

UPTEC X07 010

Examensarbete 20 p
Februari 2007

Design and implementation of
a laboratory information system
for cellular pharmacology

Jonathan Alvarsson

Bioinformatics Engineering Program

Uppsala University School of Engineering

UPTEC X 07 010 Date of issue 2007-01
Author

Jonathan Alvarsson

Title (English)

Design and implementation of a laboratory information system for
cellular pharmacology

Title (Swedish)

Abstract

A laboratory information system for handling high-throughput drug screening and low- to
medium-throughput bioassays in cancer research performed by small to medium-sized
academic groups was designed and partly implemented. All parts except for the graphical user
interface have been implemented. The system has functionality for keeping track of when who
did what, and it provides an annotation system for the objects of the system. The system was
implemented in Java using the object relational manager Hibernate and the lightweight
framework Spring.

Keywords

Laboratory information system, cancer research, high-troughput screaning, Hibernate, Spring

Supervisors
Rolf Larsson

Uppsala University, Clinical Pharmacology

Scientific reviewer
Mats Gustafsson

Uppsala University, Signals and Systems

Project name Sponsors

Language
English

Security

ISSN 1401-2138
Classification

Supplementary bibliographical information Pages
47

Biology Education Centre Biomedical Center Husargatan 3 Uppsala
Box 592 S-75124 Uppsala Tel +46 (0)18 4710000 Fax +46 (0)18 555217

Design and implementation of a laboratory
information system for cellular pharmacology

Jonathan Alvarsson
jonathan.alvarsson@gmail.com

February 28, 2007

Svensk sammanfattning

Inom dagens cancerforskning är en vanlig metod för att hitta intressanta
läkemedelskandidater att man söker igenom stora bibliotek av molekyler
genom att testa dem emot cancerceller. Den här genomsökningen är ofta
automatiserad och genererar stora mängder data. I detta examensarbete
designades och p̊abörjades implementeringen av ett informationssystem
för att hantera den mängd av data som genereras. Som bas användes
det öppna källkodsprojektet Bioclipse som inneh̊aller funktioner för att
hantera bioinformatisk data.

Systemet har funktionalitet för att se vilken användare som har gjort vad
och när. Användare kan även skapa egna annoteringar till objekten i
systemet.

För att underlätta genomförandet testades varje komponent i systemet i
en separat miljö; p̊a det viset kunde m̊anga fel upptäckas tidigt i projektet.
En komplett uppsättning tester underlättar även vid förändringar, d̊a
tappad funktionalitet direkt kan upptäckas med testerna.

Projektet kunde inte slutföras inom ramarna för detta examensar-
bete. Vid examensarbetets slut var design och implementation av
kärnstrukturen för hela systemet utom de grafiska delarna, däribland in-
matning av data och presentation av data och resultat, klart.

Examensarbete 20p, Civilingenjörsprogrammet Bioinformatik

Uppsala Universitet

February 28, 2007 CONTENTS

Contents

1 Introduction 2
1.1 Overview . 2

1.1.1 Fluorometric microculture cytotoxicity assay . 2
1.1.2 Screening using an annotated compound library . 2
1.1.3 Dose response . 2
1.1.4 Compound combination effects . 2
1.1.5 Information systems . 2

2 Specification and design 3
2.1 Graphical user interface . 4
2.2 General structure of the system . 4
2.3 Data structure specification . 5
2.4 Data input . 5
2.5 Managers . 5

3 Software tools and techniques for solutions 7
3.1 General solutions . 7

3.1.1 MySQL . 7
3.1.2 Eclipse . 7
3.1.3 Hibernate . 8
3.1.4 Hibernate synchronizer . 8
3.1.5 Spring . 8
3.1.6 JUnit . 9
3.1.7 Bioclipse . 9
3.1.8 JEP . 9

3.2 Special solutions . 10
3.2.1 Auditing . 10
3.2.2 Annotations . 10
3.2.3 Calculations . 10

3.3 Persistent objects . 11
3.4 Data Access Objects . 11
3.5 Managers . 11
3.6 Tests . 11

4 Summary 12

5 Future 12

6 Acknowledgements 12

A Appendix – Graphical user interface specification 14

1

February 28, 2007 1 Introduction

1 Introduction

The main aim of this project was to design and
initiate the implementation of a laboratory infor-
mation system (LIS) able to handle data from
both the high-throughput drug screening and the
low- to medium-throughput bioassays in cancer re-
search performed by small to medium-sized aca-
demic groups. A LIS is a data system that receives,
processes, stores and delivers information generated
by medical laboratories. This project has been car-
ried out at the department of medical sciences at
Uppsala University. The program was written in
Java and use the functionality of the open source
project Bioclipse as a base.

1.1 Overview

In current cancer research, large amounts of chemi-
cal compounds are examined with regard to effects
on cancer cells. This process consists of highly auto-
mated high-throughput processes as well as focused
biological evaluation of more limited extent. A few
different approaches exist which constitute the core
activities at the department. These are discussed in
the following sections.

1.1.1 Fluorometric microculture cytotoxicity
assay

The first instrument to be handled in the sys-
tem is an automated machine, an Optimised Robot
for Chemical Analysis (ORCA; Beckman Coulter)
equipped with a multipurpose reader (FLUOstar
Optima, BMG Labtech GmbH, Offenburg, Ger-
many), for fluorometric microculture cytotoxicity
assay (FMCA). FMCA estimates cell death by mea-
suring the amount of non-fluorescent fluorescein di-
acetate (FDA) having been transformed into a fluo-
rescent by cells with intact cell membranes[1]. The
measurements are performed on microtiter plates
with 96 or 384 wells.

First, the wells on the plates are prepared with
the drugs of interest; then they are seeded with
cells and incubated. After incubation, the plates are
centrifuged and washed and FDA is added, and af-
ter further incubation, the fluoroscence is measured.
See figure 1 for a picture of the complete process.

1.1.2 Screening using an annotated com-
pound library

Large amounts of compounds are collected in li-
braries and tested on tumor cells. Highly potent
drugs can be identified through screening, and hy-
potheses about biological mechanisms can be gener-

ated from the pattern of activity in different model
systems and by combining these data with gene-
expression[2]. The current library consists of more
than 6500 compounds. Screening data consist of flu-
oroscence measurements for a few data points (often
of one concentration) for each compound.

