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Prediction models for the emergence of mycotoxins in grain 

 

Anders Sundström 

Populärvetenskaplig sammanfattning 

Många tecken tyder på att Sveriges klimat kommer att bli både varmare och fuktigare i framtiden. 

SMHI förutspår att medeltemperaturen i Sverige kommer att öka med 4-6°C innan år 2100, och 

därmed närma sig dagens Mellaneuropeiska klimat. Det finns farhågor att denna varmare miljö 

kommer att leda till ökade problem med mögelgifter, så kallade mykotoxiner, i grödor som skall 

användas till livsmedel eller djurfoder. Vissa av dessa mykotoxiner har akuttoxiska effekter för 

människor och djur och därför blir förekomsten av dessa gifter viktig att förutsäga och övervaka. 

Bland mykotoxinproducerande svampar återfinns släktet Alternaria som är en frekvent mögelsvamp i 

spannmål och ett vanligt allergen bland människor. Det mest potenta Alternariatoxinet, Tenuazonic 

acid, påvisades i anmärkningsvärt höga koncentrationer vid en undersökning på spannmål i södra och 

mellersta Sverige 2006 och 2007. 

Ett verktyg för att på ett tidigt stadium förutsäga risker för mykotoxinbildning i grödor är 

användandet av prognosmodeller. En prognosmodell i detta sammanhang beräknar förekomst av 

mykotoxiner som funktion av väderdata. Tanken är att man då skall kunna förutsäga bildandet av 

toxiner i god tid så att preventiva åtgärder skall kunna sättas in. 

Det här examensarbetet är en del av ett MSB-finansierat samarbetsprojekt mellan Svenska 

Livsmedelsverket, Svenska Jordbruksverket, Statens Veterinärmedicinska anstalt, m.fl. med avsikten 

att i en pilotstudie beskriva förutsättningarna för att utveckla prognosmodeller för uppkomst av 

mykotoxiner i svensk spannmål. Syftet med arbetet var att redogöra för definitioner, variabler, 

kausala samband, etc. rörande framställning av en större prognosmodell på svenska 

klimatförhållanden, både samtida och framtida, samt att utveckla en enklare prognosmodell att 

utnyttja som beslutstöd vid kommande utredningar. Resultatet av den här undersökningen visade att 

det finns en koncensus i forskningen vad gäller indikatorer för mykotoxinproduktion i spannmål, och 

att dessa indikatorer bör utgöras av någon form av nederbörd, temperatur och fukt. Det visade sig 

också att tidsintervallet man applicerar dessa indikatorer på är av största betydelse och oftast utgår 

från spannmålets axgång. 
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Abbreviations 

CPL Critical period length 

CV Cross validation 

DON Deoxynivalenol 

LD50 Dose required to kill half a test population after  a given test duration 

spp. species, plural form 

SVA National Veterinary Institute 

TeA Tenuazonic acid 

1. Introduction 
Climate change is a hot topic in today’s society. Swedish Meteorological and Hydrological Institute 

predict an increase in Sweden’s mean temperature by 4-6°C until the year 2100 (SMHI). A 

consequence of the warmer climate is a possible increase of fungi and mycotoxin incidence in feed 

and food, with higher risk of intoxication as a result.   

One way to handle this is by the utilization of prediction models. A prediction model can here be 

seen as a tool that forecasts emerging mycological risks based on meteorological factors. Appliance 

of such an instrument would give the farmer a head start, so preventive measures can be taken in 

due time. Also, a predictive model forecasting not only seasonal ups and downs but long term 

changes in incidence due to climate changes is interesting from a national point of view, calculating 

the upcoming agricultural conditions. 

The fungi of interest is species of the genus Alternaria, which is an important mycotoxin producer 

and a decomposer of organic material. As such, it can cause both pre- and post-harvest decay as well 

as damage crops during growth (Andersen, 2001). It is estimated that Alternaria infection contributes 

in 20% -40% of the spoilage of agricultural output (Battilani, 2009). 

There are three factors that are of interest to predict; occurrence of the fungi responsible for 

mycotoxin-production, the concentrations of toxin in the crop and the occurrence of a crop decease 
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caused by Alternaria called Black point. Black point is interesting from an economical point of view 

because infected grain originally intended for food production are downgraded and can only sell as 

animal feed. The idea behind the models is that the prediction should be based on meteorological 

and agricultural variables at some specific period pre-  and/or post-harvest. 

Previous research in this area can be divided into two categories; fungi and mycotoxin prediction 

models regarding non-Alternaria related fungi (Hooker, 2002), (Moschini, 1996), (Prandini, 2009), 

(Tarekegn, 2006) and Alternaria related prediction models based on climate that differ largely from 

Swedish climate (Iglesias, 2007), (Katial, 1997), (Languasco, 1994), (Moschini, 2006). These models 

are based on statistical analysis of relations between historical mycological data and meteorological 

and/or agricultural factors. 

The non-Alternaria prediction models are more developed but they are not applicable to the 

Alternaria species, and the existing Alternaria models are not applicable on the Swedish climate. A 

model that is produced explicitly for Alternaria and Swedish climate would be of good use for 

containing the spread of mycotoxins in Sweden. 

This thesis work is part of the Swedish Civil Contingency Agency’s project National collaboration on 

climate-related spread of molds and mycotoxins, and the aim of the thesis is to start to describe the 

conditions for the development of Alternaria and Alternaria mycotoxin prediction models from 

metrological data in Sweden, and to develop a simple prediction model to use as decision support in 

future sampling. 

2. Background 
This section explains some biological aspects of the research area. The relevant mycological 

fundamentals are described along with the dominant cereal development scale used in agricultural 

science. 

2.1. Alternaria 
Alternaria is a diverse and omnipresent genus of the fungi. It is a 

common field fungus and therefore a frequent contaminator of grain. 

Its species includes both saprophytes, which means organisms that 

feed on decaying material, and plant pathogens, and therefore 

Alternaria plays a major role in crop damage and decay both before 

and after harvest (Logrieco, 1990). 

Alternaria colonies are white or gray at first, but because of their 

melanin production they gradually change color towards brown as 

times goes by. Alternaria survives the winter on infected debris and 

produces wind-carried spores that throughout the spring and summer 

will infect plants and seeds during moist and warm conditions 

(Battilani, 2009). Its peak spore count occurs in the late summer 

months (Katial, 1997).   

Because of its saprophytic character, Alternaria incidence can 

Figure 1: The infection 
procedure of Alternaria. 
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sometimes be seen as a symptom for an already ongoing damage that is caused by some other 

pathogen. This is the case with what is commonly called sooty molds (Saskatchewan, 2009). Sooty 

molds acts like a brown dust that is covering the head of a wheat straw, and is actually composed of 

Alternaria molds that is consuming decaying crops. 

A lot of interest and research has been put into a crop decease called Black point, mainly from an 

economical point of view. The primary agent for causing Black point is Alternaria alternata and the 

decease turns out as a black to brown discoloration of the kernels of wheat and barley (Özer, 2005). 

Black point itself does not damage the nutritional quality of the crop but the discoloration it is 

responsible for makes the grain unattractive and difficult to market, which leads to a downgrading of 

the crop and economical loss for the farmer (Rees, 1984). This means that grain that wore intended 

to be sold as food is downgraded and can only sell as animal feed.  

Studies have shown that toxins produced by Alternaria can disturb the development of the fetus of 

hamsters and mice, and have cytotoxic properties on bacterial and mammal cells (Battilani, 2009). 

