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1 Introduction

1.1 ENLIGHT

ENLIGHT (ENhanced LIGase based Histochemical Techniques) is an EU (European Union)
project intended to utilize proximity ligation and padlock probe techniques to develop assays for
in situ detection of proteins and genetic markers in tumor cells. In addition, there is a need to
develop image analysis tools to detect these in situ assay signals and clinically investigate these
assays for the diagnosis and management of cancer [1].

“When combined with fast and precise detection by image analysis, the resulting
assay methods will become invaluable tools in biological research, routine diagnosis,
and drug development.”
(Björn Ekström, CEO of Olink and coordinator of the ENLIGHT project)

1.2 Problem formulation and project aim

Prof. A. K. Raap and his research team at Leiden University Medical Center, as a part of
the ENLIGHT project, is working to understand mtDNA segregation and mitochondrial DNA
(mtDNA) mutation accumulation. Their research focuses on mtDNA segregation patterns in
in vitro cultured cells. Experimentally, this requires the determination of the mutation load
in hundreds of individual cells in multiple serial cell culture passages of a cloned heteroplasmic
founder cell (i.e., a single cell carrying both mutant and wildtype-mtDNA molecules). In situ
genotyping mtDNA with the padlock/rolling circle method [2] provides an elegant approach
for detection of mtDNA sequences variants at the (sub-) cellular level. This detection method
results in a large amount of images of cells with different mutation loads. Estimation of mutation
load requires a fast, accurate, automated, and user friendly image analysis application.

In single cell analysis it is crucial to assign signals to a specific cell. An image of a cell culture
often contains different cells that all possess different characteristics. Taking the average of such
an image will not reveal the differences and variations between the cells. In cases like these, a
single cell analysis is the only option in order to observe the dissimilarities among the cells.

Many different image analysis software can perform a single cell analysis as described above,
but they are often not suited for easy use by persons lacking extensive knowledge in image
analysis , e.g. , laboratory personnel. A windows based software that uses only a few parameters
and little manual input, yet still produces accurate and easily handleable data, is required for
this purpose. In this master thesis already existing functions from Matlab and IMP (section
2.3.1 and 2.3.2) were implement in C++ code as an Add-In to a windows based user friendly
software called VIS (Visiopharm Integrator System) (section 2.3.3). In addition, an evaluation
of its performance on mDNA mutation loads was made.

2 Background theory

2.1 Biological background

2.1.1 Mitochondrial DNA

Mitochondrial DNA (mtDNA) is a circular molecule and unlike most DNA of eukaryotic organ-
isms it is located in the mitochondria. The genetic information found in the ∼16kbp human
mtDNA is essential for a major energy-generating process of the cell called oxidative phosphory-
lation. Mitochondrial inheritance is non-Mendelian in contrast to nuclear DNA which presumes
that half the genetic material of a zygote is inherited from each parent (Mendelian inheritance).
Instead, all mtDNA is inherited from the mother. In humans, mtDNA is present at 100-10 000
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copies per cell, consisting of 37 genes and 16,569 nucleotides, coding for 13 proteins (polypep-
tides), 22 transfer-RNA (tRNA) and two ribosmal RNA (rRNA)[3]. The mtDNA consists of
one heavy and one light strand carrying 28 and 9 genes respectively. 8 of the 9 genes on the
light strand code for mitochondrial tRNA molecules. The human mtDNA is regulated by only
one regulatory region, containing the origin of replication of both heavy and light strands. All
DNA mutates and so does mtDNA. However, the mutation rate of mtDNA is approximately 10
times greater than that of nuclear DNA. The high mutation rate leads to a high variation not
only among different species but also within the same species [3] .

When the mutation is pathogenic it needs to accumulate to relative large amounts (>80% of
all mtDNAs) for the cells energy provision to become so subverted that cell functions are lost and
cells die. Such mutation accumulation leads to devastating diseases if the mutation is inherited
from the mother or to normal aging phenomena if it is acquired somatically. A major factor
in determining cellular mutation loads is the process of mitotic segregation. To understand
mtDNA segregation and mtDNA mutation accumulation, one approach is to study the mtDNA
segregation patterns in in vitro cultured cells. Experimentally, this requires the determination
of the mutation load in hundreds of individual cells in multiple serial cell culture passages of a
cloned heteroplasmic founder cell (i.e., a single cell carrying both mutant and wildtype-mtDNA
molecules).

2.1.2 Rolling-circle amplification of padlock probes

Detection of single molecule variability, interactions and mechanisms may go undetected at the
level of populations of molecules. A widely used method such as fluorescence in situ hybridization
(FISH) is able to detect large mutations such as duplications, translocations and deletions, but is
not sensitive enough to detect single nucleotide sequence variations. Padlock probes with rolling-
circle amplification (RCA) provide a method for detecting individual nucleic acid molecules with
excellent specificity [2].

The principle for detecting single nucleotide polymorphism (SNP) using padlock probes and
target primed RCA, rolling-circle amplification, is to first cut the target strand downstream
(3’-end) of the SNP with restriction enzymes. After the restriction digestion the target DNA is
irreversibly made single stranded by a strand-specific 5’-3’ exonucleolysis. The padlock probes
are then hybridized to the target DNA and if there is a perfect match to the SNP the ends of the
padlock probe will be ligated and circular DNA is formed. If the padlock probe is not a perfect
match to the SNP it will not be able to ligate its ends and no circular DNA will be formed.
The forming of circular DNA is essential for the RCA to work. After ligation, the RCA is
initiated by Φ29 DNA polymerase by turning the target molecule into a primer and the padlock
probe then serves as a template for DNA synthesis. The RCA product is then hybridized with
fluorescent-labeled oligonucleotides so that the product can be detected (Fig. 1) [2].