1.1.3 Dose response

Interesting compounds are subsequently tested at
different concentrations, and survival of the cells are
plotted as a function of the concentration in order
to produce a dose response curve. From this curve,
the EC50 value can be calculated. EC50 is defined
as the statistically estimated concentration needed
for 50% effect, in this case 50% cell death.

1.1.4 Compound combination effects

It is also of interest to study the effects of combina-
tions of identified active compounds. An additional
compound may counteract drug resistance. That
is, a cell resistant to drug A may be sensitive to a
combination of drug A and drug B, since drug B
neutralises the cell’s protection against drug A.

1.1.5 Information systems

At the moment, no satisfactory solution exists for
dealing with all data generated in these processes.
A few separate systems are in use at the lab, neither
of which fully meets everyday requirements.

SLIMS Small Laboratory Information System[3]
is an open source product very suitable for screen-
ing data but it does not support operations such as
constructing dose response curves. It contains some
very nice tools such as the self-organising maps func-
tionality, which is a way to generate a visual rep-
resentation of the chemical space spanned by the
compounds. It is thus possible to see if interesting
compounds lie close together or far apart. Not much
seems to be happening with it, since in the news
section of the project’s webpage, the last update
is from August 2004, although the latest version is
from March 2006. SLIMS is implemented using the
programming language Python.

Accord (Accelrys Software Inc.) is a complex sys-
tem that turned out to be quite difficult to adopt
to the daily work at the laboratory. It seems to be
able to do many tasks but is not user-friendly. It is
a powerful tool that does not really make up for the

2

February 28, 2007 1 Introduction

Figure 1: Introduction to a few objects in the system and a brief description of the FMCA process.
In the system a plate type defines the size, number of columns and rows, of a plate. A plate layout
defines where on the plate the controls and the compounds are to be placed. Based upon this
plate layout a number of equal plates are made, conforming to a so-called “master plate” that
defines which drugs are placed in which wells. Each one of these plates is seeded with one cell type
and incubated. After incubation, the plate is centrifuged and washed, and fluorescein diacetate is
added. Then the plate is washed again, and incubated once more, before fluoroscence generated
from fluorescein diacetate transformed into a fluorescent by cells with intact cell membranes is
measured with a microplate fluorometer.

learning and configuration cost with its functional-
ity.

Some in-house Matlab code also exists for in-
terpreting measurements on plates and for colour-
coding the results. In conclusion, it has become
apparent that a tailor-made laboratory information

system (LIS) is needed, and the Bioclipse project
(see section 3.1.7) already contained a lot of the
needed functionality, so it was deemed appropriate
as a foundation. An advantage of the tailor-made
solution is that the lab would keep the source code
and be able to extend and perform changes to the
implementation when needed in the future.

2 Specification and design

The first thing to do when starting a project like
this is not to sit down with a computer and write
code, but rather to sit down with a pen and paper,
specify what the program should be able to do, and
design a structure able to do it.

It is not really suitable to speak about a spe-

cial software development process approach — such
as the waterfall model[6] — for this project, since
the number of developers during this project has
been one. But an iterative process[7] supported by
tests and somewhat inspired by the programming
approach known as extreme programming[8] might

3

February 28, 2007 2 Specification and design

Figure 2: The overall structure of the program. See section 2.2 for a short description of all the
components.

be a fair description of the approach.

This section deals with the definition of the
graphical user interface, the functionality of the pro-
gram, and data modelling.

2.1 Graphical user interface

As a start, a sketch-like specification of the graphi-
cal user interface (GUI), containing components for
working with data about the plates used in FMCA,
was constructed (see appendix A). The develop-
ment of the GUI specification was an iterative pro-
cess were the program took form during interviews
and discussions with future users. The specification
is not to be regarded as an exact representation of
how the system is going to look, but rather a spec-
ification of the future functionality of the program
illustrated by examples to help the reader get a feel-
ing for how it may look. The GUI specification is
not a finished document, but a document that has
been used on a daily basis throughout the project,
and thus contains parts that are likely to change.

2.2 General structure of the system

When building programs above a certain level of
complexity, it is desirable to use standard compo-
nents in order to be able to focus on the uniqueness
of the problem at hand instead of already solved
standard problems. It is a bad thing to become

stuck with one solution and not be able to switch
to another, hence, the components of this kind of
program tend to be ordered in layers, and in a per-
fect world it would be possible to swap a component
in a layer for another one. These layers also have
the benefits of taking care of a smaller part of the
problem, and being able to concentrate on that in a
divide-and-conquer manner.

Figure 2 shows a graphical representation of the
overall structure of the program. At one end is
the graphical user interface (GUI) with buttons,
text-fields and so on, and at the other end is the
database.

There are mainly three differrent sorts of objects
in the system, managers, persistent objects and data
access objects. This follows the standards from the
book Pro Spring [4] about implementing software
using the Spring framework. Spring is a frame-
work containing standard code helpful when build-
ing Java programs above a certain level of complex-
ity, for example programs that work with databases.
The GUI contains text fields, buttons and similar
components that call methods of manager-objects
in the business layer. These managers provide func-
tionality for operations such as creating a plate with
wells and all associated information objects. The
managers have names such as AnnotationManager,
SampleManager and PlateLayoutManager. They
work with many smaller persistent classes that con-
tain the actual data. The persistent classes repre-

4

February 28, 2007 2 Specification and design

Component Description
Plate type Defines the size (number of wells) of a plate
Plate layout Defines in which wells for example dilution series and controls are

to be placed, also defines calculation functions
Master plate Defines which drugs are placed and by which concentrations

(when working with dilution series) in which wells
Plate Defines which cell type has been seeded on the plate

Table 1: The different components stepwise constructed when creating a plate.

sent the data that are being stored in the database
and have names such as Plate, Well and CellSam-
ple. The actual storing and retrieving of data from
the database is done by data access objects (DAOs).
The DAOs work on one or a few persistent object
each, saving it and some related persistent objects,
as specified in Hibernate’s mapping files. Hence,
there are more persistent objects than there are
DAOs. The DAOs have names such as PlateDAO,
UserDAO, and ProjectDAO. The DAOs communi-
cate with the object relational mapper (ORM), Hi-
bernate in this case, when saving and loading the
persistent objects from the database. Lastly, there
is a relational database, saving and retrieving the
data from disk.