Alternaria also has a direct affect on humans in form of allergy and airway diseases. Its spores are the 

main agent of indoor and outdoor fungal allergens and it is determined that Alternaria sensitization 

is the number one source of childhood asthma (Battilani, 2009). 

2.2. Tenuazonic acid  
Some fungi can produce organic compounds that are of toxic nature, mycotoxins, and we define 

these compounds as secondary metabolites since they are not involved in the growth or the 

reproductive system of the organism. The genus of Alternaria can produce 71 known toxic secondary 

metabolites but only a few are of toxicological significance (Battilani, 2009).  

Tenuazonic acid, or TeA, is a colorless viscous oil produced by the species A. longipes, A. tenuissima 

and A. alternata and is probably the most toxic of all of the Alternaria mycotoxins with a Lethal-

Dose50–value of 81/168 mg/Kg female/male mice (Battilani, 2009). As an interesting side note and 

point of reference, caffeine is just slightly less toxic with a LD50–value of 192 mg/Kg (University). As 

another point of reference TeA was given in the diet to chicken at concentration of 10mg/kg of feed, 

with decreased weight gain and lowered feed efficiency as a result (Giambrone, 1978).  

TeA’s toxicity originates from its inhibitory effect on the protein synthesis, or more precise, TeA 

suppresses the release of newly formed proteins from the ribosome (Battilani, 2009). The 

cytotoxicity has been established in test on mouse, hamster and human cells (Zhou, 2008). TeA also 

has antitumor, antibiotic and antiviral properties (Siegel, 

2009) (Shephard, 1991). 

TeA has been detected in many human food sources such 

as olives, peppers, tomatoes, tangerines, melons, apples, 

sorghum, rice, wheat, sunflower seeds and in tobacco. In 

previous studies, the levels of TeA have been relatively 

modest, with few exceptions like India in 1978 (6mg/kg in 

sorghum) (Webley, 1998), (Battilani, 2009), but in 2006, a 

Swedish study found high levels, 4mg/kg, of TeA in whole 

grain and straw samples from Sweden (Häggblom, 2007). 

Figure 2: Molecular shape of Tenuazonic acid. 
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2.3. Zadoks scale 
In order to precisely measure a crop’s development, independently of where it grows, the 

development process has been normalized with respect to the crop’s visual stages of growth. This 

was done by the Dutch phytopathologist Jan C. Zadoks who proposed that the cereal growth should 

be divided into ten primary stages (Zadoks, 1974). Each primary stage is in turn divided into ten 

secondary stages, so the complete scale ranges from 00 to 99. So for example, Z39 means that 

development stage is in the stem elongation phase and more precisely that the flag leaf of the cereal 

just became visible. The scale thoroughly used in agricultural research and practice and it is 

commonly referred to as the Zadoks scale. 

Table 1: Zadoks development stages 

Stage Crop development 

0 Germination 
1 Seeding growth 
2 Tillering 
3 Stem elongation 
4 Booting 
5 Ear emergence 
6 Flowering 
7 Milk development 
8 Dough development 
9 Ripening 

Each stage incorporates a more detailed sub-stage. 

2.4. Aim 
The aim of this thesis is to develop a rough prediction model for mycotoxins in grain, and to 

contribute a compilation of indicator selection research that could be of use in further development 

of Alternaria prediction models.  

3. Materials and methods 
This section starts with a presentation of the datasets used in this project and proceeds with a 

description of the pre-processing procedure of the aforementioned datasets. Then the statistical 

concepts involved in training and evaluation of the prediction models are explained. Further on, 

previous research in the field of prediction modeling are pointed out, introducing two major works in  

mycotoxin prediction modeling. And finally, the statistical modeling practice in this project is 

accounted for in the end of this section. 

3.1. Datasets 
Suitable data on this subject is scarce. The optimal dataset would consist of sampling from many 

locations during several seasons, but since Swedish Alternaria research is just starting to develop, 

unfortunately this optimal dataset does not yet exist. However, investigations lead to three datasets 

being located for the biological factor, one for each concept sought out to predict (incidence of fungi, 

toxin and plant disease). These dataset were also the only datasets to be found regarding Alternaria 

related data for Sweden. Data for the meteorological variables was collected using SMHI’s databases. 

The basic structure of all datasets is a biological observation in conjunction with whether data and 
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since these datasets are the only ones regarding this research area, the purpose of all them is to be 

used for training and evaluation in the modeling process. 

Weather data for a duration of approximately four months pre-harvest were obtained for all the 

datasets from SMHI’s or LantMet’s weather stations. The data consisted of precipitation, 

temperature, relative humidity and atmospheric pressure and was measured every three hours at 

SMHIs stations. The quality of the data is based on how closely the weather stations are situated in 

the area of study, which varies from a few kilometers up to 50km. 

The first dataset corresponds to daily Alternaria spore counts per cubic meter air for a time period of 

30 years. The sampling was made at Frescati in Djurgården in the north eastern part of central 

Stockholm. 

The second dataset is based on incidence of black point infected kernels in oat. Incidence was 

measured as percent of infected kernels. The sampling was done by Lantmännen on 17 farms in the 

central and southern parts of Sweden during 3 consecutive seasons.  

 The third dataset comes from a study lead by professor Per Hägglund at SVA. The project set out to 

map the mycotoxical risks involved in the harvest of grain from rain damaged areas in Sweden in 

2006, and also, to find out the toxical substances involved. The actual numbers here are 

concentrations of Tenuazonic acid. The dataset also includes crop species and all in all, 33 fields were 

sampled. 

3.2. Pre-processing of data 
Matching the biological data with the correct, in terms of date, meteorological data was an elaborate 

process since SMHI measure meteorological variables every three hours. When the time period gets 

sufficiently long, for example 30 years with the Alternaria spore count data, the result is a very large 

dataset. The size of the dataset would have made the concatenation of biological data and 

meteorological data a very time consuming task, and the process was therefore automated with a 

perl-script. The code can be viewed in the appendix. 

The Alternaria dataset were reduced from 30 years to 18 years due to limitations in the weather 

data. More explicitly, the weather data had for some reason only precipitation measurements up 

until 1997. 

As earlier mentioned, the Black point dataset were constituted of 17 sampled farms. However, nine 

of the farms were situated to close to be separated by the meteorological data, and thereby were 

given the same meteorological variables. Since these nine farms had varying Black point incidence, 

there exist a biological variation that cannot be explained by the available weather data, and the 

dataset was reduced to eight unique locations. 

As with the black point dataset, some of the 33 fields in the toxin dataset were geographically to 

close to each other, and the resolution of the meteorological data reduced them to 12 unique 

locations. 

Also, it is common practice in mycotoxin prediction modeling that the variables are attributed to the 

model during a certain period of time in the growth process when their predictive value are the 
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strongest (Hooker, 2002) (Moschini, 2006) (Franz, 2009). This window is called the critical period 

length, or CPL in short. Most of the variables consist of a sum of the number of days within this 

critical window that certain conditions is fulfilled. This kind of variables also reduces the size of the 

dataset so that the measure points of the final dataset used to train and validate the model consists 

of one sample of measured biological data (Alternaria spore counts, toxin concentration et.c.) and 

one value for each calculated dependent variable (number of days with rainfall et.c). So the size of 

dataset is the number of fields (and/or years) sampled times the number of weather variables. This 

means that the size, and in some sense quality, of the dataset largely depends on the number of 

sampled fields, so reducing the number of fields due to poor weather data resolution is a serious 

problem, both regarding to the resulting lack of training and validation data and the increased risk of 

overfitting the mode simply because of the tiny dataset. 