The advantage with padlock-probes and RCA is that even a difference in only one nucleotide
can be detected. Also, the amplification step creates a higher signal which in turn leads to
an easier detection of signals in the analysis. One drawback with this method is that even
unmatched padlock probes will hybridize with the target DNA. Although an unmatched padlock-
probe will not ligate and produce a signal, it will still affect the result since it will occupy a site
and prevent binding of other padlock probes. The detection efficiency will therefore always be
less than 50% if two different padlock probes are used to find a SNP.
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Figure 1: Detection of SNP with padlock probes and target-primed rolling circle amplification, used with
permission from Larsson et al. [2]. The target strand is made single stranded by restriction digestion and
exonucleolysis. A padlock probe is then hybridized to the target strand. If the padlock probe is a perfect match
for the target strand it will ligate and form a circular DNA. The circular DNA serves as a template for the RCA.
The amplification product is hybridized with flourescent-labeled oligonucleotides for visualization of the SNP.

2.2 Digital images analysis

2.2.1 Digital images

A digital image is built up of elements called pixels (picture elements), for volume images the
elements are called voxels (volume picture elements) (Fig. 2). An image can be represented as
a mathematical function of five variables f(x, y, z, t, b). x, y and z are all spatial variables t is
the time variable and b represents the spectral band in a multispectral image. Color images
have three spectral bands, each one of these can be seen as a grey-scale image. One of the most
common ways of representing a color image is by the RGB model. The RGB color model is an
additive model in which red, green and blue are combined in various ways to reproduce other
colors. Each color band also has a bit-depth representing the amount of grey-levels in that color
band. A color band with 8-bit has 28 = 256 different grey-levels which gives an RGB image,
8 bit in each color band, a total of 2563 or 16777216 colors [4]. A higher bit-value will include
more information in the image while a lower bit-value, for example 1, will include only 21 levels
(black and white), a binary image.

Connectivity
In a digital image neighbors must be defined, the neighbors can be defined in different ways
depending on the context. A pixel in 2D has four edge neighbors and four vertex neighbors
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(a) f(x, y) (b) f(x, y, z)

Figure 2: (a) Pixels (b) Voxels

(Fig. 3). If a 4-connectivity is used only the four edge neighbors are counted as neighbors. In an
8-connectivity all the edge and vertex neighbors are included in the neighborhood (Fig. 4) [4].

(a) (b)

Figure 3: (a) Edge neighbors (b) Vertex neighbors

(a) (b)

Figure 4: (a) 4-connectivity (b) 8-connectivity

2.2.2 Pre-processing

Pre-processing are operations done on an image before an analysis is performed; both input and
output are intensity images. The aim of pre-processing is to improve the image ,e.g., suppress
noise present in the image or enhance some image features important for further processing.

Filtering
Filtering operations performed directly on the pixels of an image, spatial filtering, is an important
aspect of image analysis as it provides a possibility of removing noise, sharpening blurred images,
enhancing areas of a specific characteristic, etc. The operation consists of multiplying each pixel
in a neighbourhood by a corresponding coefficient and summing the results in point (x, y) in the
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image f(x, y). The neighbourhood containing the coefficients are referred to as masks, filters,
or filtermasks and can be of any size m × n. The filtermask is moved over the image and for
every pixel (x, y) the sum of the neighbourhood multiplied by the mask coefficients is set at the
position (x, y)[5]. In Fig. 5 the result from an average filtration with a 3× 3 mask is shown.

(a) Average filtration of image f(x, y)

(b) (c)

Figure 5: (b) Image f(x, y) before filtration. (c) Image f(x, y) after average filtration.

2.2.3 Segmentation

Segmentation is the process of dividing a digital image into specific regions. The aim of the
segmentation is to locate and separate different objects in an image. Each object is given a
specific value (label) representing that object. In Fig. 6 an example of a segmented image is
shown, the background is labelled as 0, the triangle is labelled 1, and the square is labelled as 2.

Thresholding
Thresholding is the easiest way of segmenting an image. In a greyscale image, pixels with a value
higher (i.e. brighter pixels) than a certain threshold value are marked as objects often given
the value 1. Values lower than the threshold are considered as the background and are given
the value 0 (Eq. (1)). After the threshold a binary image of only values 0 and 1 is produced.
The easiest way of thresholding an image is to manually supply a threshold value T . As a guide
when choosing the threshold value an image histogram is used. The image histogram p(f) from
the image f(x, y) is the probability function which gives the frequency of the different grey-scale
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(a) (b)

Figure 6: Segmented image: Background label 0, triangle label 1 and square label 2.

levels in f(x, y). The result from a grey-level thresholding b(x, y) of f(x, y) is seen in Fig. 7.

b(x, y) =

{
B1 if f(x, y) ≥ T

B2 if f(x, y) < T
(1)

(a) f(x, y) (b) p(x, y) (c) b(x, y)

Figure 7: (a)Original image. (b) Histogram. (c) Image after threshold.

Often, a manual threshold is not the most suitable way of thresholding an image. Manual in-
put is unwanted, as it may vary depending on the user, and should be minimized. An automated
threshold detection algorithm can therefore be used. One automated method is Otsus method
of thresholding. This method is designed to separate foreground from background. From the
histogram Otsu selects a threshold that maximizes the between-class variance of the background
and foreground. The method relies on the assumption that all the pixels in the image belong to
either the background or the foreground (i.e. objects) [6].

