000 to get a
consistent distance between the data points.

17



@prefix : <http://www.nmrshiftdb.org/onto#> .
xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://pele.farmbio.uu.se/nmrshiftdb/?moleculeld=234>
:hasSpectrum <http://pele.farmbio.uu.se/nmrshiftdb/?spectrumId=4735>;
:moleculeld "234".

<http://pele.farmbio.uu.se/nmrshiftdb/?spectrumId=4735>
:hasPeak <http://pele.farmbio.uu.se/nmrshiftdb/?s4735p0>,
<http://pele.farmbio.uu.se/nmrshiftdb/7s4735p1>,
<http://pele.farmbio.uu.se/nmrshiftdb/7s4735p2>,

<http://pele.farmbio.uu.se/nmrshiftdb/7s4735p0> a :peak;
:hasShift "17.6"~"xsd:decimal .

<http://pele.farmbio.uu.se/nmrshiftdb/?s4735p1> a :peak;
:hasShift "18.3""~"xsd:decimal .

<http://pele.farmbio.uu.se/nmrshiftdb/7s4735p2> a :peak;

:hasShift "22.6"""xsd:decimal .

Figure 9: Example of RDF-ized data from NMRShiftDB, in Notation 3 format. The ’a’
keyword is a shortcut for the ’rdf:type’ predicate

3.4 Performance comparison

As a biochemical use case for comparing the performance of Jena vs Pellet vs SWI-Prolog
we used the RDF-ized *C NMR Spectrum data from NMRShiftDB to do a simple “de-
replication” of spectra as described in [59]. That is, given a reference spectrum, represented
as a list of shift values, search for spectra with the same shifts but allowing variation within
a limit. This limit was chosen to 3 ppm, as it has been reported that the uncertainty of
shift values typically is within 2-3 ppm. [61].

The Prolog query for the use case can be seen as an NMR Spectrum similarity search.
This search query was programmed in Prolog. The Prolog code for this can be found in
Figure 17, and is also available as a Bioclipse script on myExperiment [62| as workflow
1271.

A SPARQL Query for the same task was also constructed, and can be found in Figure 16
and is also available as a Bioclipse scripts on myExperiment [62| as workflow 1268, 1269
and 1270, for Jena with in-memory RDF store, TDB store and for Pellet, respectively.
A notable difference between the Prolog program and the SPARQL query is that while
the Prolog program takes the list of shift values representing the reference spectrum as a
parameter, the SPARQL query requires the values to be hard coded in the SPARQL query.

Finally another Prolog implementation of the query was made, that mimicked the
structure of the above mentioned SPARQL query as closely as possible. For example, the
values to search for were hard coded in the Prolog code instead of taken from an input
variable. This Prolog query can be found in Figure 18, and is also available as a Bioclipse
script on myExperiment [62] as workflow 1272.
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For the performance comparison, the Prolog code in Figures 17 and Figure 18 were
executed in SWI-Prolog, and the SPARQL query in Figure 16 was executed in Jena and
Pellet. Each run was performed by scripting the loading of RDF data and measurement of
execution time of the actual queries in Bioclipse scripts. The timing was done only for the
querying phase, excluding the RDF loading phase, by storing and comparing timestamps
in the Bioclipse scripting environment.

Three iterations were performed for each specific size of the data sets. Bioclipse was
restarted after each run in order to avoid memory and/or caching related bias. The
Java Virtual Machine start up parameters for memory usage were changed in the Eclipse
.product file as follows.

e Maximum heap size, -Xmx was changed from 512M to 1196M.

e Maximum permanent memory used, -XX:MaxPermSize= was changed from 128M to
512M.

All performance tests were performed on an Asus UL30A laptop, with the following
specifications:

e CPU: 1.3GHz Intel Core 2 Duo SU7300 (Dual core)
e RAM: 4 Gb, SO-DIMM DDR3
e Hard drive: 5400 RPM, 500 Gb

e Operating system: 32 bit Ubuntu 9.10 desktop edition.

During the tests, the CPU clocking frequency was locked to the maximum, 1.3 GHz,
in Ubuntu’s power management console, to avoid CPU speed changes due to power saving
options.