In this project the Spring framework provides im-
portant help in implementing the business layer and
the data access objects. It contains standard code
which eases the implementation of these layers.

2.3 Data structure specification

As the GUI was being sketched during discussions
with the staff, in the background the process of
constructing a data model able to handle all that
functionality took place. Finding a structure for
the data is also an iterative process. Hopefully,
the model will tend to evolve towards something
more and more obvious. But the path towards this
“obvious” goal is all but clear and many ideas are
constantly set aside for better ones during the life-
span of the program. The goal is that when new
kinds of data need to be saved, adding them to the
system should be possible without too much of a
problem. The resulting class diagram for the per-
sistent objects is shown in figure 3. If we study
the classes Project and Experiment, handled by the
ProjectManager, which can be found in the lower
right corner of figure 3 we see among other things
that both have a DAO. The red line with two dia-
monds at each end means that a Project has Experi-
ments and the Experiments correspond to a Project.
If we follow the black line coming out on top of
them we see that both of the classes extends Ab-
stractAuditableObject that extends AbstractAnno-
tatableObject which extends AbstractBaseObject.

This means that Projects and Experiments are both
annotatable and auditable. The dashed lines ap-
pearing to the right of figure 3 symbolise the way
the objects are created. For example a PlateLayout
is created from a PlateType.

Plates with a number of different layouts are used,
and a certain layout with a set of drugs are used
many times but with different cells. To reduce the
repetitive work when creating plates, a plate is cre-
ated in a couple of steps, and each step is saved.
So when creating a new plate similar to one already
created, the whole process will not have to be re-
peated. The components corresponding to these dif-
ferent steps are shown in table 1.

During the discussions, it became apparent that
a system for specification of calculations to be per-
formed at the plate and well level is needed. Two
sorts of functions can be defined in the system, plate
functions and well functions. Plate functions are
functions acting on data from the whole (or a part
of the) plate and well functions are calculated result
values for a well. These are stored in the database as
text strings containing mathematical formulas such
as (a4− a3)/a2. The variables are references to the
raw data for the wells. More complicated functions
that can be called from the calculation functions,
such as a sum function that does not count wells
marked as outliers, are planned.

2.4 Data input

Both compound data and result data are imported
to the system from file. It should be possible both to
type in drug data manually and to insert complete
libraries with drug data from file into the system.
The actual results will always be imported from file.

2.5 Managers

During the design of the managers, the ideal which
was strived towards was a natural division into
groups of persistent objects where each persistent
object is managed by one manager. The blue boxes
in figure 3 correspond to the responsibility area of
each manager.

5

February 28, 2007 2 Specification and design

AbstractBaseObject�id:long�creator:User�name:string�deleted:bool+delete()

AbstractPlate�rows:int�wells:Well�cols:int+delete()
AbstractSample�sampleContainer:SampleContainer

Measurement�results:Result�instrument:Instrument�resultType:ResultType+delete()+deepCopy()Result�resultValue:float[]�version:int+deepCopy()ResultType�length:int

AbstractAnnotatableObject�abstractAnnotationInstances:AbstractAnnotationInstance
AbstractAnnotationInstance�abstractAnnotatableObject:AbstractAnnotatableObject�masterAnnotation:Annotation

FloatAnnotation�value:float+deepCopy()TextAnnotation�value:string+deepCopy()EnumAnnotation�value:String+deepCopy()
AuditLog�user:User�timeStamp:double�auditType:AuditType�auditedObject:AbstractAuditableObject�postAuditRepresentation:string+delete()

Instrument�measurements:Measurement+delete()

SampleContainer�samples:AbstractSample�well:Well�workList:WorkList+deepCopy()+delete()CellSample�cellOrigin:CellOrigin�defrostingDate:Timestamp+deepCopy()

OperationManager

AuditManager

PlateManager

SampleMarker�abstractSample:AbstractSample�well:Well

WorkList�abstractOperations:AbstractOperation�sampleContainer:SampleContainer+delete()+deepCopy()

AbstractOperation�worklist:WorkList PlateLayout�layOutWells:LayoutWell�plateType:PlateType+deepCopy()+delete()

PlateType�cols:int�rows:int�plateLayouts:PlateLayout
LayoutWell�layOutMarkers:LayOutMarker�plateLayout:PlateLayout+deepCopy()+delete()

LayOutMarker�layoutWell:LayoutWell+deepCopy()
PlateLayoutManager

CellOrigin�cellSamples:CellSample

MasterPlate�locked:bool+deepCopy()

Project�experiments:Experiment+delete()P
rojectManager

«interface»IAbstractBaseObject

WellFunction�expression:string�well:AbstractWell+deepCopy()

«enum»AuditTypeCREATE_EVENTDELETE_EVENTUPDATE_EVENT

DrugSample�concentration:double�drugOrigin:DrugOrigin+deepCopy()
OriginManager

SampleManager

hasDAO
hasDAO

hasDAO
hasDAO

hasDAO

PlateFunction�expression:String�goodFrom:double�goodTo:double�hasSpecifiedValue:bool�plate:AbstractBasePlate+deepCopy()

hasDAO hasDAO

hasDAO

Plate�barcode:string�curated:bool�experiment:Experiment

hasDAO
hasDAO

hasDAO
hasDAO

«enum»AnnotationTypeTEXT_ANNOTATIONFLOAT_ANNOTATIONENUM_ANNOTATION
Annotation�possibleValues:Set�annotationType:AnnotationType+delete()

hasDAO

hasDAO

hasDAO

AbstractWell�wellFunctions:WellFunction�col:int�row:char
AbstractBasePlate�plateFunctions:PlateFunction

AbstractAuditableObject�auditLogs:AuditLog

User�password:string�auditings:AuditLog
AnnotationManager

Experiment�project:Project�plates:Plate+delete()

Well�sampleContainer:SampleContainer�sampleMarkers:SampleMarker�outlier:bool�plate:AbstractPlate+deepCopy()+delete()

DrugOrigin�structure:string�drugSamples:DrugSample�molecularWeight:double

hasDAO
hasDAO

Figure 3: The class diagram of the persistent classes. The blue boxes represent the managers
and show which classes are handled by which managers, abstract classes are green, interfaces are
purple, enumsa are red and instatiated classes are yellow. All the persistent classes implement the
interface IAbstractBaseObject which is not shown in the diagram in order to clean it up a little
and some (represented with black frames in the figure) also extend AbstractAuditableObject.
This diagram was created by the means of the software Umbrello[5].

aenums where introduced in Java 5. They are types with a predefined set of values. A prototypical example of
an enum is dayOfWeek, which can take on the values Monday, Tuesday, . . . , Sunday.