Flood fill
The flood fill algorithm is often seen as the bucket in paint programs where it is used to fill a
connected area with a new color. The algorithm takes three parameters, the starting pixel, a
target value, and a replacement value. The algorithm starts at the starting point (pixel) locates,
in a prior defined connectivity, all pixels connected to it by a path of the target value and
substitute their value with the replacement value.The results from two types of flood fill can be
seen in Fig. 8.
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(a) (b) (c)

Figure 8: (a) Before flood-fill. (b) Result from flood fill in 4-connectivity initiated in the middle compartement.
(c) Result from flood fill in a 8-connectivity initiated in the middle compartement

(a) (b)

Figure 9: (a) Binary image. (b) Image after applied distanc transform.

2.2.4 Morphological operations and geodesic transformations

Morphological operations correspond to operate on the shape and form of objects ,e.g. , erosion
and dilation. Morphological operations include operations on one input image together with a
structuring element. In contrast, a geodesic transformation uses two input images of the same
size where a morphological operation is performed on the first image and it is then forced to
remain either above or below the second image [7].

Distance transform
A distance transform applied to an image supplies each pixel with a distance to the nearest pixel.
The boundary pixel can be either the background or the foreground. If a distance transform is
applied to the object in Fig. 9(a) each grey level pixel value will represent the nearest distance
to the background (value 0), Fig. 9(b).

There are several ways of representing the distance in an image. In city block distance
metric, the path between pixels is based on a 4-connected neighbourhood. Pixels whose edges
touch are 1 unit apart and pixels diagonally touching are 2 units apart. The city block distance
between two points is defined as:

d = |xi − xj |+ |yi − yj | (2)
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The chessboard distance metric measures the distance based on an 8-connected neighbour-
hood. Here both edge pixels and corner pixels are considered as neighbourhood and therefore
have the same distance, 1 unit, to the centre pixel. The chessboard distance between two points
is defined as:

d = max(|xi − xj |, |yi − yj |) (3)

In Euclidian distance metric, the distance between two pixels is the length of a straight line
connecting the pixels. The Euclidian distance metric is the most accurate distance representation
but also the one that has the highest computational cost. The Euclidian distance between two
points is defiend as:

d =
√

(xi − xj)2 + (yi − yj)2 (4)

Computing the distance from a pixel to a set of boundary pixels is a very costly operation
since it is a global operation. As a result, algorithms that consider only a small neighbour-
hood are necessary for efficiently creating a distance map. These algorithms can calculate the
Euclidean distance in an image, but more often an approximation is used. The basic idea for
these algorithms is that the global distances in the image are approximated by propagating local
distances, i.e., distances between neighbouring pixels. The propagation can be done with either
a parallel or sequential algorithm [8]. The masks used in these algorithms can vary in neigh-
bourhood size, see Fig. 10 for an example of a 5x5 mask for parallel and sequential algorithm
propagation.

(a) Parallel mask (b) Forward mask (c) Backward mask

Figure 10: Mask describing the distance transformations. (a) Mask used in parallel computations. (b) and (c)
The parallel mask is split into two masks used for sequential computations.

In the parallel algorithm the mask in Fig. 10(a) is placed over each pixel in the image. The
local distances in each mask pixel cn is added to its corresponding pixel value in the image. The
new pixel value is the minimum of all of these sums. The process is repeated until no pixel value
changes in the image.

vm
i,j = min

(k,l)∈mask
(vm−1

i+k,j+1 + c(k, l)) (5)

vm
i,j is the value of the pixel in position (i, j) at the iteration m. (k, l) is the position in the mask,

(0, 0) being the center, and c(k, l) is the local distance from the mask.
In the sequential algorithm the symmetrical parallel mask is split into two masks; shown in

Fig. 10(b) and Fig. 10(c). Each of the masks are passed over the image once; the forward mask
from left to right, and top to bottom, and the backward mask from right to left, and bottom
to top. The centre pixel value is, as in the parallel algorithm, the minimum of the sum of cn

and its corresponding pixel value in the image. After the passages of the masks a distance map
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is produced in the image. The equation for the sequential algorithm for forward and backward
masks is seen in Eq. (6).

vi,j = min
(k,l)∈mask

(vi+k,j+l + c(k, l)) (6)

The notations are the same as in Eq. (5). If no border expansion for the image is done, the
initial and final position of the masks have to be adjusted so that none of the mask elements
are positioned outside the image border.

The local distances cn in the masks differ depending on the distance metric used. Integer
numbers are often preferred in digital image processing. A good approximation of the Euclidian
distance approximation with integer numbers can be achieved by using Chamfer 3-4 for a 3x3
neighbourhood or chamfer 5-7-11 for a 5x5 neighbourhood, they produce maximum errors of
0.0809 and 0.0202, respectively, compared to the Euclidean distance [8]. These masks can be
seen below in Fig. 11.

(a) (b)

Figure 11: Chamfer 3-4 and Chamfer 5-7-11 for integer approximations of Euclidean distances.

Fig. 12 shows an example of distance transform computed by City block, Chessboard, Cham-
fer 3-4, Chamfer 5-7-11, and Euclidean distance metrics.

H-extrema
Regional maxima are connected pixels with the same intensity value, t, whose external boundary
pixels (in a defined connectivity) all have a value less than t. An image of regional extrema will
show both relevant and irrelevant image features. A geodesic transform called h-extrema is able
to filter the image by using a contrast criterion. The h-maxima transform is able to suppress all
maxima whose depth is smaller than a given threshold level t [7].

