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Evaluation of prediction models for biomarkers -

the role of rooting models on literature networks

Sten Blomstrand

Sammanfattning

Att �nna läkemedel mot kroniska sjukdomar som Alzheimers är en av

forskarvärldens största utmaningar. För att kunna framställa dessa läkemedel

måste man ha förståelse för vilka proteiner som ger upphov till sjukdomen

och hur de fungerar och interagerar.

Genom att använda mikromatriser kan man mäta koncentrationer av

tiotusentals gener samtidigt. Dessa mätvärden ger uppfattningar om hur

proteinnivåer förändras på grund av till exempel ett läkemedel, och man kan

därigenom identi�era viktiga proteiner som blir mer eller mindre påverkade.

Det svåraste steget i detta tillvägagångssätt är just identi�eringen av dessa

proteiner.

För att underlätta detta steg brukar man använda sig av matematiska

prediktionsmodeller, men även dessa kan stöta på problem. Dessa mod-

eller kräver ofta en stor samling testdata, ofta �era hundra mikromatrissvar,

och då nya läkemedel inledningsvis oftast testas på endast ett fåtal patien-

ter ger modellerna därför inte tillförlitliga resultat. Ytterliggare problem

som kan uppstå är att endast ett fåtal av de tiotusentals generna som mäts

med en mikromatris är påverkade av läkemedlet. Då man försöker applicera

matematiska prediktionsmodeller på sådana data försvinner dessa proteiner

i mängden och man får inte heller då tillförlitliga resultat.

Genom litterära referenser kan man dock ofta hitta proteiner länkade

till läkemedlets målprotein och därigenom få en uppfattning om hur dessa

bör påverkas. Detta leder till att man behöver färre mikromatrissvar samt

mindre beståndsdelar av dessa mikromatrissvar för att bygga matematiska

prediktionsmodeller och ändå få informativa resultat.

Målet med detta examensarbete var därför att bygga rent matematiska

prediktionsmodeller och jämföra dessa med matematiska prediktionsmodeller

baserade på litterära referenser.

Slutsatser som drogs var att modeller baserade på litterära referenser kan

ge bättre prediktionsförmåga än rent matematiska modeller. Vidare identi-

�erades också ett antal proteiner som är kopplade till sjukdomsprocessen i

Alzheimers.

Examensarbete 20p i Bioinformatik

Uppsala Universitet December 2007
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Sammanfattning

Dagens mikromatriser mäter koncentrationer på tiotusentals gener

samtidigt. Detta vållar dock problem då man ämnar bygga matema-

tiska prediktionsmodeller på behandlingen av ett läkemedel med endast

en eller ett fåtal mål. Problemet som uppstår är att mikromatrissvaret

innehåller mestadels brus, då endast ett fåtal gener är påverkade av

behandlingen. Genom litteratur kan man dock ofta hitta proteiner

länkade till läkemedlets målprotein och därigenom få en uppfattning

om hur dess omgivning bör påverkas. Detta leder till att man endast

behöver undersöka en liten beståndsdel av mikromatrissvaret för att få

informativa resultat. Målet med detta examensarbete var därför att

bygga prediktionsmodeller på rent matematiska metoder och jämföra

dessa med matematiska modeller med litterära referenser.

De slutsatser som drogs är att man kan öka prediktionsförmågan då

man använder sig av litterära referenser, givet att dessa referenser är

tillräckligt informativa. Vidare identi�erades också ett fåtal proteiner

som möjligtvis kan användas som biomarkörer för GSK3β inhibitorer,

ett protein med starka associationer till Alzheimers sjukdom.
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Abbreviations

Aβ beta amyloid
AD Alzheimer's Disease
AZ AstraZeneca
FN False Negative
FP False Positive
GSK3β Glycogen synthase kinase 3-β
IPA Ingenuity Pathways Analysis
MAPT Microtubule Associated Protein Tau
NFTs NeuroFibrillary Tangles
PLS Projection to Latent Structures by means of Partial Least Squares
PP Prediction Performance
PSEN1 Presenilin 1
TN True Negative
TP True Positive
VIP Variable In�uence on Projection
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1 Introduction and Aim

As techniques such as microarrays enable us to generate immense amounts of
data, the need for analysis and interpretation increases. One challenge that
accompanies this is the use of prior data to classify new samples (predic-
tion modelling). Tools such as PLS, Neural Networks and Random Forests
are widely used in bioinformatics to create these models [3, 19, 15]. Most
methods are purely mathematical and thus do not take information from
literature into account. Even though mathematical models may produce ac-
curate predictions, the interpretation of how, and why, may be lost. One
way to explain these questions is to look into literature.