Table 2: Dataset dimensionality 

Dimensionality Alternaria Black point Toxin 

Raw 27321 x 6 19760 x 6 39424 x 6 
Pre-processed 3415 x 6 1377 x 6 1848 x 6 
CPL-adjusted 306 x 6 153 x 6 204 x 6  
With applied variables 18 x 6 9 x 6 12 x 6 

 The dimensionality of the datasets were severely reduced by pre-processing along with the limited geographical 
resolution of the weather data. Since the variables involved in the model are only applied to the data for a short period 
of time, the resulting dataset becomes even smaller. The nature of the variables themselves (summations over number 
of days when weather aspects fulfills a condition) reduces the dataset to their final size of sampled fields x variables. 

3.3. Statistical concepts 

3.3.1. Regression analysis 

In statistical terminology, regression analysis is a collective term for the examination of the 

relationship between variables. The purpose is to determine the relationship of one or more 

variables, called independent variables, upon another variable called the dependent variable (Blom, 

2005). For example, examining the effect of temperature and precipitation on Alternaria incidence in 

Swedish wheat fields. 

The goal of regression analysis is to determine an equation that models the dependent variable as a 

function of the independent variables with the highest possible agreement between predictions and 

true (measured) values. This is accomplished by fitting a polynomial of some degree to the data, 

using for example a numerical method like Least squares. 

Least squares is a method which seeks to minimize the difference between data and a polynomial by 

minimizing the function  

Least squares is a method used to determine the model parameters which minimizes the mean sum 

of squared prediction errors. Assuming that the prediction model is a polynomial denoted f(x,), the 

objective function Q minimized is: 
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where    is the data value of the point    and         is a function representing the polynomial.   is 

a parameter vector. In linear regression for example,         represents a polynomial of the first 

degree where    is the intersect and    is the slope, resulting in                (Blom, 2005).  

The Least squares method has a famous disadvantage. It is sensitive to data values that strongly 

deviates from the rest of the data, commonly called outliers. There exist several ways to deal with 

this disadvantage, making the method more robust, for example switching the square to an absolute 

value. Another approach, which is used further on in this project, is to instead of minimizing a sum of 

squares, minimize the median square (Rousseeuw, 1984). The method is called Least median squares 

(LMS) and seeks the solution to the function:  

            
 

            
  

The LMS method is much more rigid towards deviations in the data because of the nature of the 

median function, able to disregard any eventual outliers in a way that a sum cannot. 

3.3.2. Correlation coefficient 

Correlation in this context is a measure of agreement between the model predictions and the 

measured (true) values. The coefficient used here for quantification of this agreement is the classical 

(Pearson) correlation coefficient R defined as in the formula below: 

  

 
   

                
   

    
 

This means that the correlation coefficient is the covariance of two variables divided by the product 

of their standard deviation. The correlation coefficient attains a value between -1 and 1, where the 

value 1 indicates complete positive correlation, 0 indicates no correlation and -1 complete negative 

correlation (Blom, 2005). 

Sometimes the squared correlation coefficient, R2, is used as a general measure of how well a model 

accounts for the variation in the data. This is commonly seen in prediction model articles as a 

performance estimator of the model (Hooker, 2002) (Franz, 2009) (Tarekegn, 2006) (Moschini, 2006), 

and is also used further on in this project when referring to previous work in the field of prediction 

modeling. 

3.3.3.  K-fold cross validation 

Cross validation is a resampling method used to evaluate how well a model will generalize to an 

independent dataset. The dataset is divided into K subsets and one subset of the data is out held for 

validation purposes, while the rest of the data is used for training a model to evaluate on the 

validation set. This procedure is then repeated with a new validation subset and consequently, a new 

training set, until all samples have been used in both a validation set and a training set (Molinaro, 

2005). A common usage is a K set to 10 (McLachlan, 2004). Cross validation is a good alternative 

when data is scarce and preferably used for modeling purposes rather than excluding some of the 

data for a validation dataset. 

In this project, a special case of K-fold cross validation is sometimes used called Leave-one-out cross 

validation, which means that K is set to the number of instances in the dataset. Or in other words, 

every measure point  is used both for training and for validation. This method is more time 
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Figure 3: A schematic picture describing a model of 
Alternaria incidence as a function of the pre-harvest 
weather indicators temperature, precipitation and 
humidity as well as an agrarian indicator. This schematics  
is also applicable as generalizations for the other models 
in this project. 

consuming and computational heavy than other versions of K-fold cross validation, but this is not of 

concern in a situation where a small dataset is used, such as in this project. Leave-one-out cross 

validation was used when the number of samples was lower or equal than 10. 

3.4. Prediction models 
A prediction model in this context is a simplified mathematical model of a system of interest that 

maps system inputs into predicted system outputs. The model tries to summarize the system into 

elements that can be used to deduct relations between the elements or as a platform to propose 

hypotheses. In this case, a model should suggest incidence of spore concentration, black point 

prevalence or mycotoxin concentration as a function of whether variables. An important concept is 

the time factor involved. 

 

3.4.1. Previous research 

Previously, there have been a number of attempts at modeling the presence of fungi or incidence of 

toxin in grain by identification of the most important weather variables (Tarekegn, 2006), (Hooker, 

2002), (Moschini, 2006), (Prandini, 2009), but most of the efforts have been done in regards to the 

fungi genus Fusarium and related mycotoxins. However, there exist rough prediction models for 

Alternaria as well (Iglesias, 2007), (Katial, 1997), (Languasco, 1994), (Moschini, 2006). The two most 

thorough models are elaborated on in more detail in the following paragraphs. These models have to 

some extent been used as guidelines in this project, and their method and practice would have been 

followed even more closely if sufficient Swedish data would have been available. Also, calculating the 

critical period length in analogy with either model would have been interesting, but the adequate 

weather data were acquired at a late stage in the projects development process and was not able to 

be fitted in  due to time constraint.  

DONcast 

DONcast is a commercialized prediction model for the mycotoxin Deoxynivalenol, or DON in short, in 

wheat developed by Hooker et al. (Hooker, 2002). The model consists of three equations, using 

temperature and rainfall from a period of seven days before heading to 10 days after heading 

(Zadoks 59), calculating the predictions. 
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During the model design phase, DON concentrations in grain samples from 399 wheat fields was 

measured during five years. The weather data were collected for the period of 48 days around wheat 

heading. To locate the CPL, the weather variables were given daily binary values, i.e. one or zero, 

depending on if they match a predetermined weather criterion (for example mean daily temperature 

exceeds 32°C). The criterions used were selected since expert opinion deemed them relevant 

regarding to either fungi development or strengthening fungi inoculation potential. Every day’s 

binary values during the 48 day stint were then summed in four day windows according to the 

following procedure: 

For each i  between i = 1 to i = 45, calculate              
 
   . B in this procedure is the binary 

value for the weather variables applied to day d in the four day interval i, and the outcome of the 

whole procedure is a list of scored intervals to be used in CPL calculations. This means The procedure 

resulted in 45 proposals that in part can build up the model’s CPL, and the best combination of 

intervals were then calculated with regression analysis, and defined as the CPL. They found the CPL 

to be the interval from 7 days before heading to 10 days after heading. 