H-extrema is an iterative converging method. The image f is first subtracted by a constant
value t creating the image g i. A scan over g i finds the maximum value of a neighborhood of each
pixel, MAXg i. g i+1 is created from the minimum of f and MAXg i. The operation is performed
again with f and g i+1 until g i equals g i+1.

2.2.5 Combining morphological operations with segmentation

Watershed
The watershed segmentation is a region based method of segmenting an image. Watershed
segmentation can separate connected objects ,e.g. , clustered cells. The watershed segmentation
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(a) City Block (b) Chessboard (c) Chamfer 3-4

(d) Chamfer 5-7-11 (e) Euclidean

Figure 12:

can be understood as seeing the image as a landscape. The gray level intensity represents the
differences in elevation in this landscape. Water enters through the local minima and starts to
rise. A lake around a local minima is created and referred to as catchment basin. Water stops
rising when it reaches a pixel at the same geodesic distance from two different catchment basins.
As two catchment basins meet they form a dam or watershed that separates the two objects. All
that is left after the watershed segmentation are these watershed lines separating the objects see
Fig. 13, [9]. In some versions of the watershed segmentation water enters through the maxima
instead of the minima.

2.3 Image analysis environments

2.3.1 Matlab

Matlab, created by The MathWorks (Natick, Massachusetts, USA, mathworks.com), is a nu-
merical computing and programming language. Matlab allows easy manipulation of matrices,
implementation of algorithms, creation of user interfaces and interfacing with programs in other
languages. Many addable functions specialised in image analysis are available making matlab a
good tool for developing image analysis algorithms. Some disadvantages of matlab are that it
is fairly expensive if only needed for one type of analysis application and quite some experience
and knowledge is needed in order to benefit of all matlab’s functionalities.

2.3.2 IMP (IMage Processing)

IMP is a C/C++ based image processing software for Linux developed at CBA (Center for Image
Analysis at Uppsala University). It possesses many image processing features and is excellent in
performing a vast variety of image analysis. Knowledge in C/C++ programming provides the
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(a) (b) (c)

Figure 13: (a) Binary image before watershed. (b) Landscape like representation of the image after distance
transform. (c) Image after watershed.

ability to add new functions to the software. The disadvantage of IMP, from, e.g. , laboratory
personnel’s point of view, is that it is a locally used (at CBA) software, it runs under Linux,
and requires knowledge in image processing.

2.3.3 VIS (Visiopharm Integrator System)

Visiopharm Integrator System (VIS, Visiopharm, Hørsholm, Denmark, visiopharm.com) is a
windows based image analysis software for medical applications. It includes a lot of features, e.g.
, automated image acquisition, different segmentation approaches, stereology and a developers
kit called IU-SDK (Imaging Utilities Software Development Kit). The IU-SDK is a C++
based library (DLL) for advanced image analysis and it is the foundation of VIS and also for
the Visopharm Plug-In modules for developers. Users can, by using IU-SDK, make their own
algorithms and analyses and use as a Add-In to VIS. Among other things, VIS also has two
special features called masks and labels, both visualized as layers over an image. The masks
define different regions of interest (ROIs) in an image. When an analysis is performed it can
be set to include only parts inside a ROI. The labels can be used to label areas of specific
characteristics in an image. Both the masks and the labels can be drawn by the mouse right on
the image, which makes it very easy to define and edit regions and labels. In conclusion, one
can say that VIS is a user friendly software that can perform a vast variety of image analyses.
In addition, advanced users have the possibility to add their own functionality to the software.
For a screenshot of VIS see Fig. 19.

Some disadvantages of VIS are that it uses mainly pixel - based classification for segmentation
and it focuses on area count rather than single event count. In certain situations neither of these
two approaches are the best choice. Furthermore, VIS is currently not able to count signals per
cell, making single cell analysis impossible. One objective of the ENLIGHT project is to promote
further developement of VIS for applications such as single cell analysis.

2.4 Programming languages and environments

2.4.1 Visual C++

Microsoft Visual C++ (also known as MSVC) is an integrated development environment (IDE)
product for C, C++ and C++/CLI programming languages. It consists of tools for developing
and debugging C++ code. C++ is an extension of C and it uses object oriented programming.
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Visual C++ has features such as syntax highlighting (according to the category of terms),
IntellliSense (a coding autocompletion feature) and advanced debugging functionality. The
compile and build system features precompiled header files and “minimal rebuild“ functionality
which all significantly shortens the time to edit, compile and link the program.

2.4.2 Matlab

“Jack Little and Cleve Moler, the founders of The MathWorks, recognized the
need among engineers and scientists for more powerful and productive computa-
tion environments beyond those provided by languages such as Fortran and C. In
response to that need, they combined their expertise in mathematics, engineering,
and computer science to develop MATLAB, a high-performance technical computing
environment.”[10]

Matlab is a mathematical scripting language similar to C++. It uses efficient matrix and
vector computations with easy creation of scientific and engineering graphics. It can be used as a
an application development with graphical user interface building. Matlab uses object-oriented
programming. File I/O functions, string processing and extensibility (tool boxes) are some more
features of the matlab programming language. A matlab-code does not need to be compiled
before execution which makes it very easy to use when developing new algorithms. Matlab can
be run under windows, Unix and Mac OS X.

