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Implementation of an automated model selection and 

validation algorithm and its application to breast tumour 

and allergen classification 
 
 

Daniel Edsgärd 
 
 
 
 

Sammanfattning 
 
Detta examensarbete behandlar frågor om hur man kan lära en dator att skapa en 
modell som kan förutsäga ett visst tillstånd eller en viss egenskap hos ett objekt eller 
system. Arbetet inleddes med att skapa ett program som automatiskt kan välja ut  den 
modell som verkar göra mest precisa förutsägelser. Programmet utvärderar också 
automatiskt den utvalda modellen för att försäkra sig om att dess prediktioner är 
pålitliga.  
 
Detta program tillämpades därefter på två intressanta medicinska frågeställningar. Det 
första problemet gäller frågan om en bröstcancertumör kommer att bilda metastaser 
eller ej. Under senare år har så kallade mikroarray experiment kommit att framstå som 
mycket lovande komplement till mer traditionella kliniska markörer. Genom att 
tillämpa det i denna studie utvecklade programmet på sådan typ av data återfanns en 
gen som till stor del bidrar till att kunna särskilja om en bröstcancertumör blir 
metastasbildande eller ej. Denna gen kan således troligen hjälpa ställandet av diagnos, 
bidra till förståelsen av bröstcancer, samt utgöra ett potentiellt mål för läkemedel. 
 
Den andra behandlade frågeställningen gäller bedömandet om det finns en risk att ett 
givet protein framkallar en allergisk reaktion eller ej. Nya proteiner introduceras idag 
i grödor och andra produkter genom genetiskt modifierade organismer (GMO), varför 
det finns ett uppenbart behov av att riskbedöma proteiners allergenicitet innan 
introduktion i näringskedjan. Studien syftade även att finna generella egenskaper som 
uppbär den allergena funktionen hos proteiner. 
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1 Introduction

1.1 Data Analysis in Biology and Biomedicine

There is an ever increasing amount of unexplained medical and biological data.
The progress of technical development has resulted in highly automated exper-
imental instruments, such as sequencing machines, microarray platforms and
robotic systems for performing highly repetitive laboratory tasks. Examples of
contemporary projects producing massive amounts of data are metagenomics
projects such as that initiated by Craig Venter in the Sargasso Sea[11], or the
Human Proteome Atlas project headed by Mattias Uhlén[36], with the aim of
systematically map the human proteome to tissue samples by the use of anti-
bodies. This is currently Sweden’s largest research project[31].

In the view of this development towards large scale production of data and
in the post-genome era of today it should be well established that there is a need
for powerful in silico methodologies that can extract knowledge from data, such
as algorithms for the discovery of gene function.

Seemingly, the advancement of data analysis methods is lagging behind the
experimental high throughput methods; there are still much information left
to extract from the enormous and fast growing amounts of data. To recite a
pertinent quote: “We are drowning in information and starving for knowledge”,
Robert D. Rutherford[1]. In other words, the possibilities for computational
data analysis to reveal important knowledge, today hidden in the mountains of
data, is breathtaking.

Additionally, following the increase in availability of computational power,
the power of data analysis ought to never have been larger by being supplied
the basic means for meeting the demand of large dataset analysis.

These two facts, the demand of data analysis and the increase in computa-
tional power, have in fact also spurred the vitality of the field of data analysis.
Concepts such as data mining appears to be spreading its roots into more and
more fields. For example, a search in the article database PubMed for “machine
learning” today returns around 25000 hits, a number which would certainly be
considerably lower a few years ago. It is also worth noticing that in the fields
of computational biology the problems under study are often of extremely high
dimensionality. The nature of the practical problems within computational biol-
ogy in combination with the advent of computational power will most certainly
push certain concepts within statistics to their very edge and thereby spur the
development of statistics.

In response to the large scale data generation in biomedicine, computational
biology has experienced a considerable growth in recent years and gained accep-
tance as a necessary tool to accompany experimental biology. Most successful
biomedical research centers of today seem to have identified the need of a close
collaboration between wet-lab scientists and in-silico analysts. As an example of
this duality one may turn to the field of industrial drug development, wherein
QSAR1 modeling today takes a great role in the search of new high-efficacy
compounds in the chemical space.

1Quantitative Structure Activity Relationship
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1.2 Data Analysis in Practice

Despite the aforementioned call for bioinformatics tools and more advanced
data analysis applications in particular, it is hard to find completely satisfactory
software.

First, applications most widely in use by experimental biologists today are of-
ten not advanced enough, commonly only offering univariate statistical analysis.
A more sophisticated treatment of data may enable extraction of information
and relationships otherwise gone unnoticed. Computational biologists and their
tools do here play an important role. For example, a software tool that offers a
multivariate perspective may change the way that many experimental scientists
view and interpret their data and results.