The actual modeling process is not described in satisfactory detail in the paper and Hooker et all 

suffice by merely saying that the concentration of DON were transformed by the natural logarithm 

(hence the exponential regression equations) and that the final models were derived from regression 

procedures.  

Table 3: DONcast variables 

 

Hooker et all’s results are the following three exponential equations where equation 1 utilizes 

weather data before wheat heading and equation 2 and 3 utilizes weather data from before and 

after heading. Equation 1 is used when RAINb > 0, and equation 2 when RAINb = 0. 

(1) DON = exp[-0,30 + 1,84RAINa – 0,43(RAINa)2 – 0,56Tmin] – 0,1 

(2) DON = exp[-2,15 + 2.21RAINa – 0,61(RAINa)2 + 0,85RAINb + 0,52RAINc – 0,30Tmin – 1,10Tmax] – 0,1 

(3) DON = exp(-0,84 + 0,78RAINa + 0,40RAINc – 0,42Tmin) - 0,1 

When evaluated on 17 farm fields in 2000, equation 1 had a value of R2=0,55, equation 2 had R2=0,71 

and equation 3 had R2=0,56. 

 Moschini el al’s black point model 

As earlier mentioned, black point is a crop decease caused by the fungi Alternaria, and however not 

harmful to animals and humans, it discolor the grain and thereby makes the grain hard to sell with 

the consequence of economical loss for the farmers. Moschini et al developed a prediction model 

based on meteorological variables in the Argentinean Pampas region (Moschini, 2006). The model 

consists of an equation which accounts for 87% of the total variance in decease incidence (% of 

kernels discolored). 

Variable Explanation 

RAINa Number of days with rain > 5mm/day 4-7 days before heading. 
RAINb Number of days with rain > 3mm/day 3-6 days after heading. 
RAINc Number of days with rain > 3mm/day 7-10 days after heading. 
Tmin Number of days with temperature < 10°C 4-7 days before heading. 
Tmax Number of days with temperature >32°C 4-7 days before heading. 



11 
 

Black point incidence was recorded at 5 different locations for three consecutive years, 1995, 1996 

and 1997 and meteorological data were collected from the same years during the period from wheat 

heading (Zadoks 59) to harvest. The meteorological variables used are listed in table 4.  

Table 4: The variables used in the Moschini et al model 

Variable Explantation 

Td Daily mean temperature  
DD Degree-day. The accumulation of mean temperatures during a period of days 
MTxa Mean value of daily maximum temperature 
MTna Mean value of daily minimum temperature 
DDTxa Accumulation of days with exceeding daily maximum temperatures over a threshold (28-

32°C) 
DDTna Accumulation of days with exceeding daily minimum temperatures under a threshold (9-

13°C) 
DDTd

a
 Accumulation of days with mean temperature over a threshold (7-17°C) 

TPr The sum of total daily precipitation 
DPr

a
 Accumulation of days with precipitation 

DRHa Accumulation of days with relative humidity over a threshold (60-85%) 
DPrDDTda A combination of DPr and DDTd, computed as the multiplication of the variables  

 a) Calculated over proposed time periods. 

To calculate the CPL, a computer program analyzed several irregular time periods with varying 

length, from heading (Zadoks 59) to ripening (Zadoks 90), in search of the time period with the 

strongest associations between weather variables and decease data. The coefficient of 

determination, R2, was used to rank the different time periods, and the result was that the CPL were 

defined as to start 543 DD from heading and to end 861 DD from heading. 

Different combinations of variables were tested with regression analysis to compute equations with 

high predictive ability. The equation with the highest coefficient of determination (R2) was: 

PI% = -6,50 + 0,07 DPrDDTd + 0,23 DRH, where PI% is predicted decease incidence, and the equation 

has a value of R2=0,870. 

The model was validated with an independent validation set of samples from the same five locations 

used for training, although the validation used data from the next growth season, 1998.  

3.5. Indicator selection  
In selecting the appropriate weather variables that have good prediction ability for the biological 

factors involved, a literature study was made. A Dutch study published 2009 had a similar topic as 

this project, although regarding a different but related fungi (van der Fels-Klerx, 2009). They 

conducted a literary study in combination with expert opinion to identify the 12 foremost important 

indicators for emerging mycotoxins in wheat cultivation. These indicators were used as a guideline as 

of pointing in the right direction in this literature study. 
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Table 5: The 12 most important indicators for identification of  
emerging mycotoxins according to the van der Fels-Klerx study 
(van der Fels-Klerx, 2009) 

Rank Indicator 

1 Relative humidity/Rainfall 
2 Crop rotation (previously cultivated crop) 
3 Temperature 
4 Tillage practice 
5 Water activity in the kernels 
6 Crop variety 
7 Harvest conditions 
8 Changes in fungal populations 
9 Fungicide use 
10 Plant health 
11 Regional infection pressure 
12 Awareness of food safety 

3.6. Design of predictive models 
Analysis of correlation between weather variables and incidence of mycotoxin was performed using 

the software Weka 3.6 (http://www.cs.waikato.ac.nz/ml/weka/). Weka is a java based collection of 

pattern recognition algorithms developed at the University of Waikato in New Zealand (Frank, 2005). 

Tools for data pre-processing, regression analysis among others are included in the Weka software. 

The built-in Weka function for classifier design called ”Least median squares” (LMS) was used for the 

design of predictive models in this project. The LMS design procedure tries to numerically minimize 

the median squared error between model predictions and observed values. This means that the LMS 

function generates regression equations in a least squared sense from random subsamples of the 

dataset, and the best equation is chosen in terms of the lowest median squared error.  

The design procedure were evaluated with Leave-one-out cross validation when the number of 

samples was lower or equal than 10, and otherwise, K-fold cross validation was used with K set to 10. 

The usage of cross validation implicates that the design procedure was evaluated on all available 

data, which in consequence might cause overtly optimistic results. 

During the cross validation procedure Weka calculates the correlation coefficient for each fold 

describing the agreement between observation and prediction. The actual correlation coefficient 

output is then the average generated from all the folds. 

3.6.1. Alternaria model 

The number of spores per day  was sampled during a 30 year time span, from 1980 to 2010, but since 

precipitation was only registered up till 1997, the dataset was reduced to 17 years. The dependent 

variable spores/day is here the mean value of the total number of spores registered during the year. 

The model used the weather variables total amount of rain (Rtot) and number of days with mean 

daily temperature over 15°C (Tsum) as independent variables and the CPL was 4-6 weeks after 

flowering. The design procedure was evaluated using k-fold cross validation width k = 10. 

3.6.2. Black point model 

The Black point model were developed from the Lantmännen dataset. Black point incidence were 

sampled in 17 farms during three years. However, some of the farms were situated to close 
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geographically to be separated by the weather data, and was thereby excluded from the dataset, 

which then was reduced to nine measure points of Black point incidence.  

The Black point incidence was linked with weather data from approximately three month pre-harvest 

and the CPL used were identical to Moschini et al’s research, which means the interval of 540-860 

degree days after heading. Heading date for wheat in the sampled area varies but was approximated 

to June 7st. The model used total amount of rainfall and number of days with mean daily temperature 

exceeding 15°C as independent variables. Because of the low number of instances, the design 

procedure was evaluated using Leave-one-out cross validation, which in this case means K-fold cross 

validation with K=9. 