3 Materials and methods

For single cell analysis of signal counts VIS is limited and can not complete the task. Functions
from Matlab, IMP, and IU-SDK were utilized to make an Add-In for VIS that is able to perform
single cell analysis of padlock probed mtDNA.

3.1 Cell staining and image acquisition

The nuclei are stained with DAPI (blue). Padlock probes for mutated mtDNA are detected with
Cy5 stain (red) and padlock probes for wild-type DNA are detected with FITC stain (green).
For visualization of the cytoplasm tubulin is detected with mouse anti-tubulin antibodies and
two different secondary antibodies, rabbit anti-mouse FITC (green) and goat anti-mouse Alexa
594 (red). Cytoplasmic stains can not be used together with padlock probes detected with the
same color due to spectral overlap. Images are acquired using an epiflourescent microscope
(Leica, Leica Microsystems GmbH, Wetzlar, Germany) equipped with a cooled monochrome
CCD camera (Quantix, Photometrix, Melbourne, Australia). From the image acquisition three
grayscale images are produced representing the red, green and blue channel. The images are 16-
bit tiff with a size of 1308x1020 pixels. All images were acquired at the Department of Molecular
Cell Biology at Leiden Medical University.

3.2 Deliniation of nuclei

The cell segmentation is initiated by a segmentation of the image channel representing the
nuclear stain (Fig. 14A). Otsu’s method of thresholding, which minimizes the variance of the
foreground and the background, separates the nuclei from the background [6] (Fig. 14B). Otsu’s
method of thresholding works well here due to the assumption that only background and for-
ground is present in the image. Sometimes, dark areas inside the nuclei appear as holes after

13



the threshold. These holes are filled using a flood fill algorithm. The algorithm floods the back-
ground from all background border pixels. All pixeles reached by the flood fill will be set as
background while all pixels not reached by the flood fill will be set as objects.

The binary image representing the nuclei is transformed to a landscape-like image using
distance transformation (Fig. 14C). The distance image is produced using the 5-7-11 Chamfer
distance transform on the binary image [8]. The chamfer distance transform was preferred over
the Euclidian distance transform due to lower computational cost and yet sufficient result. In
addition, the chamfer distance transform yields integer results which makes computation even
easier.

Seeds, entry points for the water in watershed segmentation, representing the different nuclei
are needed in order to separate clustered nuclei into different objects with the watershed seg-
mentation. Due to imperfect circularity of the nuclei distance transform may lead to multiple
seeding points or local maxima, for the same nucleus. This will result in over-segmentation. The
h-maxima transform is able to suppress maxima whose depth is smaller than a given threshold
t [7]. A low value of t in contrast to a high t value will result in more seed points, hence more
over segmentation. By suppressing all small maxima several adjacent local maxima are merged
into one regional maximum, i.e., one seed point for each nucleus is achieved.

Clustered nuclei are separated by watershed segmentation [9]. For our version of the water-
shed segmentation water raises from the maxima, i.e., the local maxima are the seeds. Water
rises and floods until two catchment basins meet and generate a watershed that separates the
nuclei. Given that flooding only starts from the seeds, every seed will produce one object. The
implementation of the watershed can be done with sorted pixel lists, therefore the segmentation
can be done very fast [11]. Incorporated into the watershed is an area count of each object label.
This count is used for removing objects that are smaller than a user defined area minimum,
i.e. objects not considered to be true nuclei. The value t from h-maxima transform is directly
proportional to the radius of an object and can therefore also be used to remove objects that are
too small to be true cell nuclei, and thus have a radius less than a specified value. However, the
area object count uses less computational time than the h-maxima transform and was therefore
preferred for removing small objects. The result from the watershed segmentation can be seen
in Fig. 14D.

3.3 Deliniation of cytoplasm

In single cell analysis it is crucial to assign signals to a specific cell. To do this, each cell
compartment (cytoplasm) has to be delineated. A common approach is to use a cytoplasm stain
with the intention of using the staining as a guide when delineating the cytoplasm [12],[13].
Another approach is to use a membrane stain, which binds to the cytoplasmic or nuclear surface.
For many molecular detection systems a blue stain is used for the nucleus, and red and green
stain for molecular detection. Due to fluorescence spectral overlap this limits the possibility of
using a unique color for a cytoplasmic stain. Also, due to the antigen destructing nature of
the padlock/RCA procedure cytoplasmic staining (e.g. tubiln) in a fourth flourecensce color
is currently not an option. As a consequence, another approach for delineating the cytoplasm
is required in this case. One way to approximate the outline of the cytoplasm, for each cell,
without the help of cytoplasmic stain is by using a fixed radial distance from the nucleus border
[14].

To validate the fixed radius method of delineation two more approaches to the delineation of
the cytoplasm were performed as a comparison; an automated method that utilizes a cytoplasmic
stain and another method based on manual delineation. The three methods were compared to
see whether the use of a fixed radius was sufficient enough for this type of single cell analysis.
Cytoplasms that have a nucleus cut by the image border were excluded since a big portion of
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(a) (b)

(c) (d)

Figure 14: (a) Nuclear stain. (b) Resulting binary image after thresholding. (c) Distance transformation of (b).
(d) Final segmentation result.

the cell lies outside of the image.