Second, if one search to pursue a more advanced analysis it often involves a
processing-flow of several steps, and commonly the subprocesses are found not
to be implemented in a single integrated environment but instead one needs to
resort to using a multitude of applications.

Third, one would like to have the possibility to make changes in the al-
gorithms or implement completely novel algorithms. This may be especially
important in a research environment context, since the analysis often goes be-
yond routine tasks.

On the wish list one would therefore place a data analysis software that
implements most of the commonly used algorithms in a single interface, and
where the source code is open.

Two software tools that gathers the majority of users for higher level sta-
tistical analysis are Matlab and R. For the purpose of statistical pattern recog-
nition one of the most complete packages found was Pattern Recognition Tools
(PRTools)[41], which is a third-party Matlab toolbox developed at Delft Uni-
versity, The Netherlands, in which most of the code is open to read and edit.

The work in this thesis is mainly based on the PRTools toolbox; functionality
of interest has been added and it has been the major working engine behind the
classification problems targeted in this thesis.

The toolbox and the work of this thesis treat problems within pattern recog-
nition. Therefore, before moving on to the more detailed specifications of the
treated problems, a brief overview of the basics of pattern recognition is given.
This outline will provide definitions of the most fundamental terms and some un-
derstanding of the problem domains wherein the pattern recognition paradigm
is applicable.

1.3 Pattern Recognition Essentials

From a computer science viewpoint, pattern recognition is seen as a subfield
of artificial intelligence, concerned with techniques that allow a computer to
“learn”. The major goal is to extract information from data automatically by
computational and statistical methods. A pattern recognition system can be
learned to extract patterns from data or to group data that are similar in some
sense. It may also be trained to form rules, or construct a map, which is used to
predict properties of a data sample. From a mathematical standpoint, pattern
recognition may be viewed as the applied field of statistical analysis of large
datasets.

Applications of pattern recognition are found in a wide range of areas, such
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as, natural language processing, speech and handwriting recognition, search en-
gines, medical diagnosis, bioinformatics and chemoinformatics, stock market
analysis, image analysis, object recognition in computer vision, game playing
and robot locomotion. As might be understood from the applications, the data
being handled can either be static or temporal in form of time series.

Supervised and Unsupervised learning

On the highest level pattern recognition can be divided into two subtopics, ex-
ploratory methods and predictive methods. Exploratory methods deals with
finding structures, or groupings, within data. Typical examples are clustering
and self organizing maps. The aim of predictive learning systems on the other
hand is to predict the value of some property of a given object. The training
of systems to gain predictive power may in turn itself be subdivided into two
types, supervised learning and unsupervised learning. The distinction between
these two learning strategies can clearly be described after having introduced
some basic terminology.

Features

A data sample, that may represent a physical object, is described by a set of
measured properties. Thus, a vector that contains the values of these proper-
ties, X = [x1, x2, ..., xN ], termed pattern, describes an object. The properties
that the elements in the vector represents are termed features. For example, a
fruit may be described by the two features weight and colour. In bioinformatics
and chemoinformatics, a common subject for description is a molecule, which
may be described in terms of a mass spectroscopy spectrum, an IR spectrum,
its physico-chemical properties, three dimensional descriptors, amino acid se-
quence, etc. Another common dataset in biomedicine is microarray data, where
the state of a cell-type is commonly the target to predict, and the expression
levels of mRNA are the measured features. One may note that the vector
description cannot completely represent all aspects of an object and that the
representation also effects the design of algorithms. In other words, there are
limitations to the space of problems that may be solved, inherited in the repre-
sentation used. Other structures, such as trees, may prove to be more powerful
in certain applications, but that is currently a field beyond the scope of standard
pattern recognition.

Targets

The property of the data sample that one aims to predict based on the measured
features is termed target. Taking a molecule as an example, common targets
to be predicted are affinity, a biological effect that the molecule exerts such as
toxicity, or the functional class that the molecule belongs to.

The domain of the target can either be discrete or continuous. If the domain
is discrete then the possible values that the target may have are called classes,
or labels, and the prediction is called classification. Returning to the example
of a molecule, one may be classifying a protein to a functional class having two
possible values such as allergenic or not allergenic. As for microarray studies
the target can be disease state with values such as healthy, intermediate and
end stage of disease.

To determine which class a given pattern belongs to the classifier divides
the feature space into regions corresponding to different classes. In this way the
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classifier defines a decision surface in the feature space, see figure 1. Classifiers
are typically denoted as being linear or non-linear, which refers to the shape of
their decision boundaries.

On the other hand, if the target domain is continuous then the target is
commonly denoted response variable and the prediction procedure is called re-
gression instead of classification. Toxicity of a molecule is an example of a
continuous target.

Figure 1: Discrete range of the target. The learning system aims to find a decision surface
that separates the classes in an optimal way.