3.6.3. Toxin model 

The toxin model were developed using Per Hägglunds data from the SVA research. It consisted of  

measurements of Tenuazonic acid concentrations at 33 farms in the central and southern part of 

Sweden in 2006. The weather data for modeling toxin concentration holds the same disadvantage as 

did the Black point dataset, and the low resolution of weather data reduces the dataset to 13 unique 

locations. But the low quality weather data should be given even more credit here since the Black 

point weather data, although with low resolution, had a dataset covering 3 years, while the toxin 

data  did only cover one year, and thus the variety in the weather data becomes even smaller. 

The variables used in the modeling was total amount of rainfall (Rtot) and number of days with mean 

daily temperature exceeding 15°C  (Tsum) and the CPL was chosen to be identical to DONcast’s CPL, 

id est spanning from 7 days prior to heading to 10 days after heading.  

Studying this dataset, it was obvious that crop species played an important role in toxin 

concentration. For instance, toxin concentration measured on oat were much higher than any other 

crop, and up to ten times higher than measured on wheat for samples in the same vicinity. Since the 

same weather data could result in such a great span of toxin concentration depending on crop 

species, two models were developed based on the two crop species which provided the largest 

quantity of samples in the dataset, namely barley and wheat. Each of the designs was evaluated with 

the Leave-one-out cross validation method. 

4. Results 

4.1. Indicator selection 
The literature study on indicator selection resulted in the following indicators, sorted by category. 

Each indicator is then further elaborated on in the discussion section. 
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Table 6: Indicators 

Category  Indicator Explanation  Platform 

Pre-harvest    

Precipitation     Alt,Bp,Tx  

 Rtot, 1,3, 4 Total amount of rain during a period of time  
 Rd, 1, 3 Days with rain  

 Rn,
1,2

 Number of days with rain over a threshold n  

 R7,9 *Current growth stage <Z65:Annual rainfall >=700mm  

   *Current growth stage >Z65:rain in the last 7 days >5mm 

Temperature      Alt,Bp,Tx 

 DD, 
1
 Degree days. Accumulation of the mean daily 

temperature during several days 
 

 DDTn, 
1
 Accumulation of the exceeding temperatures under a 

threshold 
 

 DDTx, 1 Accumulation of the exceeding temperatures over a 
threshold 

 

 Tsum, 1, 2 Days with mean temperature over a threshold  

 Tmin,
1, 3, 5

 Minimum temperature registered during a day  

 Tmax, 1, 3, 5 Maximum temperature registered during a day  

 Tmean,1 , 4, 5 Mean value of the temperature registered during a day  

Humidity     Alt,Bp,Tx  

 RHn, 1 Number of days with relative humidity over a threshold n  

 RH,3, 4 Relative humidity registered during a day  

 aW,7 Water activity  

 LWD,8 Leaf wetness duration  
Combinations     Bp  

 DPrDDTd, 1 Days of precipitation * total degree-day accumulation of 
mean daily temperature greater than a given threshold. 

 

Agrarian   Alt,Bp,Tx 

 Crop rotation,6 Previous crop cultivated on the field  

 Tillage practice,6 Method of tillage  

 Crop varieties,6 The specific crop species  

 Dom. Species,6 The dominating Alternaria species in the area 

 Crop stress,6 Crop stress such as weather damage, late harvest etc. 

Post-harvest     Tx 

 aW in kernels, 
6
 Water activity in kernels  

 RH in product,
6
 Relative humidity in the product  

 Ventilation, 6 Ventilation during transport and storage  

 Temperature, 6 Temperature during transport and storage  

Indicators with explanations along with a note on witch model they correspond to (Alternaria- (Alt), Black point- (Bp) or 
toxin-model (Tx)). 1. (Moschini, 2006), 2. (Hooker, 2002), 3. (Tarekegn, 2006), 4. (Katial, 1997), 5. (Iglesias, 2007), 6. (van 
der Fels-Klerx, 2009), 7. (Magan, 1984), 8. (Detrixhe, 2003), 9. (Bailey, 2000). 

4.2. Prediction models 
Four equations were developed with the intention of predicting mycotoxical concepts and two more 

was adopted from an Argentinean study (Moschini, 2006) and evaluated on Swedish data. The scarce 

pool of data limits the models predictive value and they should only be viewed as very rough 

guidelines at this stage of development, but they could be somewhat meaningful as decision support 

for sampling.  

All available data were used in building the models and the correlation coefficients derives from the 

build in cross validation feature in Weka (more details can be found in chapter 3.6.).  
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Table 7: Prediction models 

Modeled aspect Regression equation Correlation 

Alternaria 0,47 * Rtot – 0,83 * Tsum + 27,92 r=0,15 
Toxin – Wheat 
Toxin – Barley 

-18,02 * Rtot – 67,27 * Tsum + 881,93 
-14,83 * Rtot + 376,33 * Tsum – 2879,50 

r=-0,43 
r=-0,22 

Black point – Moschini model 1 
Black point – Moschini model 2 
Black point – Swedish model 

0,06 * DPr * DDTd – 3,94 
0,07 * DPr * DDTd + 0,23 * DRh – 6,50 
-0,04 * Rtot + 0,58 * Tsum – 4,78 

r=-0,10 
r=-0,11 
r= 0,51 

The developed regression equations in correspondence with their respective correlation coefficient resulting from the 
cross validation process. 

5. Discussion 
This section presents commented visualizations of sampled incidence versus predicted incidence 

from the cross validation process for all the prediction models along with a discussion on the results 

from the literature study regarding the different indicators. The visualization shows sampled values 

along with predicted values from each CV fold and predictions are calculated from the prediction 

model trained on all the other samples, that is, on all the other folds. The discussions are separated 

by respective modeled aspect  and all of the post-harvest discussion is merged into one section.  

5.1. Alternaria model 
Looking at the table below, we can see that a large difference between sampled and predicted values 

usually occurs simultaneously with atypical values on Rsum (Total amount of rain), and most often in 

combination with low values on Tsum (number of days with mean temperature below 15°C), i.e. a 

cold, and wet or dry summer. 

Table 8: Data for Alternaria model 

Year CV-fold Sampled Predicted Deviation Rsum Tsum 

1980 4 18,68 23,484 4,803 9,6 11 
1981 5 17,699 27,219 9,52 6,4 8 
1982 6 22,131 40,785 18,654 33,8 5 
1983 8 26,316 10,522 -15,793 11,8 12 
1984 2 27,679 24,707 -2,971 3,8 3 
1985 4 21,983 20,051 -1,932 2,4 11 
1986 8 19,39 21,987 2,597 6 15 
1987 1 8,951 26,562 17,611 9,6 9 
1988 5 13,639 22,028 8,389 12 16 
1989 3 38,574 12,943 -25,631 0,2 15 
1990 9 49,581 31,936 -17,646 64,2 14 
1991 7 33,913 17,823 -16,09 0 11 
1992 1 45,676 22,535 -23,141 9,9 13 
1993 2 32,019 24,726 -7,292 11,5 9 
1994 6 9,638 17,772 8,134 0,6 15 
1995 10 26 18,378 -7,622 1,8 11 
1996 3 35,795 47,926 12,131 28,9 7 
1997 7 21,356 17,313 -4,043 3,2 13 
Data obtained from the cross validation procedure along with the two weather variables used in the prediction model for 
Alternaria incidence. The type of cross validation used is 10-fold cross validation. 
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The Alternaria model fails to predict the major peaks and dips of the sampled spores/day in a 

moderately accurate manner. The model predicts at its best when the total amount of rain is low, but 

not too close to zero as in 1984-1986 and in 1997. It has a tendency to exaggerate the predicted 

spores/day when the summer is cold, as in 1982-1983, 1987 and 1996, but this is contradicted by the 

coldest summer in the dataset, which is accurately predicted namely 1984. 