As new �ndings in protein pathways constantly emerge, the vast net-
works that constitute the basics of protein relationships are discovered. As
papers of these �ndings are ceaselessly published, the literature information
available constantly increases.

One major issue related to these articles are the ontologies used. The
most well-known organisation trying to address this problem is the Gene
Ontology project (http://www.geneontology.org/), a project attempting to
standardise the names of function and associations of gene products. Search-
able databases such as PubMed (http://www.ncbi.nlm.nih.gov/sites/entrez)
do not take di�erent ontologies into account, and therefore the resulting �nd-
ings may be more or less unrelated to the initial query. This makes automatic
data-mining di�cult due to the possibility of ambiguous results, and manual
data-mining troublesome and time consuming for the inexperienced.

Another type of literature searchable database is provided in the knowl-
edgebase by Ingenuity Pathways Analysis (http://www.ingenuity.com). This
is a kind of combination of both article databases such as PubMed and the
Gene Ontology database providing literature references to articles, biological
functions and protein pathways networks.

Using the information provided by Ingenuity Pathways Analysis, the aim
of this thesis project was to build and evaluate prediction models based on a
purely mathematical approach and compare these to prediction models with
literature references.

1.1 Biomarkers

Part of this thesis is, as prediction models are evaluated, to examine the re-
sults in search of potential biomarkers. Biomarkers are �biometric measure-
ments that convey information about the biological condition of the subject
being tested. These measurements might be a quantitative readout of a
speci�c analyte, sophisticated image studies, or measurement of multiple
analytes combined into mathematical models� [11].

The de�nition of a biomarker in this thesis is a single or a group of genes.
The reason for this is that even though the models built are purely math-
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ematical, the results will be analysed slightly further through a biological
point of view.

1.2 Alzheimer's Disease

Alzheimer's Disease (AD), the cause of a common and severe type of demen-
tia, was �rst described by Alois Alzheimer in 1911 as a neuropsychiatric dis-
order a�ecting the elderly. Disease symptoms caused by neurodegeneration
such as loss in memory, language, object recognition and learning function
now a�ects more than 24 million people worldwide. Today the neuropatho-
logical features of AD are considered to be neuro�brillary tangles (NFTs)
and amyloid plaques [12, 10, 2, 18].

The data analysed is the numerical outcome of microarray runs on a
substance being evaluated at AstraZeneca. This substance inhibits Glyco-
gen synthase kinase 3-β (GSK3β), a protein regarded as highly involved in
the process of Alzheimer's Disease. One aim for this project was to �nd
genes linked to GSK3β (and expectantly AD as well), that can be used as
biomarkers.

1.3 Mechanisms and Causes of Alzheimer's Disease

1.3.1 NFTs and amyloid plaques

NFTs are aggregates of primarily hyperphosphorylated tau (microtubule as-
sociated protein tau - MAPT) in neurons. Hyperphosphorylation of MAPT
leads to structural and conformational changes in the protein, which in turn
allows the protein to self-aggregate and form a compact �lamentous network.
The function of MAPT - stabilising microtubules and bridging these poly-
mers with other �laments - is impaired due to the hyperphosphorylation and
thus a�ects the stability of the cytoskeletal network [12].

Amyloid plaques are aggregates of beta amyloid (Aβ), a protein derived
from proteolysis of the amyloid precursor protein (APP). There are two
variants of Aβ - Aβ1−40 and Aβ1−42 - where the latter is the most aggressive
in producing amyloid plaques in the human brain. Furthermore, presenilin-1
(PSEN1) is involved in the normal APP processing and it is believed that
mutations in this gene are responsible for the accumulation of Aβ1−42 in
familial Alzheimer's Disease (FAD) [12].

1.3.2 GSK3β in Alzheimer's Disease

GSK3β has been linked to both NFTs and amyloid plaques and is thus a ma-
jor candidate of investigation for the understanding of AD causes. GSK3β
has been associated with paired helical �laments (PHF) which are lead com-
ponents in NFTs and, as well as having interactions with amyloid, tau and
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presenilin-1, GSK3β is involved in neuronal apoptosis, all features of AD
[9, 2].

A partial aim of this project was to incorporate such information as
presented above into mathematical prediction modelling. The approach of
�nding this information will though not be through article databases such as
PubMed or OMIM (http://www.ncbi.nlm.nih.gov/sites/entrez?db=OMIM),
but through a knowledge-base named Ingenuity Pathways Analysis (more on
IPA in Section 2.1). The information found here will be used to extract data
from the dataset (see Section 2.4) in order to build mathematical prediction
models based on literature references. How Ingenuity Pathways Analysis
and these mathematical methods are used will be presented in the following
sections.