3.5 MyExperiment website

The MyExperiment website [62] was used to publish Bioclipse scripts demonstrating the
usage of the SWI-Prolog integration plug in, as well as for doing the performance compar-
isons. The uploaded scripts are listed below:

e NMR Spectrum similarity search with SWI-Prolog in Bioclipse (http://www.myexperiment.
org/workflows/1116)

e NMR Spectrum similarity search benchmark for Jena with in-memory RDF store
(http://www.myexperiment.org/workflows/1268)

e NMR Spectrum similarity search benchmark for Jena with TDB RDF store (http:
//www .myexperiment .org/workflows/1269)
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e NMR Spectrum similarity search benchmark for Pellet with TDB RDF store (http:
//www .myexperiment .org/workflows/1270)

e NMR Spectrum similarity search benchmark for SWI-Prolog (http://www.myexperiment .
org/workflows/1271)

e NMR Spectrum similarity search benchmark for SWI-Prolog, minimal version (http:
//www.myexperiment .org/workflows/1272)
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4 Results

The research question for this study was “How do biochemical questions formulated as
Prolog queries compare to other solutions available in Bioclipse in terms of speed?”. The
comparison of a Prolog-based approach to querying semantic web data, against non-Prolog-
based ones, required the integration of a Prolog environment into Bioclipse, which was
therefore part of the results of the study. This section will therefore first present the
integration of SWI-Prolog, together with some examples that demonstrate the way SWI-
Prolog can be used for working with semantic web data in Bioclipse. To answer the
research question, a performance comparison of SWI-Prolog against Jena and Pellet was
also performed as described in the methods section, and the results from this comparison
will also be presented here in this section.

4.1 Implementation of research methods

In order to fairly compare SWI-Prolog with other RDF tools in Bioclipse, SWI-Prolog was
integrated into Bioclipse. The integration constituted a considerable part of the project
time. The integration was done using the JPL Java Prolog API which provides classes and
methods for constructing Prolog atoms and queries, as well as a Prolog library which is
used to connect to a Prolog engine [63].

Convenience methods were developed and made available to the scripting environment
in Bioclipse, including methods for loading RDF data into Prolog, for loading Prolog code
from inside the scripting environment, and for performing execution of query-like Prolog
predicates that populate one or more variables and returns the result as an array. See
Figure 10 for an example of the SWI-Prolog plug-in in action inside Bioclipse, just having
returned the results of a query to the console in the bottom of the picture. A full list of

swipl.getActualArgs() Prints the arguments that the current Prolog en-
gine was called with. Used for error tracking

swipl.init() Initialize the Prolog engine (loads SWI-Prolog
modules) etc.

swipl.loadPrologCode( String prologCode ) Loads Prolog code, as stored in the prologCode
variable, into the Prolog engine

swipl.loadPrologFile( String filepath ) Loads a file with Prolog code

swipl. loadRDFFromFile( String rdfFile ) Invokes loading of an rdfFile into Prolog. Makes

use of SWI-Prologs semweb package

swipl.printLibPath() Prints the value of java.library.path

swipl.queryProlog( String|[] prologFunction | Takes an array of strings; 1: The Prolog func-
resultLimit prologArguments ) tion, 2: Max no. of results, and the rest being
arguments passed to the Prolog function

swipl.queryRDF( String Subject, String Prolog, | Executes a Prolog query and prints all solutions
String Object )

Table 1: Bioclipse manager methods of the SWI-Prolog integration plug-in.
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Figure 10: A Screenshot of the Bioclipse workbench running the integrated SWI-Prolog
engine. In the top right window, a Bioclipse script is open for editing, which contains
Prolog code, and Javascript code for performing comparison tests of SWI-Prolog. In the
lower right window, the result from running the query is shown; a spectrum URI, together
with the timing results for the execution.

the manager methods in the SWI-Prolog integration plug-in can be found in Table 1.