6

February 28, 2007 3 Software tools and techniques for solutions

Figure 4: The development environment Eclipse running JUnit tests.

3 Software tools and techniques for solutions

In order to complete this sort of program, a num-
ber of software tools for system building are useful.
A database system is needed that can save and re-
trieve data and support querying. Although code
can be written in any editor, it is nice with a de-
velopment platform which is able to really help the
programmer. Here follows a list of software used or
just evaluated during this project. This section con-
tains more details about what tools and techniques
where used for the implementation. A big part of
this project has been to look for and learn different
tools and techniques.

3.1 General solutions

3.1.1 MySQL

MySQL is an open source database management
system (DBMS) developed by MySQL AB. MySQL
is a relational DBMS, that is, it presents the data in
relational form as tables, and it provides relational
operators to manipulate the data[9, 10].

In this project, MySQL was chosen mainly be-
cause it is well known, easy to install and well sup-
ported. Not many other systems were ever seriously
considered.

3.1.2 Eclipse

Eclipse is, in the words of its own webpage,

“an open source community whose
projects are focused on providing a
vendor-neutral open development plat-
form and application frameworks for
building software. The Eclipse Foun-
dation is a not-for-profit corporation
formed to advance the creation, evo-
lution, promotion, and support of the
Eclipse Platform and to cultivate both
an open source community and an
ecosystem of complementary products,
capabilities, and services.”[11]

Eclipse is not only a development platform. Its com-
munity also produces a plugin based platform, the
Eclipse Rich Client Platform, that can be used to
build any kind of program. Since Eclipse is open
source and there are lots of people writing plugins
for it a wide variety of plugin programs exists for it.

There are a few big development platforms for
Java. Except for Eclipse, Borland’s JBuilder and
Sun’s NetBeans are two that are commonly used.
Figure 4 shows Eclipse running JUnit tests.

7

February 28, 2007 3 Software tools and techniques for solutions

3.1.3 Hibernate

Most well-developed DBMSs are relational
databases (e.g. MySQL, Oracle, IBM DB2), but
many commonly used programming languages are
object oriented (e.g. Java, C++ and to different
degrees also the scripting languages such as Perl,
Python and Ruby). This makes for some problems
in mapping from the objects in the programming
language to the tables in the relational database[12].
A few of the problems are, in no particular order[13]:

• The relational database has no good way of
dealing with type polymorphisms1. One of
many ways to solve this need to be choosen.
Neither of them comes without potential
drawbacks.

• Relational databases have bi-directional con-
nections between entities, but objects nor-
mally have uni-directional references.

• Two identical objects can exist at the same
time in an object oriented program, but two
identical rows in a relational table make no
sense.

• The sheer amount of work related to imple-
menting and managing this mapping can by
itself be a problem.

An object-relational mapping (ORM) system takes
care of the mapping between objects and relational
tables, and lets the developer spend time develop-
ing the program instead of writing standard code for
this mapping. Many of the underlying problems are
still there, but the amount of work becomes manage-
able. Hibernate is an ORM for Java. The program-
mer writes mapping files in XML2, which Hibernate
uses to make the connection between the relational
database and the programs objects[14].

3.1.4 Hibernate synchronizer

Hibernate synchronizer[15] is a plugin for Eclipse
that can help during implementation by generating
code for DAOs and persistent objects from the Hi-
bernate mapping files. Hibernate synchronizer was
tested in the beginning of the project, but turned
out to lack built-in support for Spring, and the
needed configuration was deemed too complicated
to be worth the trouble. Instead, the persistent ob-
jects and the DAOs were manually constructed.

3.1.5 Spring

Spring is mostly referred to as a lightweight frame-
work for building Java programs. It is a collection

of usable tools in many different areas. It contains
helpful code when dealing with databases and web
applications, but also many other things. It is called
a lightweight framework because the developer is
not supposed to have to do any heavy rewriting if
a decision is made late in the development to use
Spring. Since Spring contains tools for many things,
it can be somewhat difficult to quickly get a good
overview of its advantages.

Spring provides a container that, when asked for
a specific class, instantiates and delivers it according
to the instructions declared in XML. The instruc-
tions include how the different classes fit together,
but also more complex things, such as how a special
method in one of these classes should be handled
as a database transaction. A database transaction
is a series of database events where either all of the
events or none of the events take place. Transactions
are used in order to guarantee that the database is
always kept in a consistent state — that a set of
changes does not finish halfway.

Spring AOP In this project, Spring is mostly
used for its aspect oriented programming (AOP)
functionality when dealing with transactions, and
because it contains classes which take care of a lot of
standard code when dealing with Hibernate. AOP
is a programming mechanism developed to better
deal with some situations that object oriented pro-
gramming (OOP) does not do well[16]. It does not
discard the OOP methods, but extends them. The
differences between AOP and OOP can be described
this way:

“While the tendency in OOP is to
find commonality among classes and
push it up in the inheritance tree,
AOP attempts to realize scattered
concerns as first-class elements, and
eject them horizontally from the object
structure.”[16]

In other words, when different parts of a system
need to perform the same things, such as transaction
management (as is the case in this program), AOP
enables a way of writing this functionality once, out-
side of the object structure, and weave it in at every
place[17]. In Spring, this weaving takes place when
Spring constructs the object that is to be delivered
by the container. See figure 5 for a description of
this process for transaction management.

An example of AOP are introductions which can
be used to add functionality to an object by “imple-
menting” an interface during runtime so that unde-
clared methods can be redirected to some handler.

1type polymorphism refers to the way one definition can be used with different types of data in some program-
ming languages. For example, a method could work on chess pieces meaning that both a pawn and a queen would
be applicable input for that method.

2XML is a strict text format designed for easy parsing by computers, while still being humanly readable. It is
mainly used for handling data. XML is somewhat related to HTML, the standard used for webpages.