 

Figure 4: Results from the 10-fold cross validation procedure. The figure describes sampled spores per day and modeled 
spores per day. Cross validation with 10 folds and 18 samples means that eight folds consists of two years/samples and 
two folds have only one year/sample. The predicted spores/day for each year is predicted by the model trained using all 
other folds. 

5.2. Alternaria indicators 

5.2.1. Pre-harvest indicators 

The literature agrees on defining the most important pre-harvest weather indicators for Alternaria as 

precipitation, temperature and humidity. Agrarian indicators are also an important factor in 

Alternaria prediction models and the topic is discussed below. 

Precipitation 

Several articles has indicated that rain at certain points in time in the crops maturity process is 

integral in the development of Alternaria infection on the crop (Iglesias, 2007), (Tarekegn, 2006). 

Tarekegn found correlations between incidence of Alternaria moulds and weather variables such as 

total amount of rainfall 4-6 weeks after flowering as well as 5-8 weeks after flowering, depending on 

the crop hybrid. The variable R7 is related to a decision system for prediction of sooty mold decease 

which in turn is caused by Alternaria infection (Bailey, 2000). The reason for its low relevance here 

steams from its implicit nature.  

Temperature 

Temperature is highly important regarding both Alternaria infection and its production of 

mycotoxins. A predictive model must test if the temperature variable is inside the boundaries of the 

favorable conditions for Alternaria development, and for how long it remains there. Optimum 
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temperature for Alternaria development lies in the interval 15°C < t <24°C (Battilani, 2009), (Magan, 

1984). This can be described by degree days, which is defined as the sum of daily mean values over a 

period of time. Tmin and Tmax are also of significance since values on these two variables, outside of 

the temperature boundaries for Alternaria growth and mycotoxin production, indicate that no 

growth and production is in process. Because of the relatively cold summers in Sweden, Tmin might 

be more relevant than Tmax. 

Humidity 

Relative humidity and water activity is two closely related variables, and since one is build up by the 

other, their separation here is in need of a comment. The use of RH as a variable basically make aW 

redundant but considering the fact that aW is quite frequently used in the literature that focus on the 

biological aspects of this subject, it is of some importance. It is also of major significance in the post-

harvest contamination process. A Belgian study proposes leaf wetness duration as an indicator and 

argues that it has a strong relationship with plant deceases since many pathogens needs a layer of 

water to move on the surface of the plant and to start their infection processes. The argument makes 

sense but the practical measurement would be too complicated to incorporate in a model of this 

type.  

One way to implement humidity in a model is by using interrupted wet periods, or IWP. An IWP day 

is when relative humidity is higher than 95% for six consecutsive hours at night followed by relative 

humidity lower than 80% during the day, for six consecutive days. This indicator has been favorably 

used predicting infection from Alternaria species on potatoes in Spain (Iglesias, 2007) 

Agrarian 

There has been little research on quantifying the effect of agrarian indicators in prediction models, 

but a qualitative consensus exists. Crop rotation is the foremost important agrarian indicator of 

Alternaria development, followed by tillage practice and crop varieties (van der Fels-Klerx, 2009). 

Regarding crop stress, in a study by Hudec Alternaria incidence in barley at four different locations in 

Slovakia for two consecutive years were measured (Hudec, 2007). 32 Samples were taken at 

standard harvest time and at late harvest time. The result showed that a late harvest caused 

increased Alternaria incidence in only 15 of the 32 samples and in the other 17, the incidence had 

decreased. The result is in contrast to the general hypothesis that late harvest stimulates Alternaria 

incidence, and also serves as an example of the uncertainty of crop damage as an indicator for 

Alternaria development. 

5.3. Black point model 
In general, the deviation between sampled and predicted values is quite small with the exception of 

Nybble, Fransåker in 2002 and Kölbäck. There is no obvious pattern in these exceptions as they have 

very typical values on the temperature variable and widespread values on the precipitation variable. 

 

 

 

 



18 
 

 

Tabell 9: Data for Black point model 

Location CV-fold Sampled Predicted Deviation Rsum Tsum 

Vintrosa, 2001 1 0,867 1,666 0,8 63 14 
Borgeby, 2002 2 4,96 5,31 0,35 48 18 
Nybble, 2002 3 2,86 0,411 -2,449 123 17 
Fransåker, 2002 4 2,84 4,775 1,935 69,9 18 
Fransåker, 2003 5 3,9 3,472 -0,428 18,4 16 
Kölbäck, 2003 6 8,7 4,428 -4,272 35 17 
Borgeby, 2003 7 3,93 5,199 1,269 47 18 
Brunnby, 2003 8 3,63 3,539 -0,091 21 16 
Kampetorp, 2003 9 5,4 4,352 -1,048 43 18 

Data obtained from the cross validation procedure along with the two weather variables used in the prediction model for 
Black point incidence. The type of cross validation used is Leave-one-out cross validation, hence one sample in each CV-
fold. 

Six of the nine predictions have a deviation of less than 1,3 percentage. The biggest deviation derives 

from Kölbäck where sampled and predicted value deviates 4,3 percentage. The weather in Kölbäck 

were not atypical. 

 

Figure 5: Predicted Black point incidence derived from the leave-one-out cross validation result along with sampled 
incidence. Each sample in the graph has been used for both training and evaluation, but not at the same time. The data 
originates from the Lantmännen dataset. The location inside the parenthesis is the closest available weather station. 

An attempt using Moschini et al’s Black point models on the Swedish dataset from Lantmännen 

resulted in correlation coefficients of 0,10 and 0,11 for model 1 and model 2 respectively. The poor 

result probably relates to the fact that the test was made with the same parameters that wore 

adjusted for Argentinean conditions, and tweaking these parameters with regards to Swedish 

environmental factors might give a better result. Also, adjusting the threshold for the variables 

themselves, or the CPL, might prove worthwhile.  
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Table 10: Data for the Argentinean model 

Location Sampled Model 1 Model 2 Deviation (1
st

, 2
nd

) Dpr DDTd DRH 

Vintrosa, 2001 0,867 2,06 4,87 1,19 4,0 10 10 19 
Borgeby, 2002 4,96 -0,04 2,19 -5 -2,77 5 13 18 
Nybble, 2002 2,86 1,1 3,06 -1,76 0,2 7 12 16 
Fransåker, 2002 2,84 4,16 7,09 1,32 4,25 9 15 18 
Fransåker, 2003 3,9 -0,34 0,92 -4,24 -2,98 4 15 14 
Kölbäck, 2003 8,7 0,86 3,01 -7,84 -5,69 5 16 17 
Borgeby, 2003 3,93 0,14 2,4 -3,79 -1,53 4 17 18 
Brunnby, 2003 3,63 1,46 3,48 -2,17 -0,15 6 15 16 
Kampetorp, 2003 5,4 3,62 6,46 -1,78 1.06 9 14 18 

The two Moschini et al’s  Black point models evaluated on the Lantmännen dataset. The deviation is listed as deviation 
of first model and deviation of second model. 

 

Figure 6: Predicted incidence using the two models proposed by Moschini et al 2006 versus measured incidence of black 
pointed kernels from the Lantmännen dataset. The location inside the parenthesis is the closest available weather 
station. 