The swipl.loadRDFFromFile( rdfFile ) manager method allows loading of RDF data
from a file in the Bioclipse workspace. The swipl.loadPrologFile( prologFile ) manager
method allows loading Prolog code from a file while swipl.loadPrologCode( prologCode )
manager method allows loading from the scripting environment - that is, for example
code stored in a variable. Thus one can store Prolog code along with the main Bioclipse
Javascript code, enabling to keep a complete Bioclipse work flow definition in one single file.
This way of storing Prolog code embedded in the scripting environment is demonstrated in
the Bioclipse script in Figure 11. In this example, the Prolog code is loaded in two sessions.
First, RDF name spaces are registered, then some RDF data is loaded into Prolog where
after a convenience Prolog predicate is loaded, which is subsequently queried to retrieve
RDF data for peaks with shifts equaling 42.2 ppm in this case.
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// Namespaces have to be registered before loading RDF data
swipl.loadPrologCode ("

:- rdf_register_ns(nmr, ’http://www.nmrshiftdb.org/onto#’).

:- rdf_register_ns(xsd, ’http://www.w3.org/2001/XMLSchema#’) . ")

// Load RDF Data
swipl.loadRDFToProlog("nmrshiftdata.rdf.xml");

// Load the Prolog method we want to use for querying
swipl.loadPrologCode ("
hasSpectrumWithPeakWithShift( Molecule, Shift ) :-

rdf ( Molecule, nmr:hasSpectrum, Spectrum ),

rdf ( Spectrum, nmr:hasPeak, Peak ),

rdf ( Peak, nmr:hasShift, literal(type(xsd:decimal, Shift)) ). ");

// Query and output all molecules with shift = ’42.2°, limiting to ten results
var molecules = swipl.queryProlog( [ "hasSpectrumWithPeakWithShift",
"10", "Molecules", "’42.2°" ] );
// Output results to console
js.print(molecules);

Figure 11: Example Bioclipse script that demonstrates how Prolog code can be stored
in Bioclipse script variables and loaded into Prolog using the swipl.loadPrologCode(
prologCode ) manager method. Furthermore, RDF data can be loaded using the
swipl.loadRDFToProlog( RDF datafile ) manager method. The Prolog convenience predi-
cate hasSpectrum WithPeak WithShift is used to query for RDF data. In this case it queries
for molecules with spectrum peak shifts equaling 42.2 ppm.

// Load RDF Data, and Prolog code
swipl.loadRDFToProlog("nmrshiftdata.rdf.xml");
swipl.loadPrologFile( "findMolWithPeakValsNear.pl" );

// Define the list of peak shifts that should be searched for
var shifts = "[ 17.6, 18.3, 22.6, 26.5, 31.7, 33.5, 33.5, 41.8 1";

// Query the findMolWithPeakValsNear Prolog method, limiting to 10 results
var spectra = swipl.queryProlog( [ "findMolWithPeakValsNear", "10", shifts, "Mols" ] )

// Print out the results
js.print( spectra );

Figure 12: Bioclipse script that loads RDF data and a file with Prolog code (see Figure 18
for the Prolog code used), and performs a query for all molecules with shift peaks with
near-matches of the provided list of shifts, using the findMolWithPeakValsNear Prolog
predicate.
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Figure 13: Using Bioclipse and SWI-Prolog, a scripting environment extension (manager)
was developed to allow creation and execution of Bioclipse scripts for performance com-
parison of SWI-Prolog with Jena and Pellet. The functionality developed in this project
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Figure 12 demonstrates how Prolog code can also be stored in a separate file in the Bio-
clipse workspace, and loaded with the swipl.loadPrologFile( prologFile ) manager method.
The actual Prolog code in this case is the same as is used in the performance evaluation
in this study, and is available in Figure 18. Figure 13 shows the logical structure of the

integrated SWI-Prolog engine in Bioclipse, related to the other semantic web tools, Jena
and Pellet.

4.1.1 Availability and requirements

e Project name: SWI-Prolog integration plug-in for Bioclipse

Operating system(s): Ubuntu Linux

Programming language: Java
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Source code: http://github.com/samuell/bioclipse.swipl

License: GNU Library or Lesser General Public License (LGPL)

Other requirement(s): Java 1.6.0 or higher (http://java.sun.com), Bioclipse
2.2.0 or higher (http://www.bioclipse.net)
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Figure 14: Comparison of execution of a spectrum similarity search query/program, be-
tween SWI-Prolog (SWIPL) for the longer (Figure 18) and the shorter (Figure 18) Prolog
program, Jena with disk-based RDF store (TDB) and in-memory RDF store, and Pellet
(with in-memory RDF store). The solid line shows the average of repeated tests while the
error bars show the standard deviation.