8

February 28, 2007 3 Software tools and techniques for solutions

Figure 5: Transaction management. Left: Without the Spring proxy a call (point 1 in figure) to a
method, createPlate, of a manager (2 in figure) works as usual and the createPlate method would
have to begin a database transaction, create the plate, audit the change and commit the transaction.
Changes to the isolation level of the transaction would have to be performed programmatically in
the method of the Manager. Right: With a Spring proxy a call to a method of a manager goes by
a method of the Spring proxy which creates the database transaction(at point 2 in figure) and then
calls the method (point 3 in figure) which creates the Plate and makes the auditing. Afterwards
the method of the Spring proxy gets focus again (point 4) and can commit the transaction. With
this system changes of transaction isolation level can be made in the Spring config file where all
of the transactions are listed closely toghether and without need to recompile the code.

The interface is not really implemented during run-
time, but a proxy containing the real object imple-
ments it and catches the method call. If the real
object has the method, it is run, otherwise some
other handler can be configured to take over.

3.1.6 JUnit

When writing large programs, it is important to be
able to test the code before completion. There are
always a multitude of minor errors in the code, and
a way of finding them without having to run the
complete program is needed. This is why program-
mers write tests. Unit testing means that each code
component is tested alone in a controlled environ-
ment. JUnit is a framework to ease the writing of
such unit tests in Java. It contains functionality
for setting up the test environment, performing the
tests and gathering the result.

3.1.7 Bioclipse

The Bioclipse project aims at creating a visual plat-
form for chemo- and bioinformatics. Instead of a
set of programs with different functionalities (not
always speaking the same language) having to be
used sequentially in a project, as is often the case
today, Bioclipse aims at supplying all these func-
tionalities in one application. Figure 6 shows Bio-
clipse running. Bioclipse can handle for example
sequence data, structure data and spectrum data.
There are many plugin projects under development
for Bioclipse including such wide spread fields as
energy calculations and phylogenetic analyses. Bio-
clipse is implemented using the Eclipse Rich Client
Plattform.

3.1.8 JEP

JEP - Java Math Expression Parser - is a java
library for working with mathematical expres-
sions, supporting definable variables and customised
functions[18].

9

February 28, 2007 3 Software tools and techniques for solutions

Figure 6: Bioclipse displaying a pdb file.

3.2 Special solutions

Some of the sought-after functionality for the pro-
gram needed special solutions.

3.2.1 Auditing

Being able to see who did what and when, is an im-
portant feature in this sort of system. A few ideas
were considered, such as an extra table for each ta-
ble containing everything that has happened and
populated by triggers in the database, but that so-
lution seemed a little bit more complex than needed.
Instead, the system has one table containing string
representations of the object after the event, and
a timestamp telling when the event occured. It
also discriminates between create, delete, and up-
date events.

Annotation type Description

Text annotation any free text
Float annotation a decimal number
Enum annotation one of a set of predefined

text strings

Table 2: The different annotation types in the
program.

3.2.2 Annotations

The program will contain a system for creating an-
notations and annotating objects with annotations

of the types seen in table 2.
First, an annotation is created setting a name and

type. In the case of an enum annotation, a set of
allowed values will also be defined in this step. This
annotation can then be used to annotate an anno-
tatable object with some value, and it should be
possible to search for objects with a given annota-
tion. PlateResults�parser:JEP�wellFunctionEvaluators:HashMap<String,WellFunctionEvaluator>�plateFunctionEvaluators:HashMap<String,PlateFunctionEvaluator>�rawValues:HashMap<String,Double>+getValue(col:int,row:char,wellFunctionName:String):double+getValue(plateFunctionName:String):double+getRawValue(col:int,row:char):double

PlateFunctionEvaluator#expression:String#goodFrom:double#goodTo:double#hasSpecifiedValue:bool#name:String
WellFunctionEvaluator#outLier:bool#expression:String#col:int#row:char#expressionNode:Node#name:String

nn

Figure 7: The classes used for parsing and
evaluating plate functions and well functions.

3.2.3 Calculations

In order to be able to parse and evaluate the calcu-
lation functions JEP is used. Since the evaluation
of these functions requires data from all around the

10

February 28, 2007 3 Software tools and techniques for solutions

class diagram, a separate layer of a few classes gath-
ering all these data is first constructed and then the
data is parsed from these classes. The classes in
this extra layer can be seen in figure 7. There is one
JEP instance for each plate. It is working with all
plate functions and well functions connected to that
plate. The parser knows the values of the variables
corresponding to the raw value of each well on that
plate.

3.3 Persistent objects

The persistent objects are the objects that contain
the actual data. They can be stored and loaded from
the database using the data access objects. They do
not implement any interface of some Java framework
(such as Spring). This sort of objects are commonly
called Plain Old Java Objects (POJOs).

3.4 Data Access Objects

The data access objects (DAOs) are responsible for
storing and loading objects from the database. A
number of approaches for writing these were tested
during the beginning of this project. The auto-
generated DAOs made by Hibernate Synchronizer
were not used because it was too complicated to get
them to work with Spring since that would have re-
quired rewriting the rules used for the automated
code generation. Spring has a very good base class
that can be extended when writing DAOs. As the
next approach tested, this class was extended and a
new class was written for each DAO. This included
a lot of code duplication, since every DAO looked
almost the same but handled objects of different
classes. One day, the idea of using the generics con-
cept introduced in Java 5 to write just one generic
DAO class came up. Generics are a way to write a
parametrised class that, when instantiated, is given
a class to work with. This means that type check-
ing can be performed at compile time instead of at
runtime. After some searching on the internet, it
turned out that using generics to solve this problem
was not a completely new idea. Per Mellqvist had
already thought of this, and presented a way of do-
ing it[19] that has been used in this project. The
solution uses Java 5 generics to deliver the correct
object without the need for type casting3, as well
as Spring AOP introductions to connect methods
declared in an interface to Hibernate queries, and
reduces code duplication.

Creating a new DAO consists of the following
steps:

• Write an interface for the class where meth-
ods that will refer to a Hibernate query begin
with a keyword that can be recognized, so the
correct Hibernate query can be called.

• Write a Spring bean that defines how Spring
should handle the DAO class in Spring ’s con-
fig file.

• Write the Hibernate queries used by the DAO
in a mapping file.