2 Materials and Methods

2.1 Ingenuity Pathways Analysis

Ingenuity Pathways Analysis (IPA) is a commercial product based on liter-
ature �ndings and has now reached version 5.1. It can be seen as a database
based on manual data-mining presented in an interactive user interface. It
provides extensive information on biological networks and relationships be-
tween proteins, genes, complexes, cells, tissues, drugs, and diseases as well
as some mathematical signi�cance tests to analyse expression data.

To date, 485 publications have cited the use of IPA (http://www.ingenuity.com).
Even though many of these cite the use of the mathematical methods used
in IPA, the main idea behind using IPA in this project is not the mathe-
matical methods it provides, but the information it can present on protein
relationships. Foremost, the simplicity of how data can be extracted and
incorporated into mathematical models from Ingenuity Pathways Analysis
makes this thesis project possible to perform.

The functions used in IPA for this project are protein pathways, searches,
and biomarker �lters.
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2.1.1 Biomarker �lter in IPA

Certain proteins are found in speci�c �uids and tissues, are present in cer-
tain species, and related to various functions and diseases. IPA provides a
function of �ltering datasets for proteins by these criteria. A screenshot of
the interface of this �lter can be seen in Figure 1.

Figure 1: A screenshot of the Biomarker �lter interface of IPA. Here several
options are available to �lter the uploaded datset for speci�c criteria. These
criteria include if the proteins are located in speci�c �uids or tissues, involved
in certain diseases and present in human, mouse and/or rat. The genes
eligible for the set criteria show up in the lower part of the window.

2.1.2 Searches in IPA

Searches in IPA can be conducted by naming a protein, chemical or drug
name. Genes can also be found by their association to diseases or functions,
their type (enzyme, kinase, ion channel etc.) as well as their subcellular
location.
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2.1.3 Protein Pathways in IPA

The results of both the biomarker �lter and the search queries can be added
to illustrative pathways. Here proteins are presented as nodes and connected
according to function. An example of a protein relationship pathway from
IPA can be seen in Figure 2.

The information extracted from these functions in IPA will be incorpo-
rated into the mathematical prediction model described in the next section.

Figure 2: A biological pathway showing part of the result from a search
for proteins related to Alzheimer's Disease in IPA. The most interesting part
of this function in IPA is that the connections between proteins are easily
visualised. This function of IPA will mostly be used to validate the resulting
biomarkers to see what connections, if any, they have. Each connection is
supported by at least one reference in literature (http://www.ingenuity.com).

2.2 PLS

Projections to Latent Structures by means of Partial Least Squares (anacronymed
backronym PLS) is a commonly used type of prediction model. PLS is a
regression model used to relate two data matrices to each other, X - the
observed variables and Y - the response variables, by a linear multivariate
model. Even though PLS can take several response variables (columns of
Y ) into account, the case where there is only one response variable will be

9



discussed here since this is the case for the datasets used.
The easiest and most intuitive way of presenting how PLS works is by

geometry. If all columns of matrix X (size N -by-K) represent an axis in a
K dimensional space, and each row (N) correspond to a point in this space,
a line can be �tted to these using a partial least squares approach. It is
important to note that in PLS, each row of X represents a point in the
Y-dimensional space (here size N -by-1) [6].

The �rst line �tted by partial least squares represents the �rst component
of the PLS model. This line is in the direction that de�nes the maximum
co-variance in the dataset. As one component (or Latent Variable (LV)) is
calculated, the part of X described by this component is subtracted from the
original dataset. As this procedure is repeated, more of the X-dimensional
space is taken into account by the model, leaving less and less information
in the original X matrix.

Figure 3: An illustration of a 3-dimensional variable space (X) and a one-
dimensional response space (Y), as well as the residual of the response vari-
able after calculating �rst two components. This illustration has been mod-
i�ed from Eriksson et al. [6].

As more components are used, the residual (the part that is not described
by the model) of the X matrix is reduced, until it only contains noise. Since
PLS produces a model where both X and Y are taken into account, the resid-
ual of Y also decreases with increasing number of components. In Figure 3
an illustration of a 3-dimensional variable space (X) and a one-dimensional
response space (Y), as well as the residual of the response variable after
calculating the �rst two components, can be seen.

The basic mathematics of PLS is to �nd the relationship between the
matrices X and Y expressed as
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Y = XB + E.

where Y is the response, X is the matrix containing the observed vari-
ables, B contains the regression coe�cients, and E is the error.

Weighted combinations of the original X-variables can be constructed as
ta = Xwa, where ta are called scores and wa are called weights.
Similarly ua = Yca, are the weighted combinations of the Y-variables.
These can then be re-written into

X = TP′ + E

Y = TC′ + F

This method has two objectives: To approximate the X and Y spaces
and to maximise the correlation between X and Y [5]. Basically, PLS models
both X and Y and predicts unknown Y from new X.