4.2 Performance comparison: SWI-Prolog vs Jena vs Pellet

The execution time of the SPARQL query in Figure 16 in Pellet and Jena, and the Prolog
queries in Figures 17 and 18 in SWI-Prolog, were measured according to the description in
the methods section. The test includes Jena with the in-memory RDF Store as well as the
TDB disk-based one while the combination Pellet/TDB store had to be excluded since it
did not complete for more than an hour even for the smallest data set with 5000 spectra,
making performance comparisons practically unfeasible.

The results are shown in Figures 14 and 15. In Figure 14, Pellet is included while it is
omitted in Figure 15 in order to get a zoom in on the Jena/SWI-Prolog difference. Average
and standard deviation were calculated and can be seen in Figures 14 and 15, where the
solid line plots the average and the error bars shows the standard deviation.

As can be seen, the longer Prolog program is around three times as fast as Jena with
disk-based RDF store, and around six times faster than Jena with in-memory store. The
minimal, SPARQL like Prolog query in turn is almost ten times faster than even the other
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Figure 15: Comparison of execution of a spectrum similarity search query/program, be-
tween SWI-Prolog (SWIPL) for the longer (Figure 18) and the shorter (Figure 18) Prolog
program, Jena with disk-based RDF store (TDB) and in-memory RDF store. Pellet is
excluded here in order to zoom in on the other results. The solid line shows the average of
repeated tests while the error bars show the standard deviation.

Prolog program. As can be seen, all queries scale approximately linearly.

It should be noted that in the SPARQL like Prolog query, the order of the values are
reversed so that larger shift values are searched for first, followed by smaller and smaller
shift values. This is an optimization heuristic that takes into account the fact that the
largest shift values are much less common, and therefore less prone to overlap with other
values, than lower shift values. This can be seen in the histogram in Figure 8. When
executing the query with the values sorted from small to large, the querying was so slow
that it could for practical reason not be fully performed (results not shown). Even on the
smallest data set, the query had not finished after more than one hour, so it was excluded
from further tests.
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PREFIX owl: <http://www.w3.o0rg/2002/07/oul#>

PREFIX afn: <http://jena.hpl.hp.com/ARQ/function#>

PREFIX fn: <http://www.w3.org/2005/xpath-functions#>

PREFIX nmr: <http://wuw.nmrshiftdb.org/onto#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT ?m

WHERE {

?m nmr:hasSpectrum ?s .
7s nmr:hasPeak [ nmr:hasShift ?s1

[ nmr:hasShift 7s2
[ nmr:hasShift 7s3
[ nmr:hasShift 7s4
[ nmr:hasShift 7sb
[ nmr:hasShift 7s6
[ nmr:hasShift 7s7
[ nmr:hasShift 7s8
[ nmr:hasShift ?7s9
[ nmr:hasShift ?s10 ] ,
[ nmr:hasShift ?si11 ] ,
[ nmr:hasShift ?7s12 ] ,
[ nmr:hasShift ?s13 ] ,
[ nmr:hasShift ?s14 ] ,
[ nmr:hasShift ?s15 ] ,
[ nmr:hasShift ?s16 ]

[ T T T T T T |

FILTER ( fn:abs(?s1 - 203.0) < 3 )
FILTER ( fn:abs(?s2 - 193.4) < 3 )
FILTER ( fn:abs(?s3 - 158.3) < 3 )
FILTER ( fn:abs(7s4 - 140.99) < 3 )
FILTER ( fn:abs(?s5 - 78.34) < 3 )
FILTER ( fn:abs(?s6 - 42.2) < 3 )
FILTER ( fn:abs(?s7 - 42.0) < 3 )
FILTER ( fn:abs(?s8 - 41.8) < 3 )
FILTER ( fn:abs(?s9 - 33.5) < 3 )
FILTER ( fn:abs(?s10 - 33.5) < 3 )
FILTER ( fn:abs(?sl1l - 31.7) < 3 )
FILTER ( fn:abs(?s12 - 26.5) < 3 )
FILTER ( fn:abs(?s13 - 22.6) < 3 )
FILTER ( fn:abs(?s14 - 18.3) < 3 )
FILTER ( fn:abs(?s15 - 17.6) < 3 )
FILTER ( fn:abs(?s16 - 0) < 3 )