5.4. Black point indicators 
Literature on black point prediction models is scarce and  only two reports on the subject, one from 

Argentina and one from Italy (Moschini, 2006), (Languasco, 1994), where found. 

5.4.1. Pre-harvest indicators 

The Argentinean study found the susceptible time interval for the effect of weather variables to 

occur during the milk and mealy dough wheat stages, which in the Zadoks scale translates to Z71 - 

Z87 (Moschini, 2006). In other terms, the period coincides with 550 degree days after wheat heading 
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to 850 degree days after heading. This is defined as the CPL or critical period length. The Italian study 

found significant correlations between weather variables and black point incidence the first decade 

after heading, which is a CPL that does not overlap with the CPL in the Argentinean report. 

Precipitation 

There are three common ways to quantify precipitation; number of days with rainfall, number of 

consecutive days with rainfall and amount of rain fallen. Moschini uses days with rain (Moschini, 

2006), while Languasco finds significant correlations (r=0,84; P≤0,01) between amount of rain in mm 

during the first decade after heading with regards to the Zadoks scale (Languasco, 1994). 

Temperature 

Moschini utilizes degree days both for locating the CPL and in a predictive fashion as a variable in the 

model. He proposes five different variables based on temperature, of which three are new to this 

report. The new variables are DDTx, DDTn and DDTd. DDTx and DDTn are both accumulation of 

exceeding temperatures outside a threshold of maximum and minimum respectively. DDTd is the 

accumulation of positive degree days over threshold. 

Combined 

The study by Moschini combined two different weather variables by multiplying their effect and then 

made a stepwise regression analysis to find the relation between the variable and black point 

decease. The suggested variable was called DPrDDTd and consists of DPr which means number of 

days with precipitation and DDTd using a threshold of 17°C. After defining the parameters, this 

variable explained 84% of the variance in black point incidence in wheat during three consecutive 

growing seasons at different locations in the Argentinean Pampas region. In combination with a 

variable based on days with relative humidity over 62%, the explained variance increased to 87%.  

Agrarian 

Reports show that the sensitivity for black point infection in different varieties of wheat varies 

significantly. There exist resistant varieties like Benito, Glenlea and Park, as well as varieties with 

intermediate sensitivity, Leader and Sadash, and susceptible ones like all durum and soft white spring 

wheat (Saskatchewan). If there would be an agronomical category included in the prediction model 

for black point decease, inclusion of crop varieties could play a fundamental part. 

5.5. Toxin model 
The toxin model for barley predicted TeA concentrations rather accurate in two out of five instances, 

but is very inaccurate in the fifth instance. 

Table 11: Data for the Toxin model on barley 

Location CV-fold  Sampled Predicted Deviation Rtot Tsum 

Klippan  1 101,5 -3,419 -104,919 2 8 
Kristianstad  2 374 0,179 -373,821 9 9 
Svalöv 3 57 80,5 23,5 5 8 
Uppsala  4 94,5 70,243 -24,257 3 8 
Vintrosa  5 111 858,643 747,643 2 10 

Data obtained from the cross validation procedure along with the two weather variables used in the prediction model for 
Toxin incidence in barley. The type of cross validation used is Leave-one-out cross validation, hence one sample in each 
CV-fold. 
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The models inaccuracy at Vintrosa, a very warm and dry location at the time of measurement, is 

probably due to the model’s high sensitivity for temperature. This sensitivity might result from the 

lack of a sufficient quantity of training data, which does not only apply to the toxin dataset but were 

a dilemma throughout the project. 

 

Figure 7: Sampled concentration of Tenuazonic acid in barley along with predicted concentration. The sampled 
concentration is derived from the SVA dataset and the predicted concentration was modeled from all available data. 

 

In general, the toxin model for wheat is quite consistent in its predictions, with deviations of more or 

less the same magnitude across the board. The sample at Söderköping could almost be seen as an 

outlier with roughly three times the toxin concentration of the second highest sample.  

Tabell 12: Data for the Toxin model on wheat 

Location CV-fold  Sampled Predicted Deviation Rtot Tsum 

Gamleby  1 59 201,167 142,167 6 10 
Klippan 2 73 307,697 234,697 2 8 
Kristianstad  3 70 202,371 132,371 9 9 
Linköping  4 182,5 39,837 -142,663 6 10 
Skara  5 224 122,968 -101,032  1 9 
Svalöv  6 293 60,703 -232,297 5 8 
Söderköping 7 813 111,918 -701,082 7 10 

Data obtained from the cross validation procedure along with the two weather variables used in the prediction model for 
Toxin incidence in wheat. The type of cross validation used is Leave-one-out cross validation, hence one sample in each 
CV-fold.. 
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Figure 8: Sampled concentration and predicted concentration of Tenuazonic acid in wheat. The sampled concentration is 
derived from the SVA dataset. 

5.6. Toxin indicators 

5.6.1. Pre-harvest indicators 

There exists several prediction models for mycotoxins but none is specialized on predicting TeA. The 

Canadian prediction model DONcast is arguably the most renowned and is already operating on a 

commercial level forecasting the mycotoxin Deoxynivalenol (Hooker, 2002). Although, not directly 

related to TeA, DONcast can be seen as a point of aim in the development of a prediction model for 

TeA. 

Precipitation 

DONcast utilizes four different variables to incorporate rain in their model, of which three are 

number of days with rain over a threshold during different periods and the last one is the square of 

one of the aforementioned. In more detail, RAINA equals number of days with rainfall >5mm in the 

4-day period from 4-7 days before wheat head emergence (Zadoks 59), RAINA2 is the square of that 

number, RAINB equals number of days with rainfall >3mm in the 4-day period from 3-6 days after 

wheat head emergence and RAINC equals number of days with rainfall >3mm in the 4-day period 

from 7-10 days after wheat head emergence. 

Temperature 

DONcast uses two variables to measure temperature. TMIN equals number of days with mean daily 

temperature <10°C during the 4-day period before wheat head emergence and TMAX equals mean 

daily temperature >32°C in the 4-day period 3-6 days after wheat head emergence. Optimal growth 
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temperature for Deoxynivalenol is 25°C (Ramireza, 2006), while Tenuazonic acid production by A. 

tenuissima peaks at 20°C (Magan, 1984), (Young, 1980), (Battilani, 2009), which indicates that if 

DONcast would be used as a point of reference, a fine-tune of the temperature thresholds might be 

necessary. 

Humidity 

Optimal TeA production occurs at 1,0 aw (Young, 1980). 

Agrarian 

Dominating Alternaria species is a factor both in black point incidence and mycotoxin prevalence. It is 

well established that A. tenuissima is a potent TeA producer, as well as A. alternata though in smaller 

scale (Patriarca, 2007), but when A. infectoria is the dominating species the incidence of TeA is very 

low, (Webley, 1997). An Australian study by Webley in 1997 has an interesting implication regarding 

A. infectoria and A. alternata infection when he took the fact that A. alternata is a TeA producer in 

concern plus the fact that black point is associated with A. alternata infection (Webley, 1997), (Özer, 

2005). By analyzing weather damaged and black point infected wheat along with healthy samples of 

wheat with different dominating Alternaria species, Webley found that there were only mycotoxins 

in the samples if the dominating Alternaria species was A. alternata. This meant that even if the 

sample were weather damaged and had moderate black point decease; there would be no 

measureable levels of mycotoxins, even in the presence of A. alternata, if the dominating species in 

the region were A. infectoria. The interesting aspect here is that while the implication black point -> 

Alternaria may hold, there is no necessary connection between black point -> Alternaria -> 

mycotoxin. This means that black point might be an indicator for mycotoxins in a prediction model, 

but only so in combination with dominating species. Webley’s results also showed that the relative 

infection of A. alternata species in a field needs to be more than 40% to find moderate incidence of 

TeA.  