Figure 2: Continuous range of the target. The learning system aims to find a regression
surface with predictions as close as possible to the true values.

The learning system

The goal of learning a predictive pattern recognition system may now be defined
by help of these terms. Given a pattern, x, find a map, f , that predicts the
target, t, as closely as possible, t ≈ t̂ = f(x). The learning procedure, referred
to as training, consists of presenting the learning system with a number of data
samples, called the training set, by which help the function f is being shaped.

Returning to the distinction between supervised and unsupervised learning
we now have the tools to define the difference. In supervised learning the targets
of the samples in the training set are known. In the learning procedure the
system is adjusted so that its predictions, t̂, are as close to the true targets, t,
as possible. By contrast, unsupervised learning involves system training without
access to any targets of the training data set.

As an example of supervised learning, we may have a dataset of substances
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Figure 3: A learning system, f , is a mapping from the domain of patterns to the range of
targets.

with measured toxicity in terms of IC50
2 with which the system is trained.

When a fresh data sample, which has not been part of the training set that
shaped the system and for which the target is unknown, is being presented to
the system a prediction of its toxicity is made.

Some examples of common classifiers and regression models used in super-
vised learning are neural network, support vector machine, k-nearest neighbor,
naive Bayes classifier, decision tree, linear discriminant analysis and logistic re-
gression.

Figure 4: Supervised learning: The model parameters are adjusted by help of true targets of
the training set.

The PRTools toolbox

The PRTools toolbox used in this work only implements supervised learning pro-
cedures. The two real world datasets studied in this work, a microarray dataset
and a dataset of protein sequences, both have discrete targets, and therefore
both constitute classification problems. However, the implemented model selec-
tion and validation procedures are general, in the sense that both classifiers and
regression functions can be input as predictors.

2Inhibitory Concentration, the concentration required for 50% inhibition of the target.
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Feature selection and representation

From the examples mentioned above, with patterns made up of mRNA levels or
three dimensional descriptors, it may be realized that the problems are highly
multivariate, as the number of features describing each object are in the size
of thousands. This raises an important issue within pattern recognition, which
features contain information of predictive capability of the target of interest?
This leads to the concepts of feature selection and extraction, which probably is
the most critical step in constructing a system with high performance. Feature
selection is a central theme in this study, both in the model selection and valida-
tion algorithm as well as in the applications on the microarray and allergology
datasets. Details about how the feature selection issue is handled is presented
in the methods section.

A related issue is whether in the set of features relevant information is present
in the first place. Finding a suitable representation of the problem is therefore a
core part to its solution. If one manages to design features that perfectly capture
the crucial information, then, in a classification scenario, the classes may be
cleanly separated in the feature space rendering the problem of finding a decision
boundary almost trivial. For example, it is difficult to find a decision boundary
that separates clementines and oranges based on colour, but measuring the size
it is trivial. The work concerning the allergology problem treated in this thesis
mainly concerns the matter of constructing a better representation of protein
amino acid sequences than those used by previous studies of the same problem.

Figure 5: The issue of representing and selecting features that contain relevant information.
In the illustrated example it is clear that we should measure and select the feature “size” in
order to separate the classes.

1.4 Model Selection and Validation

To wrap up the pattern recognition overview the important issue of model se-
lection and validation must be highlighted.

Model Selection

Given a number of models, in this case being pattern recognition systems, we
seek to select the model that performs best. To pursue a rigorous model se-
lection the choice should be based on a performance criteria. Some common
criteria used to measure performance of a learning system are holdout tests,
bootstrap techniques or cross validation, which all, in more or less elaborate
ways, are based on dividing the data into training and test data sets.
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Validation: Unbiased performance estimate

After a final model have been selected then it needs to be validated on data
that has not been available for any type of model selection.

Here it is important to remind about a common mistake. Since model se-
lection is based on a performance criterion, such as cross validation, it may
be tempting to think that the cross validation measure then retrieved gives
an unbiased measure of the model’s performance. Clearly, this is not the case
since the performance of all models have been measured and then the model
that performs best on that data is selected. Since a selection of model has been
made based on data, that model’s performance is biased to that specific dataset.
This phenomenon will be clearly illustrated in the application of breast tumour
classification in this work.

Thus, apart from the training and test sets used for model selection, a valida-
tion set that has been locked into a valve during the model selection procedure
is also necessary. This validation set can first be brought into light after the
final model has been chosen. Naturally, the validation doesn’t necessarily has to
be performed by a holdout test, but any other method such as cross validation
or bootstrap may be utilized.

Cross-validation error

In this work a prior-weighed cross-validation error is typically used as perfor-
mance estimate. It is calculated by first computing a prior-weighed holdout
error for each of the n holdout tests in a n-fold cross-validation. Each such
prior-weighed holdout error, JHoldOut, is calculated by dividing the number of
misclassifications, ei, of a class, i, with the total number of samples of that
class, Ni. The weighed error for each class is then averaged over the classes by
summing them and dividing that sum with the number of classes, see equation
1. The mean of these prior-weighed holdout errors is then calculated to give the
final cross-validation error, CV , see equation 2.