3.3.1 No cytoplasmic stain (NCS)

If no cytoplasm staining is present, the delineation of the cytoplasm is purely based on a fixed
distance from the nucleus. A distance transform is applied to the background of the binary
image of the nuclei. This results in an image that represents the distance to the nearest nucleus
for each pixel in the image. A user defined threshold, corresponding to the maximum radius of
the cytoplasm, is applied to the distance transformed background. A watershed is again used
to define the borders of the objects. In order to use the same watershed as previously, i.e., with
water rising from image maxima, the distance transformed image is inverted. Water rises from
the maxima in the image and rises until water from two catchment basins meet and a watershed
line, separating two cytoplasms, is formed, see result in Fig. 15A.
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3.3.2 Cytoplasmic stain (CS)

The second approach to delineation of the cytoplasm makes use of a cytoplasm staining (tubulin
stain). Tubulin is present throughout the whole cytoplasm and can therefore be used as a
marker for the cytoplasm. A variance filter is applied to the channel representing the tubulin
and areas of high intensity variation (tubulin areas) are enhanced. Thereafter, an average filter
is applied to even out areas in close proximity that have varying variance. The variance image
is thresholded by Otsu’s method, but to include all of the cytoplasm the threshold is adjusted
by multiplying it with 0.25. This may be avoided by using a different thresholding method.
A watershed transformation seeded by the nuclei and restricted to the binary image of the
cytoplasm is there after applied, see result in Fig. 15B.

(a) (b)

Figure 15: A: Result of cytoplasmic segmentation not making use of the cytoplasmic stain (NCS). B: Result
when cytoplasmic stain is included (CS).

3.3.3 Manual delineation (O)

The third method for delineation of the cytoplasm is a manual segmentation. Here, two observers
used the software VIS to outline the cytoplasm of the tubulin stained images manually. The
cytoplasm was outlined by using different masks (ROI) in VIS.

3.3.4 Comparison of segmentation methods

In the evaluation of the different methods for cytoplasm segmentation, accuracy (agreement
with truth), precision (reproducibility) and efficiency (time) are considered, based on the ideas
by Udupa et. al. [15]. Define S as being the result of the segmentation method being compared
to St, the true segmentation. The accuracy makes use of three definitions; False Negative
Area Fraction (FNAF), False Positive Area Fraction (FPAF) and True Positive Area Fraction
(TPAF). FNAF is the fraction of St that was missed by S. FPAF denotes the area that is falsely
identified by S as a fraction of St. In the current case, the parts of the S that overlap with the
image background, as defined by St, are not counted as falsely identified because the background
does not give rise to any signals and will not affect the calculation of signals per cell. TPAF
describes the total amount of cytoplasm defined by S that coincides with St as a fraction of St.

Precision is the ability to reproduce the same result. Naturally, a fully automated method
will always reproduce the same result when applied to the same digital image. With manual
delineation the result will most likely not be fully reproducible, there will be inter- and intra-
observer variation.
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Figure 16: Filter for enchancing areas of local maxima

Two factors must be considered when comparing the efficiency of a segmentation method;
the computational time and the human operator time required to complete the segmentation.

3.4 Localization of padlock signals

The image channels containing the padlock signals are filtered with a 5x5 kernel that enhances
areas of local maxima Fig. 16. A varying background can be a problem in some of the images,
and background reduction by subtraction of an average filtered image is applied prior to signal
detection. The average filtration is done three times with a 7x7 mean filter. The signals are
separated from the image background by a user defined threshold set to a default value that
localizes the major proportion of the signals. However, a lower threshold may be used in images
with less background noise. The same threshold was used for all images when comparing methods
of delineating the cytoplasm. In order to evaluate the influence of the threshold on the final
measure of mutation load the thresholds were increased and decreased by 20%. The variation
caused by these changes is shown as error bars in Fig. 18A. The binary image representing
the signals is further reduced to single pixels by distance transformation and detection of local
maxima. Thus, each signal event is represented by a single pixel.

3.5 Counting signals per cell

The counting of the signals per cell is the last step in the analysis. Since every signal event is
represented by only one single pixel the counting is done fairly easy with just one scan over the
image. Also, each cytoplasm has its own label representing that specific cell. The scan over
the image starts in the top left corner and moves from left to right and top to bottom. When
it reaches a green or red signal it checks in what cell it is located and add one red or green
signal-count to that cell. When the scan is done all cells have two number representing the
count of green and red signals in that particular cell. These data are shown in an excel sheet as
a pop-up window with the use of Microsoft Office Web Components. The first column shows the
name of the image analyzed, the second column shows the ID of the cell, the third and fourth
column is the amount of red and green, respectively, signals present in that cell, the fifth and
sixth column shows the fraction of red and green signals over the total amount of signals in that
particular cell.

4 Results

The results consist of three parts. The first part is a comparison between three different meth-
ods of delineating cytoplasms. The second part, image based measurements of single cell mu-
tation load are compared to measurements based on single cell PCR-RFLP (Polymerase Chain
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Reaction-Restriction Fragment Length Polymorphism), a biochemical method that measures
mutation load in single cells by quantifying DNA-fragment length variation This comparison
was performed to validate the image based method of analysis. The third part is the result of
the added functionality to VIS, the new tool for single cell analysis referred to as the Add-In.

4.1 Comparison of segmentation methods

For a full comparison of segmentation methods, accuracy, precision, and efficiency should be
considered. The comparative study of methods for cytoplasm segmentation was performed on 9
images containing a total of 56 cells. Two fully automated image based segmentation methods,
one using information from a cytoplasmic stain (referred to CS ), and one not using information
from a cytoplasmic stain (referred to as NCS ) were compared to each other and to manual
segmentation (refered to as O) of the same cytoplasms. Both automated methods are seeded
from the same image of the cell nuclei, and both method used the same threshold t for the
h-maxima transform. As no gold standard or ground truth is possible to produce, it is assumed
that the manual segmentation method (O) results in the true delineation, defined as SO

t . Manual
segmentation was performed three times by two different persons to provide measurements of
precision (reproducibility) in terms of inter- and intra- observer variability (refered to as O1a,
O1b and O2). The results can be seen in Table 1.