}

Figure 16: SPARQL query used in Jena and Pellet in the performance comparison between
Pellet, Jena and SWI-Prolog. The query is available as a Bioclipse script on MyExperiment
[62] as workflow 1268 for Jena with in-memory store, 1269 for Jena with TDB store and
1270 for Pellet with TDB store.
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% Register RDF namespaces, for use in the convenience methods at the end
:- rdf_register_ns(nmr, ’http://www.nmrshiftdb.org/onto#’).
:- rdf_register_ns(xsd, ’http://www.w3.org/2001/XMLSchema#’).

findMolWithPeakValsNear( SearchShiftVals, Mols ) :-
% Pick the Moleculess in ’Mol’, that match the pattern:
%% listPeakShifts0fMol( Mol, MolShiftVals ),
%% containsListElemsNear( SearchShiftVals, MolShiftVals )
% ... and collect them in ’Mols’.
% A Mol(ecule)s shift values are collected and compared against the given
% SearchShiftVals. Then, in ’Mols’, all ’Mol’s, for which their shift values
% match the SearchShiftVals, are collected.
setof ( Mol,
( 1listPeakShifts0fMol( Mol, MolShiftVals ),
containsListElemsNear( SearchShiftVals, MolShiftVals )),
[Mols|MolTaill ).

% Given a ’Mol’, give its shiftvalues in list form, in ’List0fPeaks’
listPeakShifts0fMol( Mol, ListOfPeaks ) :-
hasSpectrum( Mol, Spectrum ),
findall( ShiftVal,
( hasPeak( Spectrum, Peak ),
hasShiftVal( Peak, ShiftVal ) ),
List0fPeaks ).

% Compare two lists to see if list2 has near-matches for each value in listl
containsListElemsNear( [ElemHead|ElemTail], List ) :-

memberCloseTo( ElemHead, List ),

( containsListElemsNear( ElemTail, List );

ElemTail == [] ).

%%%h Recursive construct: %%%h
% Test first the end criteriomn:
memberCloseTo( X, [ Y | Tail ] ) :-
closeTo( X, Y ).
% but if the above doesn’t validate, do recursively continue with the tail of List2:
memberCloseTo( X, [ Y | Tail 1 ) :-
memberCloseTo( X, Tail ).
% Numerical near-match
closeTo( Vall, Val2 ) :-
abs(Vall - Val2) =< 3.

%%% Convenience accessory methods %%%
hasShiftVal( Peak, ShiftVal ) :-
rdf ( Peak, nmr:hasShift, literal(type(xsd:decimal, ShiftValLiteral))),
atom_number_create( ShiftVallLiteral, ShiftVal ).
hasSpectrum( Subject, Predicate ) :-
rdf ( Subject, nmr:hasSpectrum, Predicate).
hasPeak( Subject, Predicate ) :-
rdf ( Subject, nmr:hasPeak, Predicate).

% Wrapper method for atom_number/2 which converts atoms (string constants)

% to numbers. Avoids exceptions on empty atoms, instead converting to a zero.

atom_number_create( Atom, Number ) :-
atom_length( Atom, AtomLength ), AtomLength > O -> ¥ IF atom is not empty
atom_number( Atom, Number ); % THEN Convert to a num. val.
atom_number( ’0’, Number ). % ELSE Convert to a zero

Figure 17: Prolog script used in the performance comparison between Jena, Pellet and
SWI-Prolog. This code, together with the code in Figure 18 was used for execution in

SWI-Prolog, while Figure 16 shows the SPARQL code that was used in Jena and Pellet.
The code is available as a Bioclipse script on MyExperiment [62] as workflow 1271.
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:- rdf_register_ns(nmr, ’http://www.nmrshiftdb.org/onto#’).
:- rdf_register_ns(xsd, ’http://www.w3.org/2001/XMLSchema#’) .

select_mol_w_

pshifts( Mol ) :-

q( Mol, 203.0 ),
q( Mol, 193.4 ),
q( Mol, 158.3 ),
q( Mol, 140.99 ),

q( Mol, 78.
q( Mol, 42.
q( Mol, 42.
q( Mol, 41.
q( Mol, 33.
q( Mol, 33.
q( Mol, 31.
q( Mol, 26.
q( Mol, 22.
q( Mol, 18.
q( Mol, 17.