Split of a dataset in n pieces for a n-fold cross-validation aims at arriving at
as evenly distributed number of samples of each class as possible in the n pieces.

JjHoldOut =
1

k

k
∑

i

ei
Ni

(1)

CV (n) =
1

n

n
∑

j

JjHoldOut (2)

Validation: Which are the selected model parameters?

It is important to realize that all components of a model that are selected based
on data are susceptible to overtraining. Notably, features are normally selected
based on the data at hand and must therefore be considered as parameters of
the model. To repeat the dogma, selected model parameters needs to validated
against new data that has been held away from the selection procedure.

Validation: Sensitive performance estimate

Having retrieved an unbiased performance estimate, one should still be aware
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Figure 6: The available data needs to be split two times. An initial split to create a
validation set that is to be held out from model selection and a split of the remaining data
for tests underlying model selection.

that it is an estimate of the true performance of the model, and as such it is
associated with a variance. If the performance estimates have a high variance
one should be very cautious. Here the small sample issue needs to be highlighted.
The smaller sample size the higher variance of the performance estimate. Cross-
validation is probably not the optimal choice of error estimator for small sample
sizes since its variance is higher than for a number of other error estimators, such
as bootstrap and bolstering[10][7]. Estimating the variance of the performance
estimate should be enforced as a standard practice.

Improved model selection criteria and unbiased performance estimate of the
selected model are two main incentives behind the implementation of an auto-
mated model selection and validation algorithm performed in this work.

1.5 Application to Breast Tumour Classification

Background: Incentive for data collection

The microarray dataset studied was first published in Nature by van’t Veer
et al. in 2002[48]. The study aims to design a learning system that predicts
whether a patient with breast cancer diagnosis will develop distant metastases or
not. Breast cancer patients who don’t develop metastasis generally have a good
outcome and survive. Chemotherapy or hormonal therapy reduces the risk of
distant metastases, but 70-80% of patients recieving this treatment would have
survived without such intervention. The motivation behind constructing a clas-
sifier is that reliable prediction may allow patient-tailored therapy. In particular,
patients for which good prognosis is predicted could be spared chemotherapy.
The basic idea behind the prediction procedure is to use gene expression levels
of a number of genes selected as clinical markers. Additionally, genes identified
as good clinical markers are verly likely crucial actors in the biochemical mech-
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anisms of breast cancer progression, and thereby potential drug targets.

Background: Outline of van’t Veer’s methodology

Next, the procedure used by van’t Veer et al. for constructing the learning
system is summarized, somewhat recast in a language in closer resemblance to
pattern recognition terminology.

For each of 97 breast cancer patients a microarray measurement of approx-
imately twentyfive thousand genes from tumour cells was performed. Out of
these 97 samples, 78 were chosen for training of the learning system and 19 for
a holdout test.

As an initial preprocessing step, genes with at least two-fold change of ex-
pression in at least three patients and with a p-value3 less than 0.1 were selected.
The intensity ratio utilized to reflect the change of expression is the intensity
signal for a gene divided with the signal of a reference pool containing equal
amounts of cRNA from each of the 78 samples. Approximately 5000 genes were
found to have a significant two-fold change in expression.

The next feature selection step involved the identification of genes for which
the expression level had a correlation to outcome larger than the absolute value
of 0.3, |c| > 0.3. This resulted in that the set of around 5000 genes was reduced
to 231.

The remaining 231 genes were ranked according to their correlation to out-
come. A number of top-ranked genes from this set were selected, and used by
a classifier for prediction. The top-ranked feature subsets input to the classi-
fier was formed by starting at five features and adding five at a time. Feature
addition was halted at 75 features where the performance of the classifier was
seen to decrease. Classifier performance was measured in terms of leave one out
cross validation error (LOOCV ) on the 78 samples. The feature subset giving
the best performing classifier was denoted the “optimal feature set”.

The classifier used calculates the distance of a sample to the mean of the set
of training samples belonging to the good prognosis class, where the distance is
measured by means of the Pearson’s correlation coefficient. If the “correlation”
of a sample’s feature profile to the mean of the good prognosis class exceeds
a certain threshold then the sample is assigned to the good prognosis class.
Conversely, a value below this threshold would assign it to the other class.
Notably, this is similar to a nearest mean classifier, which calculates the distance
to the mean of each class and assigns the sample to the class of the closest
mean. The correlation threshold used was 0.4, which was found by optimizing
the performance of the classifier. It is not clearly stated in the article how this
optimization was done but it is not unlikely that they were making use of the
19 holdout data to tune the threshold parameter.