First of all, considering the accuracy, NCS and CS is significantly (α=0.05) less accurate
than O. Between CS and NCS no significant (α= 0.05) difference can be seen in terms of
accuracy. Furthermore, method O has noticeably lower precision than the other methods, as
the computer based methods will reproduce the same result if re-run on the same image data,
i.e., 100% precision, while manual segmentation varies both between observers (inter-observer
precision is 79%) and for the same observer assessing the data at different times (intra-observer
precision is 84%). Finally, the efficiency of NCS and CS is approximately 30 times higher than
that of the manual segmentation O when using a 2.53 GHz Intel Pentium 4 processor and O
requires human operation while NCS and CS are fully automatic.

Comparison of methods for cytoplasmic segmentation shows that the addition of a cyto-
plasmic stain does not result in a significant increase in accuracy. This may seem strange as a
cytoplasmic stain will guide the segmentation mask to the true edges of the cytoplasm. How-
ever, in the presented analysis, inclusion of parts of the image background does not affect the
measurement of mutation load, as no signals are present in the background. Therefore, the in-
clusion of background as part of the false positive area fraction (FPAF) was not used. For other
applications, e.g., if cytoplasmic area is to be measured, a segmentation method making use of
the information from a cytoplasmic stain may be necessary. It is also worth mentioning that the
agreement between manual cytoplasm segmentation and either of the fully automated methods
is about the same as the agreement between manual cytoplasm segmentation performed by two
different persons. The automated method not including a cytoplasmic stain turned out to be
a sufficiently accurate and fast method for analysis of single cell mutation load. The fact that
no cytoplsmic stain was included also allows the use of two different colors for mutant and wild
type mtDNA without problems with overlapping fluorescence spectra. With all of these results
in mind the NCS is sufficient enough to be used in the single cell analysis by the Add-In. For
further verification, images containing cells with known ratios of mtDNA mutaion loads were
analyzed by the Add-In using NCS in 4.2.

4.2 Image based measurement of mutation load vs. PCR-RFLP

Mutation load is the proportion of mutated mtDNA (number of red padlock signals) compared
to wild type mtDNA (number of green padlock signals) per cell. The Add-In analysis was first
performed on a padlock probed co-culture, meaning that cells with 100% wild type mtDNA
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Table 1: Comparison of segmentation methods
Method Accuracy Precision Efficiency

vs. TPAF FNAF FPAF (%) Cells/min
NCS O1a 0.87±0.03 0.14±0.03 0.12±0.04 100 30
CS O1a 0.85±0.03 0.16±0.03 0.11±0.03 100 30
O2 O1a 0.84±0.02 0.16±0.02 0.02±0.01 79 1
O1b O1a 0.90±0.02 0.10±0.02 0.03±0.01 84 1

(a) (b)

Figure 17: Two views of the same image of co-cultured cells where padlock probes are seen as small spots and
cell nuclei are shown in darker gray. (a) Image channel R and B, showing padlock probes against mutated DNA.
(b) Image channel G and B, showing padlock probes against wild type DNA. In this data set, cells should either
be 100% mutant or 100% wild type.

were mixed and cultured together with cells having 100% mutated mtDNA, see Fig. 17. This
data set consisted of 29 images containing a total of 178 cells. A histogram of mutation load
per cell measured from image data is shown in Fig. 18(a). The data from the co-culture shows
distinct distributions at the extremes, i.e., cells with 100% and 0% mutation load. The Add-In
performed very well considering hardly any intermediate levels were found. A large amount
of intermediate levels would have been an indication of a high degree of error in the analysis
method. Second, an analysis of a padlock probed culture (G55) of cells with a ∼50% mtDNA
mutation load was made on 66 cells in 10 images. As predicted, the analysis from G55 has a
clear peak close to 50% mutation load Fig. 18(a).

To study the segregation of mtDNA (originating from a heteroplasmic founder cell) different
passages in the progression must be analyzed. Mutation loads of single cells from one passage
were measured by the Add-In and compared with a PCR-RFLP based analysis of the same
passage Fig. 18(b). The image analysis was done on 536 cells in 58 images.
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(a) (b)

Figure 18: (a) Histogram of proportion of cell population against mutation load as achieved by image based
measures. Error bars show variation caused when varying the threshold for signal detection. (b) Histogram
of image and PCR-RFLP based measure of mutation load in cells from passage 48 of a clone known to be
heteroplasmic for the A32n3G mtDNA mutation.

4.3 Analysis tool for VIS

The images intended for analysis are imported into the VIS by the import wizard to the image
database (Fig. 19). There is no limit to the number of images being imported. Often color
images are imported as separate images for each color channels (red, green and blue). When
the images have been imported they can be visualized in VIS. The launch of the Add-In is done
in the VIS workspace and a pop up window for the added functionality will appear (Fig. 20).