Regarding dominating species, a Norwegian study focused on pointing out the dominating Alternaria 

spp. in Norway shows that the most common species in Norway is A. infectoria, closely followed by 

A.tenuissima (Kosiak, 2004). A similar study in Denmark on barley shows that the dominating species 

in Denmark is A. infectoria (Andersen, 1996). A study by Gannibal investigated the intraspecies 

distribution of A. tenuissima isolates in Russia (Gannibal, 2007). He found that A. tenuissima is the 

dominating Alternaria species in remotely geographical locations in the northern parts of Russia and 

that there is no host-specificity within the species. In a study on dominating species in Mediterranean 

countries, the dominating species was A. alternata and A. triticina while there were no sign of A. 

tenuissima (Logrieco, 1990). There is also a difference in optimal temperature for mycotoxin 

production by A. alternata and A. tenuissima. A. alternata has production optima at 25°C while A. 

tenuissima has an optima at 20°C (Paterson, 2009). All things considered, this information makes an 

insinuation that A. tenuissima could be a species of Alternaria that favors a colder climate, and may 

therefore be a dominating species in some parts of Sweden, but further research on the subject is 

needed to form and validate a more detailed hypothesis. 

5.7. Post-harvest indicators 
The post-harvest domain is essentially a black box since very little is known about the quantitive 

effect of post-harvest variables on mycotoxins, with the exception of the consequence of certain 

preventive measures. Cooling prolongs the shell life of fruits, dipping in hot water dramatically 
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inhibits disease caused by Alternaria spp., Gamma-irradiation has a preventive effect on TeA 

production by A. alternata and particular essential oils and fungi can be used with success as 

biocontrollers for certain Alternaria spp..   

Despite the large uncertainty regarding the post-harvest process and the impact of post-harvest 

variables, the predictive problem is somewhat reduced since it is uncommon for new types of fungi 

to add to the equation while in transportation and storage condition. This means that the condition 

of the indicator variables are stable, there will be no change in dominating fungi, etc..   

In a study on the effect of temperature and moisture on TeA production for A. tenuissima on cotton 

seed, the optimum production occurred at 20°C and 1.0 aW (Young, 1980). The production optima of 

A. alternata occur at 25°C, which is slightly higher than its growth optima at 23°C (Paterson, 2009). 

6. Conclusions 
To conclude, I have here proposed four rough prediction models regarding different aspects of 

mycotoxins in grain along with important factors to include in a more thorough prediction model on 

a national level. These important factors can be divided into weather indicators and agrarian 

indicators, where the most essential weather indicators would be precipitation, temperature and 

humidity, either in combination or by themselves. Key agrarian indicators are suggested to be crop 

rotation, crop varieties and dominating Alternaria species. The mycotoxin and black point models 

presently existing in other countries are not immediately applicable on the colder Swedish climate, 

but with some adjustment they could represent guidelines for further studies. Furthermore, defining 

the CPL is central for the accuracy of a prediction model of this kind, but since there is no research on 

this subject, the actual CPL for Swedish weather conditions is regrettably unknown. 

6.1. Future challenges 
The predictive value of a model is depending largely on the quality of the indicators involved, the 

level of detail of sampled weather variables etc. The optimal conditions for producing a predictive 

model on mycotoxins in grain would include a substantial amount of data. A subject matter on which 

there is a lot more work to do. The way to develop a CPL for Swedish conditions is in my opinion 

rather straight forward. One have to test all indicators on all time periods during several seasons to 

find out which variables and time periods that have the greatest discriminatory ability. For this to 

work, again, more data is needed. During my brief modeling stint, one of my biggest concerns turned 

up to be getting hold of the correct weather data. Partly, this resulted from the difficulty of locating 

the closest weather station for the related data, and then merging and trimming it in an orderly 

fashion. A task much more complicated than the sound of it. Also, more research on the quantitative 

effects of post-harvest factors is necessary for including such variables in a prediction model. All in 

all, suggested future research areas are regarding the CPL for Alternaria mycotoxin production, 

quantitative post-harvest effects, pathways to streamline the acquisition of data for the model and 

foremost, more data needs to be sampled, and preferably from different growth seasons, to achieve 

higher predictive value.  
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Appendix, Perl code 
 

This is a Perl script written to concatenate selected parts of two files based on date. In specific, it matches the 

number of spores per cubic meter air in Stockholm with the correct  SMHI weather data. 

 

use 5.010; 

use warnings; 

#Defining variables to my files 

my $infile_1 = 'sporer.txt'; 

my $infile_2 = 'vader.txt'; 

my $outfile = 'vader_sporer_1980-2009.txt'; 

#Defining variables for trimming 

my $head = "D"; 

my $juni = '06'; 

my $juli = '07'; 

my $augusti = '08'; 

my $september = '09'; 

#Opening the first file, neatly correcting each line and putting it into the newly created array 

open FIL, $infile_1 or die "Cant open 'sporer1.txt': $!"; 

my @array_sporer; 

while(<FIL>){ 

 if (substr($_,5,2) eq $juni or substr($_,5,2) eq $juli or substr($_,5,2) eq $augusti or 

substr($_,5,2) eq $september or substr($_,0,1) eq $head){ 

  chomp $_; 

  push @array_sporer, $_; 

 } 

} 

close FIL; 

#Opening and storing the next file as previously explained 

open FIL, $infile_2 or die "Cant open 'vader2.txt': $!"; 

my @array_vader; 

while(<FIL>){ 

 if (substr($_,5,2) eq $juni or substr($_,5,2) eq $juli or substr($_,5,2) eq $augusti or 

substr($_,5,2) eq $september or substr($_,0,1) eq $head){ 

  chomp $_; 

  push @array_vader, $_; 

 } 

} 

close FIL; 

#Creating a file to write to 

open UT, ">", $outfile or die "Cant open 'outfile': $!"; 

#Defining the header and writing it to the outfile 

my $header = $array_sporer[0] . "\t" . substr($array_vader[0], 6) ; 

say UT $header; 

 

#Concatenates lines and writes them to the outfile IF the dates from the two files matches 
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my $count = 1; 

my $arraylenght = @array_sporer; 

foreach (@array_sporer) { 

 $line = $_; 

 say "$count of tot:$arraylenght"; 

 $count ++; 

 foreach (@array_vader){ 

  if (substr ($line, 0, 10) eq substr ($_, 0, 10)){ 

   say UT $line, "\t", substr($_, 11); 

  }  

 } 

} 

 

 

 

 

This is a small script for merging all files in a directory. It was used for creating a single file of several files of 

weather data. 

use 5.010; 

use warnings; 

#Loading a directory into an array, opening an outfile to write to and then adding the content of all the files in 

the aforementioned directory to the outfile. 

@files = <./data/*>; 

open UT, ">", 'TeA.txt' or die "Cant open: $!"; 

foreach (@files){ 

 open IN, $_ or die "cant open $_: $!"; 

 while(<IN>){ 

  print UT $_; 

 } 

 close IN; 

} 

 

 