Using the described algorithm for search for an optimal feature set resulted
in a LOOCV error that was monotonously decreasing up to 70 genes, hence,
the final model chosen uses a feature set composed of the 70 genes which are
most correlated to clinical outcome of breast tumour patients. To validate the
70-gene prognosis predictor the 19 samples of the holdout, in which 7 had good
prognosis and 12 bad prognosis, were classified. The prediction resulted in only

3In statistical hypothesis testing the p-value is the probability that the value of the random
variable t used as test statistic is the same as, or less favourable to the null hypothesis, the
observed value, tobs, assuming that the null hypothesis is true. Less favourable can mean
greater than or less than depending on test statistic used.
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two incorrect classifications, with one misclassification for each category.

Motivation

The aim of this study is two-edged. The main objective is to provide a real-
world example dataset which allows the model selection and validation algorithm
implementation to be tested. The microarray dataset provided by van’t Veer
et al. makes a good example since the described design and validation is not
approached from a conventional pattern recognition framework.

First, the last feature selection step involving correlation to outcome ranked
genes, added in groups of five, is far from exhaustive. The procedure is similar
to the in pattern recognition terms so called individual feature selection where
features are individually ranked according to a criterion and an optimal feature
subset is found by adding features taken from the ranked feature set[5]. This
is though a procedure that severely restricts the number of subsets covered. It
is a so called univariate feature selection method, since each feature is ranked
individually. It is therefore of interest to also apply multivariate methods to this
problem since there may be combinations of features that could separate the
classes better than a subset of individually best features. Correlation between
gene expression levels should not be rare since genes belonging to a pathway
commonly are co-regulated. Additionally, although if individual feature selec-
tion is being employed other ranking criteria apart from than correlation to
outcome might also apply.

Second, the classifier used is also rather unconventional. Since the distance
to the mean of samples from only one class is used to determine the category of a
sample, the classifier only uses information from one of the classes. Commonly,
classifiers use the information from samples of all classes involved.

Thus, because only one type of feature selection and only one type of classi-
fier is evaluated it is intuitively sensible to extend the search space of learning
systems including other feature selection methods and classifiers. The second
objective for the study of the microarray dataset is therefore to find a predictor
that performs better than the 70-gene predictor presented by van’t Veer et al or
a predictor that performs equally well but which is based on fewer genes. This
is done by utilizing the implemented model selection algorithm.

It may also be noted that the validation of the designed classifier is somewhat
unclear. As stated above, it is unclear whether the holdout test data has been
used for optimization of the correlation threshold of the classifier. If this is
the case, the reported performance estimate is biased. In a subsequent article
by the same group published in the New England Journal of Medicine[47] the
70-gene predictor was assessed against a test set of 180 tumour samples. The
performance was also shown to be markedly lower, with 47% of false positive,
i.e. good prognosis patients assigned to the bad prognosis category, and 7% of
false negative. Finally, one may note that designing a classifier with as much as
70 features based on 78 training samples is questionable in respect to its power
of generalization[19]. It is not hard to realize that in the case of as many features
as samples the classification may be based on features that are unique to each of
the training samples, instead of features that represent a general signal across
all training samples.

To conclude, model selection over a range of pattern recognition systems
as well as proper validation where the training and model selection is strictly
separated from the validation is called for in the examination of the microarray
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dataset presented by van’t Veer et al.[48].

1.6 Allergology and Immunoinformatics: Application to

Allergen Classification

Background

Allergy has become a major plague throughout the world[2]. The combined
prevalence of all types of allergy amounts to 25% of the population in many
industrial nations[35]. The disease involves development of hypersensitivity to-
wards otherwise harmless substances, mainly proteins, triggering an immune
reaction. A major form of the disorder is designated IgE-mediated allergy, also
known as type I hypersensitivity[44]. The substances causing this disease in-
cludes a wide variety of aerial proteins, typically occurring in tree- and weed
pollen, as well as proteins present in a wide range of foods[3]. Proteins known
to have the potential to cause allergic reactions are denoted allergens.

Acquirement of allergy consists of two separate phases, sensitization and
triggering. Sensitization is the education of the immune system to respond to a
given antigen. The education requires a series of complex cellular interactions
but in essence leads to maturation of T- and B-cells into immunocompetent cells,
where an immune response may be triggered by the specific antigen. The trig-
gering is commenced when IgE antibodies anchored to mast cells or basophilic
granulocytes bind to the antigen. This binding elicits release of inflammatory
substances from the mast cell or basophil, resulting in symptoms of allergy. Typ-
ical symptoms are eczema, rhinitis and asthma, but the allergic reaction may
also be more severe, causing anaphylactic shock, which is an acute impairment
of circulatory and respiratory functions, in some cases leading to death[6].