In Fig 20, the parameters for the Add-In are shown, they are all set to default values that
will perform well in most cases. The first parameter, Radius, is the fixed radius of the cytoplasm
delineation; a higher value will create a larger cytoplasm. The second parameter, Min Nucleus
Area, is the smallest area (in pixels) that a nucleus can have, objects with a smaller area than
this value will be removed. The third parameter, Blob Threshold, is the threshold value for
finding the padlock-probe signals. The default value is 500 and finds most of the signals without
including any background noise. If the image has less background noise a lower value can be
chosen and more signals will be identified without falsely identifying signals in the background.
The last three checkboxes decides what the Add-In should do. The first option, merging of color
bands, is used if the image is separated into three grayscale images for each color band. With this
function the three grayscale images will be merged into one RGB image. The second check box
is for, finding the nucleus, delineation of cytoplasm, and identifying the padlock-probe signals.
And the last checkbox is for counting the signals for each cell.

The analysis can be performed on one image or a set of images. If an analysis of several
images is preferred one should choose the folder containing the images destined for analysis in
the image database. After that, launch the Add-In and set the parameters preferred and click
the batch process button in VIS (Fig. 19). The analysis will be performed on all the images
at once. When the analysis is done the delineation of the cytoplasms will be seen as different
masks and the detected red and green signals will have one label each (see section 2.3.3 regarding
masks and labels in VIS). The maks (cytoplams) and labels (signals) can easily be edited with
the mouse if the result is not satisfying enough. After the changes to the masks and labels the
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Figure 19: Workspace in VIS, arrows showing; image database, launch of Add-In, Add-In pop-up window,
visualization of image and batch process button.

count signals checkbox can be checked and a new count of signals per cell will be performed. The
data from the analysis is viewed in an excel sheet as a pop-up window where further statistical
analysis can be done. A result from a typical analysis is seen in Fig. 21. An analysis of 50
images, with all the steps included, takes approximately 15 min (20 sec/image) and user input
is only required before the initiation of the analysis and, if needed, after the analysis is done.

5 Future work

Most of the signals are detected in an image but some of the weaker signals are not detected
when using the default settings of the Add-In. Lower settings can be chosen with the risk of
falsely detecting signals from background. This is something that probably can be improved by
trying several other approaches to the signal detection.

The delineation of the cytoplasm is a crucial step in single cell analysis and may be the
biggest contribution of errors in this type of analysis. If cells lie close together and are very
irregular in shape, the error of the fixed radius method would increase. In these cases another
approach may be needed in order to get accurate results. Moreover, if cytoplasmic area is to
be measured, a segmentation method making use of the information from a cytoplasmic stain
may be necessary to include. One approach would be to try to find a cytoplasmic stain that
is compatible with the padlock probe and RCA. Also the problem of spectral overlap must be
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Figure 20: Add-In pop-up window.

solved, one approach could be by doing several stainings with the same color and washing the
sample between the stainings.

The Add-In takes approximately 20 sec to analyze an image which might be too much when
many images need to be analyzed. Not much time has been spent on optimizing the execution
time of the software and a thorough optimization could probably decrease the execution time
significantly.

The Add-In has been tested and developed for the detection of padlock probes in cultured
cells. Images of ,e.g ,. tissue cells may not be as clear and defined as these cultured cells and the
analysis may therefore not work as well in these types of cases. The Add-In could therefore be
extended and improved to work for a wider spectrum of applications. As the ENLIGHT project
mainly focuses on tissue samples this type of improvment would be of great interest.

Another thing that could be of interest in future work is to add the possibility of saving
and loading different Add-In parameter configurations. As of now, the default values appear
at startup and changes made to them will be deleted the next time the application is started.
This added functionality would make it possible to load a file containing specific parameter
configurations for a specific application.

6 Conclusion

Single cell analysis of mitochondrial mutation load detected with padlock probes and RCA is an
important aspect of the ongoing ENLIGHT project, but brings some complexities. As of now, no
cytoplasmic stain compatible with this application is available and still the cytoplasm needs to
be delineated. By using a fixed radius approach of delineating the cytoplasm an accuracy as high
as 87% can be achieved when compared to a manual delineation. This is sufficient enough for
performing an analysis that in the end will give satisfying results. By using the windows based
user friendly software VIS together with the newly added functionality the analysis can be done
without any extensive knowledge in image analysis. Furthermore, only few input parameters
that often need not to be changed makes the analysis even easier to carry out. By using the
masks and label functions in VIS, the segmentation results from the analysis can easily be edited
before the final count of the signals. The data export to excel sheets makes it possible to easily
do further statistical analysis of the result. The analysis is not perfect and many aspects can
be improved and optimized. In addition, the Add-In has been developed and tested for this
specific application but in the future it could probably be extended to work for wider spectrum
of applications.
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Figure 21: VIS workspace after analysis with the Add-In.
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8 Abbreviations

CCD Charge-Coupled Device
CS Cytoplasmic Stain
ENLIGHT ENhanced LIGase based Histochemical Techniques
EU European Union
FISH Flourescence In Situ Hybridization
FNAF False Negative Area Fraction
FPAF False Positive Area Fraction
I/O Input/Output
IDE Integrated Development Environment
IMP IMage Processing
IU-SDK Image Utility-Software Development Kit
MSVC Microsoft Visual C++
mtDNA mitochondrial DNA
NCS No Cytoplasmic Stain
PCR-RFLP Polymerase Chain Reaction-Restriction Fragment Length Polymorphism
RCA Rolling Circle Amplification
ROI Region Of Interest
SNP Single Nucleotide Polymorphism
TPAF True Positive Area Fraction
tRNA transfer-RNA
VIS Visiopharm Integrator System
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[12] J. Lindblad, C. Wählby, E. Bengtsson, and A. Zaltsman. Image analysis for automatic
segmentation of cytoplasms and classification of Rac1 activation. Cytometry, 57(1):22–33,
January 2004.
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