3.5 Managers

The managers containing the code called by the GUI
are implemented with much help from Spring. Each
manager object is wrapped within a Spring proxy
— a special Spring wrapper object — that handles
transaction management. Each method in a man-
ager is handled as one transaction. When a manager
is needed, Spring delivers one put together as spec-
ified in the Spring config file. The Spring proxy
object implements the interface declaring all meth-
ods of the manager. It intercepts a method call and
delegates it to the method with the same name on
the manager object. It can perform operations be-
fore and after the method execution, and can thus
take care of all the standardised transaction man-
agement. This means that the code in the managers
does not have to deal with transaction management
at all, since it is handled by Spring [4].

3.6 Tests

Having a complete test suite comes in very handy
when making changes in the code. It is good to
see immediately if a change breaks some other func-
tionality somewhere else. This is a thing not always
trivial to realise. It is a good practice when im-
plementing a piece of functionality to first write a
test, see that it fails, and then implement the func-
tionality and make sure that the test passes. This
practice has been the goal during this implementa-
tion, but sometimes it can be difficult to write a test
for something that is not yet implemented. In these
cases, the tests have been written afterwards as a
confirmation of the functionality (and as a way to
find bugs). It is also nice to use named but unim-
plemented tests as “to-do lists”. A big part of the
code written for this project consists of JUnit tests.
Working with tests gives early feedback and is very
satisfying.

3type casting means transforming a general object into a more specific object assuming that type casting is
applicable. If not, the program will throw an exception and if that is not handled the program will crash.

11

February 28, 2007 3 Software tools and techniques for solutions

4 Summary

At present, the structure for all the program’s
parts except the GUI is present. Although the im-
plementation is somewhat of an iterative process,
those parts are also close to finished, and the fu-
ture changes to them are likely to be minor fixes
and addition of new functionality. More than 250
tests have been written. They cover such things
as creating, storing and retrieving all different per-

sistent objects, creating annotations, checking that
auditing only takes place if the event actually occurs
and not if something breaks down before it is com-
pleted, and much more. Although a lot of tests have
been written there probably exists many more not
thought about, needed to be written. Time does not
admit more for this master project, but the software
project will continue.

5 Future

The next step is the implementation of the GUI
during continous beta version releases. There are
many more instruments at the department that pro-
duce data that would be interesting to incorporate
into the system in the future. For example, pheno-
type microarray data describing cellular respiration
over time by measuring generated ATP, and data

from high-content screening — an automated mi-
croscope with image analysis software. There is also
an interest for incorporating more advanced analysis
tools such as different machine learning approaches,
either by using a Java library, or by interfacing with
Matlab.

6 Acknowledgements

First of all, I wish to thank my supervisor Rolf
Larsson for the opportunity to perform this project
and my technical supervisor Ola Spjuth for his help-
ful instructions and for his patience with me while
I methodically explored every solution, and refused
to stop until I had convinced myself that a good so-

lution had been found. I would also like to thank
Claes Andersson for his patient help with just about
anything in the daily work and Mats Gustafsson for
thorough and fruitful discussions about this report.
Finally, Carl Mäsak and Daniel Edsgärd; thanks for
your detailed examinations of this report.

12

February 28, 2007 3 Software tools and techniques for solutions

References

[1] Elin Jonsson, Application of New Methodology for Preclinical
Development of Anticancer Drugs, Uppsala University 2000,
ISBN 91-554-4686-8

[2] L. Rickardson, M. Fryknäs, C Haglund, H. Lövborg, P Nygren, MG Gustafsson,
A Isaksson, R. Larsson Screening of an annotated compound library for
drug activity in a resistant myeloma cell line, Cancer Chemother
Pharmacol, 2006

[3] http://slims.sourceforge.net/, December 2006
[4] Harrup & Machacek (2005), Pro Spring, Apress
[5] http://uml.sourceforge.net/index.php, January 2007
[6] http://en.wikipedia.org/w/index.php?title=

Waterfall_model&oldid=98196377, January 2007
see also
W. W. Royce, Managing the development of large software systems,
Proceedings of IEEE WESCON, vol. 26, no. August 1970, p. 1-9

[7] http://en.wikipedia.org/w/index.php?title=

Iterative_and_incremental_development&oldid=90269871, January 2007
[8] M. Marchesi The new XP

http://www.agilexp.org/downloads/TheNewXP.pdf
[9] http://www.mysql.com/, October 2006

[10] http://en.wikipedia.org/w/index.php?title=

Relational_database_management_system&oldid=96972649, January 2007
[11] http://www.eclipse.org, October 2006
[12] Hemrajani (2006) Agile Java Development with Spring, Hibernate and

Eclipse, Sams Publishing.
[13] T. Neward, The Vietnam of Computer Science,

http://blogs.tedneward.com/2006/06/26/The+Vietnam+Of+Computer+Science.aspx,
December 2006

[14] Peak & Heudecker (2006), Hibernate Quickly, Manning Publications Co
[15] http://hibernatesynch.sourceforge.net/, December 2006
[16] T. Elrad, R. E. Filman, A. Bader, Aspect oriented programming,

Communications of the ACM, October 2001/Vol. 44. No. 10, 29-32
[17] G. Kiczales, J. Irwin, J. Lamping, J.M. Loingtier, C. V. Lopes, C. Maeda, A.

Mendhekar, Aspect-Oriented Programming, ACM Computing Surveys
28(4es), December 1996

[18] http://www.singularsys.com/jep/index.html, December 2006
[19] P. Mellqvist, Don’t repeat the DAO!,

http://www-128.ibm.com/developerworks/java/library/j-genericDAO.html,
December 2006

13

A Appendix – Graphical user interface specification

14

Software specification

LIS – Graphical User Interface

Jonathan Alvarsson

February 27, 2007

1

February 27, 2007 CONTENTS

Contents

1 Introduction 3

1.1 Basic workcycle . 3

2 Setup perspective 4

2.1 Project . 5
2.1.1 Create Project . 5

2.2 Experiment . 5
2.2.1 Create experiment . 5

2.3 Plate type . 6
2.3.1 Create plate type . 6
2.3.2 Viewing and editing a plate type . 7

2.4 Plate layout . 8
2.4.1 Create Plate Layout . 8
2.4.2 Markers . 9
2.4.3 Functions . 10

2.5 Master plate . 11
2.5.1 Create Master Plate . 11
2.5.2 Viewing and editing a master plate . 12
2.5.3 Add drug to master plate . 13