As should be clear from the brief outline above, the specificity towards an
allergen is dictated by the IgE immunoglobulin binding affinity to the allergen.
The region of an antigen to which an IgE molecule binds is referred to as an
epitope. Clearly, it is of great interest to investigate whether epitopes can be
distinctly identified and whether it is possible to determine common features
among epitopes. Pursuing such studies may single out a set of allergen-motifs
which for instance may serve the purpose of predicting allergenicity. Identifica-
tion of individual epitopes may be used as diagnostic reagents or as potential
synthetic vaccines[38][29]. Accordingly, substantial amounts of research has
been done in this field, constituting both experimental as well as bioinformatic
studies. Most of our knowledge of protein epitopes has been obtained by so
called peptide scanning studies[38], i.e. known allergens are split into overlap-
ping peptide fragments, and the fragments are exposed to antibodies that have
been raised against the antigen of interest. Such studies have identified many
linear epitopes, defined as a contiguous array of amino acids in the polypeptide
chain that do not require formation of secondary or tertiary structure for IgE
to bind[21]. In contrast, conformational epitopes require secondary or tertiary
structure before IgE binds, and are typically discontinuous, i.e. occurring as
scattered patches along the linear amino acid sequence of the protein. In re-
cent years an appreciable number of conformational epitopes have been at least
partieally identified through random peptide libraries expressed in filamentous
phages. This is also known as the mimotope concept[14]. Although discontin-
uous epitopes are probably more prevalent, linear epitopes are also believed to
occur. In food allergens for example, linear epitopes may be overrepresented

11



since the immune system encounter allergens first after they have been partially
denatured and digested by the human gastro-intestinal tract[21].

Motivation

The allergology problem under study in this thesis is to predict whether a given
protein is allergenic or not. A second aim is to simultaneously find peptides,
or epitopes, that may carry the allergenic function of the allergens. This study
was conducted in collaboration with the National Food Administration, Division
of Toxicology, which handles risk assessment of food products from genetically
modified organisms and novel food products. Genetically modified organisms in-
volves the risk of adventitious introduction of allergenic proteins in crop plants.
A typical example is the 2S albumen from Brazil nut that in 1996 was transferred
into soybean to improve the nutritional value. It turned out that patients aller-
gic to Brazil nut but not to soybean showed an IgE mediated immune response
towards the genetically modified soybean[27]. It is clear that the introduction
of novel or new-in-context proteins in food crops requires proper allergenic as-
sessment before being placed on the market. A FAO/WHO4 special work group
has devised a guideline for such risk evaluation, where the first step of the as-
sessment involves the use of computational screening to evaluate the potential
allergenicity of a protein. There are though considerable room for improve-
ments of the predictive capability of the methods outlined in the protocol. For
these reasons, research is being performed that concerns the design of higher
performing predictors. Several methods superior to the FAO/WHO guidelines
have been described recent years. Stadler and Stadler have proposed a sequence
motifs based approach[37], Soeria-Atmadja et al. presented an algorithm named
DFLAP5[15], and most recently, Cui et al. reports a high performing method
using an encoding of amino acids called CTD6 combined with support vector
machine classification[26].

To conclude, there are two objectives with the immunoinformatics study of
this thesis. The primary objective is to design a learning system with good
performance for detection of allergens. The secondary objective is to design a
learning system which allows selection of peptide-fragments, epitopes, that may
have importance for allergenicity.

1.7 Aims

The issues of creating improved and automated model selection and retrieving
an unbiased performance estimate of the selected model are two main motiva-
tions behind the implementation of an automated model selection and validation
algorithm done in this work.

The model selection and validation algorithm is applied to a real-world mi-
croarray dataset, pursuing classification of breast-cancer patients to prognostic
category. The reason to approaching this problem is that a 70-gene predictor
found to perform well on this dataset has been given considerable scientific and
clinical attention[8][28][32][47][48]. The study may however be seen to be far
from exhaustive and the validation of the model may also be questioned.

4Food and Agricultural Organization/World Health Organization
5Detection based on Filtered Length-adjusted Allergen Peptides
6CTD: Composition, Transition, Distribution

12



As a second real-world application, which also is the major part of this work,
a problem within allergology is dealt with that aims to perform functional clas-
sification of protein amino acid sequences as being allergenic or not. The reason
for approaching this problem is the growing problem of allergenicity and a grow-
ing attention to allergenicity among regulatory toxicologists, crop breeders and
manufacturers of protein products for the consumer market. Accordingly, there
is an increasing need of screening for proteins that may pose a risk. Additionally,
a good model for an allergen-motif is yet to be found.