2.2.1 Scaling

Since variables are not originally uniform, they must be scaled before apply-
ing the PLS model. One of the most used methods is Auto-scaling. Auto-
scaling mean-centers and variance scales the variables to mean value zero
and relative variance one. This is done by xscaled

k = (xk − x̄k)/sk, where xk

is one column of X, x̄k is the column mean, and sk is the column standard
deviation.

As well as using the auto-scaling, a method called Moving Median Nor-
malisation was also used on the datasets before analysis. The main idea
behind this method is that samples should be linearly correlated [4]. This
normalisation was already done when the datasets were received and thus
the basics of this method will not be discussed here.

2.2.2 Variable In�uence on Projection and Variable Selection

Variable In�uence on Projection (VIP) is a way of �nding the variables
that contribute most to the PLS model. By calculating a VIP-score (see
Equation 1), the variables that are most relevant for explaining Y and X
can be obtained (i.e. variable selection). This method enables reduction of
the dataset since irrelevant variables can be removed without reducing the
predictive ability of the model.

There are two main reasons for using variable selection; to improve the
interpretation of the model [8] and to remove noise (and thereby increase
the predictive power of the model). When variables with low VIP-score
(and thus not contributing to the prediction) are removed, it is likely that
the predictive power of the model increases. (The variable space needed
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to be modelled is reduced, which makes it easier to model the �complete�
[reduced] system.) This is a balancing act though, since when too many
variables are removed, the model becomes over�t and loses its predictive
ability (see Section 2.2.6 for more on over�tting).

V IPk =

√√√√ A∑
a=1

(
W 2

ak ∗ SSYa ∗
K

SSYtot

)
(1)

Where k is the variable number, K is the total number of variables, a is
the PLS component number, W is the PLS weights, SSY is the explained
variance (in %) and SSYtot is the cumulative explained variance (in %) [6].

2.2.3 Cross Validation

Cross Validation (CV) is a way to validate the performance of a prediction
model (see Section 2.2.6 for further validation analysis). CV is basically a
method where the dataset is divided into two sets, one training and one test
set. The prediction model is built on the training set and validated on the
test set. In this way prediction performance estimates can be obtained for
how the model would perform on unseen data.

The CV method is usually done by 1/N splits, i.e. the dataset is divided
into N subsets where N − 1 are used as a training set and the last one used
as a test set. This process is repeated until all N sets have been used as test
sets. Special cases such as Leave-One-Out (when N equals the number of
samples in the dataset) can be used when the number of objects are few [6].

2.2.4 Prediction Performance

Prediction performance (PP) is a measure of how many samples the model
classi�es correctly. A sample can be classi�ed in four di�erent ways; True
Positive (TP), True Negative (TN), False Positive (FP) and False Negative
(FN).

The model predicts a sample to be either positive or negative. By know-
ing the actual sample class, this prediction can then be evaluated to either
True or False, depending on if the model prediction was correct (True) or if
it was wrong (False). Prediction performance is calculated by Equation 2.
Table 1 shows the relationship between the model predictions and the real
classes.

PP =
TP + TN

TP + FP + TN + FN
(2)
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Table 1: Relationship between model prediction and real classes.
Model
T F

T TP FN
Reality

F FP TN

Closely connected to Prediction Performance is Sensitivity (Equation 3)
and Speci�city (Equation 4). These are measures of the portion of all Pos-
itive samples that are classi�ed as Positive and the portion of all Negative
samples are classi�ed as Negative respectively.

Sensitivity =
TP

TP + FN
(3)

Specificity =
TN

TN + FP
(4)

2.2.5 Cut-o�

As Y-values are often discrete and the predicted values of a PLS model
are always continuous, some distinction between whether a predicted value
should be classi�ed as Positive or Negative must be used. This is done using
a cut-o� that discriminates the continuous values of the PLS model.

The cut-o� is placed somewhere between the real values of the samples.
A prediction value of the PLS model is then treated as Negative if it is lower
than the cut-o� and Positive if it is higher.

2.2.6 Over-�tting

Over�tting is when the model explains X but has little or no predictive
power of Y [17]. Not over�tting a model on training-data is one of the most
important aspects when building a general prediction model. An over�tted
model is basically a model with too many parameters (such as PLS compo-
nents etc). A simple example of over�tting is when a polynomial function is
�tted on linear data.

A way of measuring over�t is Q2 (see Equation 5) and R2, which are
both illustrated in Figure 4. R2 is the goodness of �t (how well the model
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explains the training-data) and Q2 is the goodness of prediction (how well
the model explains test-data) [6].