2.6 Plate . 14
2.6.1 Create plate . 14
2.6.2 Plate overview - a tab in plate view . 15
2.6.3 Plate results - a tab in plate view . 16

2.7 Drug origin . 17
2.7.1 Create drug origin . 17
2.7.2 Viewing and editing a drug origin . 18

2.8 Cell origin . 19
2.8.1 Create cell origin . 19
2.8.2 Viewing and editing a cell origin . 20

2.9 Well . 21
2.10 Viewing a Well . 21
2.11 Annotations . 22

2.11.1 Create annotation . 22

3 Data visualisation perspective 24

3.1 Dose response cell . 25
3.2 Dose response drug . 26
3.3 Combination . 27
3.4 Screening . 28

4 Tools 29

4.1 Import from SD-file . 29
4.2 Import Orca results . 29
4.3 Transforming from four 96 wells plates to one 384 wells plate 30

5 Possible features for the future 31

2

February 27, 2007 Introduction

1 Introduction

Here follows a specification of the functionality of a program meant to be a help in data storing and
data browsing for drug research. The GUI pictures do not represent a final version but should be seen as
examples representing what should be possible to do.
A few general things that goes for all objects in the system:

• They can be marked as deleted and thus only be viewed in a special view.

• They can be created by clicking in the menu found by right-clicking in the tree view.

• There is going to be an annotation interface easily accessible from the create dialogs for the anno-
tatable objects and also from the views of those objects.

1.1 Basic workcycle

Normally the first thing created is a plate type defining the size of a plate. From the plate type a plate
layout, defining how drugs and controls are placed on the plate, is created. The plate layout is used when
creating a master plate that defines which drugs and which concentrations are to be placed in the different
wells. Then a plate is constructed based upon a master plate defining which cell line the plate has been
seeded with.

3

February 27, 2007 Setup perspective

2 Setup perspective

It should be possible to:

• Left-klick objects in the tree-structure and see the relevant information in the views to the right.

• Right-klick in the tree and choose new to create new objects.

• Left-click Tools→ Import from SD-file to open the import from SD-file dialog (see: section 4.1).

• Left-click Tools → 4 x 96 wells to 1 x 384 wells to open the dialog for converting from four
96 wells plates to one 384 wells plate (see: section 4.3).

4

February 27, 2007 Setup perspective

2.1 Project

Definition: A project contains experiments

2.1.1 Create Project

It should be possible to:

• Enter a name for the project.

• Click Finish and create the new project.

• Click Cancel and discard the new project.

2.2 Experiment

Definition: An experiment contains plates

2.2.1 Create experiment

It should be possible to:

• Select a project for the experiment

• Enter a name for the experiement.

• Click Finish and create the new experiment.

• Click Cancel and discard the new experiment.

5

February 27, 2007 Setup perspective

2.3 Plate type

Definition: A plate type is a base for creating a plate layout. It defines the size of a plate.

2.3.1 Create plate type

It should be possible to:

• Enter a name and the number of rows and columns (cols) of the plate type.

• Click Finish and save the new plate type to the database.

• Click Cancel and discard the changes.

6

February 27, 2007 Setup perspective

2.3.2 Viewing and editing a plate type

It should be possible to:

• Change the name and the number of rows and columns (cols) of the plate type.

• Click Save and save the changes to the database.

7

February 27, 2007 Setup perspective

2.4 Plate layout

Definition: A plate layout specifies where on a plate markers, like drug markers control markers, are put.

2.4.1 Create Plate Layout

It should be possible to:

• Choose a plate type to base the plate layout on

• Enter a name

• Click Finish and create an empty plate layout.

• Click Cancel and discard it.

8

February 27, 2007 Setup perspective

2.4.2 Markers

Definition: A drug marker labels a well. All wells with the same drug marker will contain the same
drug. They are named with increasing numbers starting with M1.
Definition: A control marker labels a well. All wells with the same control marker will contain the same
control. The control markers are: blank, control and positive control. It is also possible to leave a well
unmarked which symbolises an empty well.
Example: M1 is put on well A1-A5, M2 is put on A6-A10, C+ is put on A11-A12

It should be possible to:

• Right-click and choose what drug marker should be on what well.

• Add more than one drug to a well.

• Mark a well as blank, control, positive control or empty.

• Click Save and save the changes to the database.

9

February 27, 2007 Setup perspective

2.4.3 Functions

Definition: These are the function tokens :
+ an addition
− subtraction
/ a division
∗ a multiplication
avg(a1, a2, a3 . . .) average of wells
stddev(a1, a2, a3 . . .) standard deviation of wells
(or) parantheses.

Definition: A plate function is a property of a plate with a name, an interval specifying a good value
(can be empty) and a mathematical expression, built up of the function tokens, which is calculated when
the functions is viewed.
Definition: A well function is a property of a well with a name and a mathematical expression, built up
of the function tokens, which is calculated when the functions is viewed.

It should be possible to:

• Choose a well and write a multitude of well functions for that well. (the choice ”good between”
turns inactive when well function is chosen)

• Add a multitude of plate functions to the plate.

• Click Save and save the changes to the database.

• See on the graphical plate which wells have what markers and which wells have what calculation

functions defined.

10

February 27, 2007 Setup perspective

2.5 Master plate

Definition: A master plate is a plate used when creating plates. It specifies what drug every drug marker

symbolise and the concentration of that drug in each well. A master plate can only be changed until a
plate or another master plate has been made based upon it.

2.5.1 Create Master Plate

A dialog for creating a new master plate.

It should be possible to:

• Choose a plate layout or a master plate to base the new master plate on.

• Enter a name.

• Click Finish and save the changes to the database.

• Click Cancel and discard the changes.

11

February 27, 2007 Setup perspective

2.5.2 Viewing and editing a master plate

Example: D1 =morphine. Well A1 = 0.5 nm, Well A2 = 0.9 nM

It should be possible to:

• Decide which actual drug the drug marker corresponds to.

• Set the concentration by writing it for each drug in each well on the master plate.

• Click on Add drug to get to a dialog where it is possible to connect drug to drug marker by giving
drug marker, drug sample origin, start concentration, and dilution factor.

• Click Save and save the changes to the database.