34 ),

WO U NUIOToON

q( Mol, 0 ).

%h% Query method %%%
q( Mol, RefShiftVal ) :-
rdf ( Mol, nmr:hasSpectrum, Spec),

rdf ( Spec,
rdf ( Peak,

nmr :hasPeak, Peak),
nmr:hasShift, literal(type(xsd:decimal, ShiftValliteral))),

atom_number_fixzero( ShiftValLiteral, ShiftVal ),
abs(ShiftVal - RefShiftVal) =< 3.

atom_number_fixzero( Atom, Num ) :-
atom_length( Atom, AtomLen ), AtomLen > 0 -> % IF atom is not empty
atom_number( Atom, Num ); % THEN Convert to num. val.
atom_number( ’0’, Num ). % ELSE Convert to a zero

Figure 18: Minimal Prolog query, constructed to minimize the amounts of characters used,
and to mimic the structure of the SPARQL query in Figure 16. This code, together with
the code in Figure 17 was used for execution in SWI-Prolog. The code is available as a
Bioclipse script on MyExperiment [62] as workflow 1272.
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5 Discussion

The research question for this study was “How do biochemical questions formulated as
Prolog queries compare to other solutions available in Bioclipse in terms of speed?”. The
comparison of a Prolog-based approach to querying semantic web data, against non-Prolog-
based ones, required first the integration of a Prolog environment into Bioclipse, followed
by a performance comparison of SWI-Prolog versus the other semantic web tools in Bio-
clipse. The work done in this project has thus provided both new functionality, and new
information on the performance of this functionality.

5.1 Integration of SWI-Prolog in Bioclipse

The integration of SWI-Prolog into Bioclipse has given access to the increased performance
and convenience for working with at least some types of data by taking advantage of the
Prolog-based semantic web functionality in the semweb package of SWI-Prolog.

The ability to store data processing workflows inside a single Bioclipse script file fa-
cilitates sharing of workflows between scientists, and makes it possible to use the full
functionality of the Prolog programming language for defining data processing workflows
in Bioclipse.

5.2 Performance comparison

The results show that querying RDF is faster in Prolog than in non-Prolog-based soft-
ware for a simply structured knowledge base. This is what could be expected based on
earlier studies [39] which showed that a datalog' reasoner is faster for simple structured
ontologies with large number of assertions, while it was not faster for data with much more
hierarchically structured ontologies, i.e. much more branched ones. It also gives support
to the underlying hypothesis of this study, as presented in the introduction, that the addi-
tional layers needed in conventional programming languages as compared to Prolog, tend
to create slower programs in general.

It is an interesting observation that writing the Prolog query on the simpler form
(Figure 18) made it amenable to heuristic optimization by sorting the values searched for,
while this was not possible in the longer Prolog program (Figure 17). The possibility for
heuristics based optimization based on statistics of the data set would be an interesting
area for further research. Indeed, such studies have been done for the TDB disk-based
store bundled with Jena [64].

One possible explanation why the shorter code was amenable to the mentioned opti-
mization and not the longer, is that the shorter query makes better use of Prologs back-
tracking mechanism by allowing to skip value comparisons for spectra where the first value
did not find a match anyway. The longer Prolog querys list operations might rule out
the ability to stop the value testing for a spectra when it encounters a mis-match. This
hypothesis needs further verification though.

!Datalog is approximately a subset of Prolog in functionality
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A surprising result is that Jena is around double as fast with the TDB, disk-based, store
than with the in-memory store. It is probable though, that the disk-based store is not in
fact accessing the disk at all, for this data set. The fact that we could load the data set
in the in-memory store hints that TDB is also only storing the data in memory since the
disk is only used when data does not fit into memory, according to [65]. We can thus draw
no conclusions on why TDB is faster than the in-memory store, and the exact explanation
requires further research. It would also be an area of further research to see how TDB
scales with the data set size compared to the in memory store for data sets which do not
fit into memory.

Otherwise, it is encouraging to see that all tools scale (approximately) linearly with
the size of the data sets, and that the querying time can be argued to be within practical
limits for everyday use after optimization by ordering of queried values was done.