Figure 4: A plot showing R2 and Q2 as a function of model complexity
(number of components, parameters et cetera). The model with optimal
complexity is obtained within the dotted oval, where Q2 starts to decrease.
This illustration has been modi�ed from Eriksson et al. [6].

Q2 can be seen as a measure related to Prediction Performance but in-
stead of generating actual values of how correct the PLS model is, it is a
measure of how close to the real values the model predictions are. Q2 can
vary from negative values (no model prediction at all) to 1 (perfect model pre-
diction), but values regarded as good are usually somewhere around 0.5−0.7
[6].

Q2 = 1−

n∑
i=1

(yi − yi,CV )2

n∑
i=1

(yi − ȳ)2
(5)

where yi is the real value, yi,CV is the predicted value and ȳ is the mean
over all y-values.

2.3 Protocol

In this section, a description of the steps taken to obtain the results presented
further on, are presented. These include some steps that have already been
described in former sections as well as steps that are described in latter
sections of this project.
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2.3.1 Scaling the dataset

The initial step involved in most data analyses is scaling the data so that ob-
jects can be compared. This was done, for both the purely mathematical and
the literature reference approach, by using the moving median normalisation
and consecutively the auto-scaling method (see Section 2.2.1).

2.3.2 Mathematical Approach

The PLS calculations applied to the scaled dataset were done in Matlab
using the PLS toolbox (http://www.eigenvector.com/). These calculations
were incorporated into a script that looped over each cross validation subset,
a set of PLS components (1-4), and in each step applying the VIP score to
reduce the dataset by 10% until it only included 250 variables.

The cross validation subsets were obtained by applying the �Leave-two-
out� version described in Section 3.1.1. By applying this cross validation
method, 10 samples were used to train the PLS model in each loop and two
samples were used to test the model. This approach to the mathematical
method resulted in 6 × 4 × 42 ≈ 1000 rounds of iterations (six from the
number of cross validation subsets, 4 from the number of PLS components,
and 42 from the number of times the dataset was reduced by 10%).

2.3.3 Literature Approach

The corresponding literature method to the VIP scores, that were used to
mathematically reduce the number of variables, was performing searches
and applying functions provided by IPA. The criteria for these searches and
functions are described in Section 3.4.

By applying these methods a small set of protein names (100 to 800
names) could be obtained from IPA. Mapping these names to the A�ymetrix
probe names that were present in the dataset allowed for massive reduction
in variables.

The PLS modelling applied was done using the same script as described
above, for the mathematical approach, but with 1-6 PLS components and
instead of reducing the dataset by 10% in each round, the number of vari-
ables were kept constant. This resulted in 6 × 6 = 36 iterations (six from
the number of cross validation subsets, and 6 from the number of PLS com-
ponents).

2.3.4 Obtaining Results

During the iterations, the PLS predictions were saved for forthcoming calcu-
lations. These calculations included �nding the optimal Q2 values (Section
2.2.6) and evaluating the Prediction Performance, Sensitivity and Speci�city
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(Section 2.2.4) at each cut-o� (cut-o� varied from 0.0 to 1.0 with an incre-
ment of 0.05 for the literature approach predictions and an increment of 0.01
for the mathematical approach predictions).

The numerical results were extraced from Matlab and visualised in Spot-
�re (http://spot�re.tibco.com/). Several of these graphs are presented fur-
ther on in this project.

2.3.5 Program Versions used

Program Version Usage

Matlab 7.1 PLS modelling

IPA 5.1 Literature references and Protein Pathways

Spot�re 8.1 Visualising PLS results

2.4 Datasets

2.4.1 A�ymetrix

A DNA microarray provides a simple way of analysing expressions from
several thousand genes at once. The microarrays used to obtain the data for
this thesis were based on A�ymetrix GeneChip DNA microarrays (Human
Genome U133A). These chips contain around 23000, features where each
feature consists of a number (6-11) of probe cells and each probe cell contains
an oligonucleotide probe of approximate length of 25bp.

In short, mRNA is extracted from a biological sample and converted to
labeled complementary DNA (cDNA). This cDNA is applied to the microar-
ray and allowed to hybridize with complementary probes. Signal intensities
for each probe are thereafter obtained by confocal scanning, and determined
to be �present�, �absent� or �minimal�. All probes classi�ed as �absent� or
�minimal� are removed from the dataset in order to only have reliable signal
intensities (http://www.a�ymetrix.com).

2.4.2 Original dataset

The dataset to be studied was based on �broblast samples from six individ-
uals. These samples were divided into two groups, �treated� and �control�
which were treated with substance + vehicle, and only vehicle, respectively
(resulting in two samples from each patient - �treated� and �control�). This
resulted in a dataset with 12 objects and 22215 reliable variables (�genes�).