12

February 27, 2007 Setup perspective

2.5.3 Add drug to master plate

A dialog for adding a drug to a master plate by giving start concentration and dilution factor.

It should be possible to:

• Choose a drug marker.

• Choose a drug sample origin.

• Give start concentration

• Give dilution factor

• Click Finish and save the changes to the database.

• Click Cancel and discard the changes.

13

February 27, 2007 Setup perspective

2.6 Plate

Definition: A plate is an instance of a master plate with a cell sample added.

2.6.1 Create plate

It should be possible to:

• Choose an existing master plate.

• Choose an existing cell sample.

• Enter a defrosting date for the cell sample.

• Enter a name for the plate.

• Enter the barcode for the plate.

• Annotate the plate

• Click Finish, create a plate and write it to the database.

• Click Cancel and discard the changes.

14

February 27, 2007 Setup perspective

2.6.2 Plate overview - a tab in plate view

It should be possible to:

• See for each well all its samples and their concentration.

• Click on a well and see all its properties in the properties view.

• Mark a well as outlier so that it will not be used in any calculations.

15

February 27, 2007 Setup perspective

2.6.3 Plate results - a tab in plate view

It should be possible to:

• Select which result version to view. Normally one version exists (see section: 4.2).

• Mark wells as outliers to keep them out of calculations.

• Change plate status from unknown to curated (handled and considered okey) or failed.

• Check the values of a couple of predefined functions for the plate. Some which may have predefined
good values. Notice that it is possible to mark a plate as curated although these functions have
values not within specified values.

• Choose which functions to be viewed on the wells (e.g si, pi, raw)

• Choose to see the wellfunctions values either as numbers or as colors.

16

February 27, 2007 Setup perspective

2.7 Drug origin

Definition: A drug origin says something about what kind of a drug a certain drug-sample is.

2.7.1 Create drug origin

Example: Name=nystatin, structure=nystatin.pdb, molecular weight=926.1

It should be possible to:

• Enter name and molecular weight.

• Choose a file containing the structure.

• Click Finish, create a sample origin and write it to the database.

• Click Cancel and discard the changes.

17

February 27, 2007 Setup perspective

2.7.2 Viewing and editing a drug origin

It should be possible to:

• Change name, structure and molecular weight.

• Click Save and save the changes to the database.

18

February 27, 2007 Setup perspective

2.8 Cell origin

2.8.1 Create cell origin

It should be possible to:

• Enter name and patient sample code.

• Click Finish, create a cell origin and write it to the database.

• Click Cancel and discard the changes.

19

February 27, 2007 Setup perspective

2.8.2 Viewing and editing a cell origin

Definition: A cell origin says something about what kind of a cell a certain cell sample is.
Example: Name=8226s

It should be possible to:

• Enter a name.

• Click Save and save the changes to the database.

20

February 27, 2007 Setup perspective

2.9 Well

2.10 Viewing a Well

It should be possible to:

• See all the samples in the well.

This may be redundant with the plate view

21

February 27, 2007 Setup perspective

2.11 Annotations

Definition: An annotation is a way to add new categorisations and properties to the different objects in
the system.

2.11.1 Create annotation

Example: Name=patient code, Type=text

It should be possible to:

• Enter a name for the annotation

• Choose one of these annotation types:

– text: a text string.

– float: a float number.

– enum: one out of a set of predefined values.

• If enum has been choosen, define a set of values for it.

• Click Finish, create an annotation and write it to the database.

• Click Cancel and discard the changes.

22

February 27, 2007 Setup perspective

Example: Annotate that a sample is from a healty or diagnosed patient to later use screening data for
classifying.

It should be possible to:

• See all the annotations in the system

• Click New and in a dialog create a new annotation.

• Click Edit and get to edit an annotation in a dialog.

• Click Delete to delete an annotation.

23

February 27, 2007 Data visualisation perspective

3 Data visualisation perspective

Consider everything in this section very vague and only a presentation of some ideas

It should be possible to:

24

February 27, 2007 Data visualisation perspective

3.1 Dose response cell

It should be possible to:

• See the dose response results browsed first by cell and secondly by drug.

25

February 27, 2007 Data visualisation perspective

3.2 Dose response drug

It should be possible to:

• See the dose response results browsed first by drug and secondly by cell.

26

February 27, 2007 Data visualisation perspective

3.3 Combination

It should be possible to:

• Browse the results of an experiment with multiple drugs.

27

February 27, 2007 Data visualisation perspective

3.4 Screening

Is should be possible to:

• Browse the results of a screening experiment.

• Change the threshold by dragging the marker left or right or enter a value in the field.

28

February 27, 2007 Tools

4 Tools

A tool is a general functionality that is not directly associated with a certain view. They are gathered in
the tools menu for easy access.

4.1 Import from SD-file

Reachable from the Tools menu the import-from-SD–file command lets the user browse for an SD-file and
then imports data from it. Creates one to many new drug origins and possibly new plates etc.

4.2 Import Orca results

Reachable from the Tools menu the import-Orca-result command opens a wizard where the user first
browses for a FluoOptima 384.log file or if manual reading has been performed (or 96 wells plate) the
textversion of the generated Excel-file and couples the results in it to plates already in the system by the
barcode. (If the barcode reading has not worked or if the reading has been done manually the barcodes
have to be entered manually)

29

February 27, 2007 Tools

It should be possible to:

• Select which plates to import.

• Results for a plate without a matching barcode in the database can not be imported.

• If a plate already has registered results: import new results for that plate and mark them with a
higher version number. (The old ones will still be in the database)

• If the values for some plates can not be parsed (read, e.g. truncated file) the other ones should still
be importable.

4.3 Transforming from four 96 wells plates to one 384 wells plate

Reachable from the Tools menu the transform-four-96-wells-to-one-384-wells-plate asks the user for four
96 wells plates and creates one 384 wells plate following the same pattern that the robot uses for such a
transformation.

30

February 27, 2007 Possible features for the future

5 Possible features for the future

• A drug palete – something like the color picker in drawing programs with favourites and such things.

• Maybe a possibility to add cell samples from more than one cell-sample-origin to the different wells
on a plate.

• Perhaps an advanced well function that is correcting for systematic errors by some not yet defined
algorithm.

31

	abstract.pdf
	Rolf Larsson
	Uppsala University, Clinical Pharmacology