The add-on package developed as part of this thesis may also become useful
in future computational biology research. Research utilizing this package has
already been conducted within the group Computational Medicine belonging
to the program of Cancer Pharmacology and Informatics at the department of
Medical Sciences, Uppsala University. It may also be used as a pedagogic tool,
by making up the base for student computer laborations in courses in Statistical
Learning. In fact, it has already been used for that purpose, in the course
“Learning Systems for Molecular Data Analysis” offered by the department
of Engineering Sciences, Uppsala University. The aims of the thesis can be
summarized as follows:

• Pattern Recognition Toolbox

– Implement an algorithm that automates model selection and per-
forms proper validation of the selected model.

• Applications

Classification of prognosis for breast-cancer patients

– Apply the model selection algorithm to elucidate whether a bet-
ter performing predictor than van’t Veer’s 70-gene predictor can be
found.

– Apply the model selection algorithm to elucidate whether a smaller
and more stable feature (gene) list may be obtained.

Classification of protein sequences with respect to allergenicity

– Apply the model selection algorithm to attempt to improve the per-
formance of classification of proteins as being allergenic or not.

– Perform feature selection on the given set of peptide fragments (FLAPs)
to try to find epitopes.

– Implement a recently proposed encoding (CTD) of amino acid se-
quences as to elucidate whether it can give predictors with higher
performance than conventional alignment based approaches.
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2 Methods

2.1 Model Selection and Composed Pattern Recognition

Systems

The implementation of the model selection procedure implements the view that
a pattern recognition system is not simply a classifier or regression function, but
is made up of all components that processes the raw data before a prediction is
being output. Accordingly, preprocessing and feature selection should be added
to the predictor as to form a complete learning system, as illustrated in figure
7.

Figure 7: A complete learning system is composed of several components. The three main
parts are preprocessing, feature selection and classifier/regression function. These
components are seen as (meta) model parameters.

One advantage of such an approach is that a strict separation between train-
ing and validation is made more clear since it emphasizes that not only selection
of classifier is based on the training data but also selection of all other model
parameters, notably which features to include in the final model.

The model selection is viewed as an optimization problem, where the model
parameters being varied as to maximize the optimization criterion involves fea-
ture selection parameters, preprocessing methods as well as classifiers and their
corresponding parameters. The optimization criterion is the performance of the
complete learning system.

Feature selection and preprocessing

Typically, the feature selection and the training of predictor together with as-
sessment of the performance of the complete model are separated into two stages.
This occurs when the feature selection is based on an information content crite-
rion that is not a classifier or regression function. The feature selection process
is then commonly termed filtering.

Examples of such information content criteria are euclidean distance between
the means of the classes, mahalanobis distance and inter-intra distance. These
criteria measures the degree of separation of the class distributions, which is
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used as a metric to assess the discriminatory power of the feature subset. These
criteria are in this work formally denoted I.

The feature subsets evaluated may be constructed in several ways. As the
total number of possible subsets satisfies, p!

(p−n)!n! , where p is the total number

of features available for selection and n is the number of features one wishes
to select, an exhaustive search is only possible when a very limited number of
features is at hand. Instead there are several algorithms that in an intelligent
way tries to select and evaluate subsets that ought to be more promising than
other subsets. Common methods are individual feature selection that ranks
each feature individually and greedy forward feature selection that builds up
the subset by adding the feature that increases the information of the subset
being built the most. A genetic algorithm can also be used for feature selection
purposes and its implementation and employment is described in section 2.5.6
below. These feature subset search path methods are denoted σ in this work.

The number of features that the search path method is instructed to find is
denoted n. The optimal feature subset of size n that the feature selection search
path method σ finds by help of the information content criterion I is denoted
n∗.

The information of a feature subset is assessed by calculating the information
criteria I based on all available training data, giving a so called apparent esti-
mate, or by using less biased error estimators such as holdout or cross-validation.
The error estimators used to retrieve a criterion for feature subset assessment
are here denoted θφ.

The complete feature selection process, φ, is summarized in equation 3 below.
In the equation is also present a parameter ψ, which symbolizes preprocessing
of the data D. The preprocessing employed in this work constitutes the use of
more coarse-grained feature selection methods.

n∗ = φ(D,n, σ, I, θφ, ψ) (3)

Model assessment and predictor component

Having retrieved a promising feature subset the data is reduced to n∗ features
and is thereby ready to be input to a predictor being either a classifier or a
regression function, here denoted ω. Common classifiers used in this work are
k-nearest neighbor, which assigns a sample to the class which the majority of
its k neighbors belongs to, and the parzen density classifier, which is a kernel
density estimator with a normal distribution as kernel. The complete model
is then assessed by an error estimator, θΩ, such as cross-validation or holdout,
giving a performance estimate, J , of the model. This is formally stated in
equation 4 below.

J = Ω(D,n∗, ω, θΩ) (4)

Equation 3 and 4 are fused when the feature selection and assessment of
model performance are integrated. This happens when the feature subset infor-
mation content criteria, I, is a classifier or regression function, thereby measur-
ing the information content of the feature subsets by a more direct evaluation
of their predictive capability. In equation 3 above I is then replaced by ω and
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the optimization criterion, J , in terms of classification performance, is output
as well as an optimal feature subset, n∗.