It might seem a little odd to use �broblast cells when AD is brain related
but the reason for doing this is that the GSK3β protein is also present in
other tissues. Therefore, measuring the e�ects of a GSK3β-inhibitor can just
as well be done in many other tissues than brain. Also, it would provide a
much simpler way of measuring response if the samples could be taken from
skin tissue instead of brain tissue.
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3 Analysis & Results

3.1 Method Modi�cations

In order to build reliable prediction models on the dataset, some modi�ca-
tions to the methods described in Section 2 had to be applied.

3.1.1 �Leave-two-out�-CV

For two reasons, the small sample size of the dataset, and the fact that the
variation between patients was greater than the variation between �treated�
and �control� of the same patient, a special type of CV had to be applied to
this dataset. This method was called �Leave-two-out� (LTO).

The LTO method builds the PLS model on N-2 samples, and predicts the
remaining two. The essential part of this method is that both samples that
are to be predicted are from the same patient. By doing this, the PLS-model
is allowed to concentrate on explaining only treatment variations instead of
also having to explain patient variations.

3.1.2 Mathematical Variable Selection

The approach used in this paper was to reduce the number of variables by
10% in each round (i.e. 10% of the variables from the previous dataset were
removed and the process of creating a PLS prediction model on the now
reduced dataset, evaluating it on the same unseen objects, and calculating
new VIP-scores, were repeated). In this way, fewer variables are removed
when the number of variables decrease, until some number of variables is
reached. The �nal set of variables are the ones that are mathematically most
important for the description of X and the prediction of Y, and thereby the
ones that can be further studied as possible biomarkers.
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3.2 Di�erences in the Mathematical Approach Compared to

the Literature Reference Approach

As the mathematical method was based on VIP-scores for variable selection,
the literature reference approach was based purely on literature �ndings in
IPA. Apart from this, the prediction modelling was done in the same way for
both approaches. In order to get an overview of this, a �owchart is presented
in Figure 5 showing the basic steps in the two approaches.

Figure 5: Flow chart showing the steps involved in creating and evaluating
the basic PLS model using mathematical variable selection, compared to the
literature references approach, as well as some basic information on dataset
size changes is each step.
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3.3 VIP Variable Selection applied to the Original dataset

Variable selection was applied according to Section 2.2.2 for 1-4 PLS com-
ponents on the original datas-set. The resulting Q2-values can be seen in
Figure 6.

Figure 6: Q2 vs Variables on original dataset; Coloring by PLS components:
Red = 1, Blue = 2, Purple = 3, Black = 4. The Q2-values obtained for this
dataset are negative over all variables and thus do not have any predictive
power at all.

3.4 IPA Variable Selection applied to the Original dataset

As described in Section 2.1, IPA provides ways of performing literature vari-
able selection (as compared to the mathematical VIP-score) through searches
and biomarker �lters. By doing this, variables of proven linkage to the treat-
ment are included in the model, and variables with no linkage are removed.
Two ways of performing variable selection through IPA were conducted -
biomarker �lter and searches.
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3.4.1 IPA Biomarker Filter dataset

The criteria for the applied biomarker �lter:
Tissue : Epidermis (�broblast)
Species : Human
Related Disease : Neurological
These criteria resulted in 797 selected variables. A plot showing Sensi-

tivity, Speci�city and Prediction Performance vs Cut-o� on this data can be
seen in �gure 7.

Figure 7: Sensitivity, Speci�city and Prediction Performance vs. Cut-o�
for the biomarker dataset at 1 LV and 797 variables. The highest Prediction
Performance (0.83) is obtained at cut-o� 0.4.
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3.4.2 Searches dataset

Two searches were performed - for genes related to AD, and genes down-
stream of GSK3β. These resulted in 113 and 138 variables, respectively,
with a grand total of 251 selected variables (no overlap).

LTO-CV runs using the resulting four datasets (one from the biomarker
�lter and three from the searches) were performed and Q2 values were cal-
culated (see Figure 8).

Numerical values for each dataset can be seen in Table 2.

Figure 8: Q2 vs PLS Components on IPA variable selection datasets; Color-
ing by datasets: Blue = Alzheimer's Disease (113 variables), Black = GSK3β
+ Alzheimer's Disease (251 variables), Red = GSK3β (138 variables), Green
= Biomarker �lter (797 variables). The highest Q2-value (0.15) is obtained
for the biomarker dataset at one PLS component.
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Table 2: Related values for the highest Q2-values for each dataset.
DS = Down Stream, i.e. all proteins GSK3β a�ects, located in both brain and skin cells.

AD = Alzheimer's Disease, located only in brain.