To get a general picture though, further studies would have to evaluate performance and
expressivity also for data sets with different characteristics. Furthermore, more research on
the problems of the closed/open world assumption issue and the resulting incompatibility
problems is needed before the use of Prolog for semantic web applications in the life sciences
can be advocated.

5.3 Convenience of the Prolog language

As can be seen in Figures 16, 17 and 18 it is possible to express the same thing with
approximately the same amount of code in SPARQL as in Prolog. The Prolog query in
Figure 18 does however not require rewriting any part of the actual query in order to query
for another set of peak shift values. In the SPARQL query, one has to add things to the
code at three places in order to add another shift value, and even if the number of values
remains constant one would have to do as many changes as there are values. The Prolog
query in Figure 17, on the other hand, can take the list of values as an input parameter,
which makes it much easier to use programmatically from Bioclipse scripts. It should be
noted though, that the SPARQL query can also be generated with Bioclipse scripts, though
that is not a feature of SPARQL itself.

When the query is written as in the Prolog query in Figure 18, then, while he number
of places where one needs to update the query in order to change shift values is similar to
the SPARQL query, then still, changing the limit value (which is 3 in this study), is much
easier in the Prolog queries, since it requires changing only one occurrence of the value as
compared to 16 occurrences in the SPARQL query. The reason for this clearly comes from
the ability in Prolog to create functions. This enabled to break out repeated operations
into a separate function (the q function in Figure 18). The same feature is fundamental for
being able to use Prolog in the programmatic way as demonstrated by the longer Prolog
program in Figure 18.
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5.4 Implications for data integration

While the research question of this study focused on the comparison of Prolog-based versus
non-Prolog-based semantic web technologies, the context of the study was data integra-
tion challenges in the life sciences and the meeting of these challenges using semantic web
technologies. The current study does not provide a comprehensive study on how the new
Prolog-based functionality in Bioclipse can be used to address data integration challenges,
but it has shown that Prolog-based tools can successfully be used within Bioclipse and
provide increased performance and convenience for at least some kinds of data. This sug-
gests Prolog as interesting for application in general data integration scenarios, especially
for data with many numerical values, and where performance is an important issue.

5.5 Limitations of SWI-Prolog compared with Jena and Pellet

In the background, the lack of skilled Prolog programmers was mentioned as a general
drawback for the Prolog language. It is also the authors’ impression, that the Prolog
language will probably take more time to learn than the SPARQL query language, used in
Jena and Pellet, because of SPARQL’s close similarity to the database query language SQL,
which is a very common language. Additionally, a drawback of SWI-Prolog specifically,
against Jena and Pellet, is that since it is not written in Java, it is not as portable (i.e.
the same code can not easily be executed) to different platforms such as Mac, Windows,
Linux etc. Instead the source code has to be compiled separately for each platform. This
also has the result that the SWI-Prolog Bioclipse integration plugin will not be as portable
as Bioclipse itself.

5.6 Using Bioclipse for increased reproducibility

The choice of doing the software evaluations in Bioclipse allowed to store the complete
experiment as a script that can easily be shared with other scientists, so that others can
easily repeat what has been done. The scripts used for performance testing in this study
are available at the MyExperiment website [62] and are listed in subsection 3.5.
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6 Conclusion

The research question of this study was “How do biochemical questions formulated as Prolog
queries compare to other solutions available in Bioclipse in terms of speed?”. To answer this
question, SWI-Prolog was integrated into Bioclipse. As we have demonstrated, SWI-Prolog
has provided increased performance and convenience for working with the specific type of
data used in this study, compared to the other semantic web tools available in Bioclipse.
The increased performance was demonstrated by drastically shorter execution times. An
example of the increased convenience of the Prolog language, compared with SPARQL, is
how the Prolog language allows to break out repetitive statements into functions.

Prolog has some drawbacks, like that it is likely to take longer time to learn than
SPARQL, and the limited portability of the SWI-Prolog distribution, as it is not pro-
grammed in Java.

The good performance of SWI-Prolog and the convenience of the Prolog language hints
at a general applicability in data integration and we suggest more research into the implica-
tions of the closed/open world assumptions issue as well as more performance evaluations
of SWI-Prolog, with other types of data.

We also suggest further research to see how the TDB RDF store in Jena, scales with
respect to the in-memory store, for data sets that do not fit into memory.
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