Dataset PLS Components Variables Q2 Pred. Perf. @ Cut-o�

Original 2 9559 −0.02 0.75 @ 0.37

Biomarker Filter 1 797 0.15 0.83 @ 0.4

GSK3β DS 3 138 −0.05 0.75 @ 0.5

AD 1 113 −0.12 0.58 @ 0.5

GSK3β DS + AD 2 251 0.07 0.75 @ 0.55

None of these Q2-values are close to what is regarded as a good model (Q2

around 0.5-0.7), but the biomarker �lter approach can be regarded as having
at least some predictive power.
It is no coincidence that the AD dataset received negative Q2-values (no
predictive power at all), since these genes are not even present in skin cells.

3.5 Validation

3.5.1 Validation by Randomisation

From the analysis (Section 3), it can be seen that the prediction values varied
among the datasets. In order to validate that these values were not mere
coincidence, randomisation runs were conducted.

These runs included choosing a number of randomised variables from the
original dataset, as well as randomising the response values (�treated� [0]
and �control� [1]). Since the best prediction values were obtained from the
biomarker dataset, this was the only set that was validated.
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3.5.1.1 Randomising Response Since the sample size was small, the
number of possible permutations of response values was limited. This gave
the possibility to actually use all di�erent permutations of the response space.

Since the two samples from every patient (�treated� or �control�) need to
be di�erent, only two combinations exist per patient ( [1 0] or [0 1] ).
Thus the total number of response permutations is 26 = 64. PLS runs using
the biomarker dataset (797 variables), VIP-selection with 10% removed in
each round and 1-6 PLS components were conducted (resulted in roughly
10000 rounds). The results can be seen in Figure 9.

Figure 9: Randomised response, all 64 permutations. 1-6 components, 47-
797 variables. This �gure shows all combinations of the stated parameters
and, as can be seen, the prediction performance is constantly 50% showing
that randomising the response gives the same prediction performance as pure
guessing would.

3.5.1.2 Randomising Variables To exclude the possibility that any
set of 797 variables would give as good prediction values as the biomarker
dataset, runs using random variables needed to be done.

From the original dataset, 500 rounds of selecting 797 random variables
for one PLS component (the number of components that gave the highest
Q2-value in Section 3) were conducted. The results are shown in Figure 10.
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Figure 10: Prediction performance, Sensitivity, Speci�city for 797 random-
ized variables from the original dataset (mean over 500 loops). The rise
in prediction performance at 0.4 shows that �treated� samples still have re-
semblance to �control� samples making it di�cult for the model to classify
correctly. It should be noted that this cut-o� is the same as was optimal for
the biomarker �lter approach, showing that the literature approach was able
to identify underlying data that the mathematical approach could not.

3.5.1.3 Randomisation Conclusion These validations show that the
PLS model built on the biomarker �lter dataset was able to explain the un-
derlying data as well as indicating that the variables constituting this dataset
can not be extracted randomly. Assuming that these interpretations are cor-
rect, the next step is to make a biological interpretation of the variables most
important for the prediction model.
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3.6 Biological Interpretation

3.6.1 Genes with high VIP

From the model built on the biomarker �lter from IPA, all genes were ranked
according to the VIP-score. Out of the 797 genes, the 100 highest were up-
loaded to IPA for further analysis of their connection to Alzheimer's Disease
genes and GSK3β.

A search was conducted in IPA for all genes related to Alzheimer's. This
resulted in 79 genes. Along with these 79 genes and GSK3β the 100 genes
from the VIP-scoring table was added to a pathway and connected by IPA.
Any genes that were not connected were removed. The �nal pathway can be
seen in Figure 11.

The most interesting genes are the ones connected to GSK3β, namely
VDAC1, CSNK1ε, CDKN1A and NF-κBIA (NF-κBIA was not found
by IPA, but some investigation (Susanne Fabre, AstraZeneca, personal com-
munication) shows that it is in fact connected to GSK3β [9].

According to IPA, these proteins were not related to AD, thus searches
were conducted in PubMed (http://www.ncbi.nlm.nih.gov/sites/entrez) for
articles regarding these proteins to investigate if there was any connection
to AD. These �ndings are shown below.

• VDAC1
The voltage-dependent anion-selective channel proteins (VDACs), are
found in the mitochondrial membranes of all eukaryotes. According to
a study by Yoo et al. there is a decrease of VDAC1 in AD brain. This
may lead to decreased synaptic loss and also be linked to apoptosis in
cortex regions, two issues both involved in AD [20].

• CSNK1ε
Expression increase of Casein kinase 1 ε (an isoform of CK1) has been
described in human AD brain. The reason for this is probably that it
leads to an increase in Aβ production [7].

• CDKN1A
Expression increase of Cyclin-dependent kinase inhibitor 1A (a.k.a.
p21/WAF1) has been described in AD �broblast samples [14].

• NF-κB
Several studies [9, 16, 13] show that NF-κB is a critical component of
neuronal function. A study by Paris et al. shows that NF-κB inhibitors
decrease both Aβ1−40 and Aβ1−42 production [16].
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Figure 11: Alzheimer's related genes according to IPA (in black), high
VIP-scoring genes (in orange).

Even though the exact functions of these proteins and their relationship
to AD are not covered here, the fact that links between them and AD could
easily be found in PubMed shows that there is at least some predictability
in the mathematical method with literature references, and these proteins
may indeed be potential biomarkers for GSK3β inhibitor drugs.
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4 Discussion

4.1 Substitute Prediction Performance Measurements

Even though Prediction Performance is widely used for evaluating mathe-
matical prediction models, other measures such as Positive Predicted Value
(PPV, Equation 6) and Negative Predicted Value (NPV, Equation 7) also ex-
ist. These measures are more related to individual patients than the sample
space as a whole [1].

PPV =
Sens.× Prev.

Sens.× Prev. + (1− Spec.)× (1− Prev.)
(6)

NPV =
Spec.× (1− Prev.)

(1− Sens.)× Prev. + Spec.× (1− Prev.)
(7)

For instance if the Sensitivity (0.83) and Speci�city (0.67) at cut-o� 0.4
from Figure 7 were to be used, then PPV = 0.72 and NPV = 0.80 (Preva-
lence is 0.5 since the whole sample space is made up of 6 �treated� and 6
�control�). These values can be read as if one sample was classi�ed as pos-
itive, the chance of it being �treated� would be 71% and if one sample was
classi�ed as negative, the chance of it being �control� would be 80%. If these
measurements are more informative or suited for this speci�c thesis project
I cannot say, but at least they convey another aspect of interpretation.

4.2 Validating Ingenuity Pathways Analysis

Even though the mathematical methods may be fairly easy to validate, what
is most important is the system from which the information of the variable
selection originated. To validate all relationships extracted from IPA is not
within the scope of this thesis, but still, some kind of discussion around this
is required.

According to IPA, all edges in a pathway diagram are supported by
at least one literature reference (http://www.ingenuity.com). Even though
these references have all been published in more or less well-respected jour-
nals, can you actually trust relationships that are only based on one single
article?

In Figure 11 several of the relationships presented are based on a single
reference. And, even though all genes in this �gure are present in humans,
some relationships have only been studied in mice. In this �gure there are
also two clusters of genes all pairwise connected: TUBxx & CHRNxx. These
clusters are, according to sources at AstraZeneca, partially artefacts (Hugh
Salter, personal communication).

In Figure 12, mammalian proteins phosphorylated by GSK3β are shown
[9]. Of these relationships, 16 out of 30 are not found in IPA, a sign that
signi�cantly more information can be added to the knowledgebase.
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Figure 12: Genes phosphorylated by GSK3β. Orange connec-
tions are found through IPA, Turquoise connections from literature
(http://www.ingenuity.com), [9] .

Another aspect of literature is that it is always interpreted by the reader.
In this way relationships that do not exist may be found, and relationships
that do exist may be neglected.

The entire prediction model relies on the literature reference being well
investigated and trustworthy, and even though there are �aws in IPA the
results presented in this thesis show that it is still a reliable reference, and
as research continues, it will probably only become more reliable.

5 Conclusion

The use of literature as a substitute or complement to mathematical methods
may increase prediction performance of PLS models. Taking literature in
to account means that genes without association to the treatment may be
omitted from the PLS models, thus the amount of variables decrease and
the results may be easier to interpret. Evidently, this method relies on that
literature being used has good coverage so that no variables are missed.
If it not so, variables that are in fact related to the treatment and thus
important for the prediction, may be left out. Another problem that arises
when omitting genes with no previously found relation to the treatment is
that no new biomarkers can be found, since they are already discarded.

28



These issues are clearly shown when looking at the resulting Q2-values
(Table 2). Here the AD dataset obtained the most negative Q2-value - due
to the simple fact that these genes cannot be a�ected by a substance applied
to skin-cells since they are only present in the brain, whereas the biomarker
dataset that only included genes from skin-cells obtained the highest Q2

and PP value (0.15 and 0.83, respectively). Comparing these values to the
values of the mathematical approach (Q2 at -0.02) show that the predictive
power of a mathematical model rooted on literature references can be both
bene�cial and destructive; the vital part in using a literature reference is
that it should hold enough information about the subject being investigated
so that nothing is neglected.
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