Varying the parameter values, such as the feature selection search path
method used or informativenss criterion used, a set of models is generated, each
associated with a certain value of the model selection criterion, J . Typically
one chooses parameter domains spanning a few possible values for each of the
input parameters, and then forms all possible combinations of the parameter
values as to search through some part of the model parameter space. Among
these models the one with best performance is preferably chosen, directed by
the criterion, J .

The functions and output parameters as well as the eight input parameters
described above are summarized in table 1 below. This description, utilizing
eight input parameters to specify, also reflects the implementation.

Functions and output parameters Eq.

φ Feature selection process (2)
n∗ An optimal feature subset of n features. This sub-

set may be determined separately from the clas-
sification performance, if the information content
criterion used is not a classifier but rather some
distance measure that evaluates the separation of
the classes in the feature space. The dataset input
to Ω is reduced to the n∗ identified features by a
trivial function ρ, D∗ = ρ(D,n∗).

(2)

Ω Training of predictor and performance assessment
of the complete model.

(1)

J Optimization criterion. The error estimator that
outputs J is specified by θΩ.

(1)

Input parameters Model Example

D Dataset microarray: 78 samples.
Classes: 34 good prognosis,
44 bad prognosis.

(1),(2)

n Number of desired features to reduce the dataset
to.

70 (2)

σ Feature selection search path, determines the way
to traverse the space of possible feature subsets.

forward (2)

I Feature subset information content criterion,
specifies how to evaluate the amount of informa-
tion contained in the feature subset of interest.

euclidean distance (2)

θφ Error estimator for feature subset selection. cross-validation(10-fold) (2)
ψ Preprocessing method. feature selection: 2-fold

change in expression levels
(2)

ω Classifier and parameter values for that classifier. kNN(3) (1)
θΩ Error estimator for model selection. May for ex-

ample be 10-fold cross-validation.
cross-validation(5-fold) (1)

Table 1: Input and output parameters specifying the model selection procedure. Examples
of values of the input parameters specifying a single model are presented.
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D

blosum62 Sequences represented purely by their amino acids. BLAST
alignment used as similarity measure.

CTD-7 CTD-encoded amino acid sequences using seven physico-
chemical attributes. Euclidean distance between encoded se-
quences was used as similarity measure.

CTD-ZZ CTD-encoded amino acid sequences using five multidimen-
sional scaling latent variables. Euclidean distance between
encoded sequences was used as similarity measure.

σ

individual Individual feature selection. Features are individually evalu-
ated according to their information content and then ranked.

forward Greedy forward feature selection builds up the subset by
adding the feature that increases the information of the subset
being built the most.

Genetic Algo-
rithm

A feature subset is represented as an individual of a popula-
tion. The population is then evolved as to find an optimal
individual. Further details are found in section 2.5.6 below.

I

euclidean Euclidean distance between the means of the classes.

mahalanobis
distance

(m2 −m1)TS−1
W

(m2 −m1), where SW is the pooled within-

class sample covariance matrix, SW =
∑C

i=1
ni
n

Σ̂i, where

mi and Σ̂i are the estimated means and covariance ma-
trices of each class. Assuming that the distributions
are normally distributed and with equal covariance ma-
trices this distance is equal to the divergence measure,
∫

[p(x|w1) − p(x|w2)]log(
p(x|w1)
p(x|w2)

)dx

inter-intra This distance calculates the distance between the means of the
classes and also takes into account how the classes internally
are distributed.

correlation
with out-
come(c)

Features are individually ranked according to how well they
correlate with the target variable. A correlation coefficent
threshold, c, is set so that only features with the absolute
value of the correlation being higher than c is selected.

ω

distance to
mean(class, c)

The distance to the mean of the specified class is calculated.
The distance is measured in terms of the “correlation” be-
tween the sample and the mean. If the correlation is above
the specified threshold, c, then the sample is assigned to the
class to which the distance is calculated.

fisher fisher’s discriminant
nmc nearest mean classifier
lda linear discriminant analysis
qda quadratic discriminant analysis
kNN k Nearest Neighbors classifier
parzendc parzen density classifier
decisiontree
(pruning)

’maxcrit’ and ’fishcrit’ specifies pruning parameters of the de-
cision tree.

ψ
expression
change (in-
tensity ratio,
p-value, n
samples)

Selects genes that are differentially expressed. Three criteria
need to be fulfilled for a gene to be selected. The intensity
ratio specifies the minimum ratio with which a gene needs to
be expressed in relation to a reference mean as to be selected.
The p-value specifies the probability that the observed inten-
sity ratio may have occurred due to random noise, see section
1.5 for further explanation. A p-value threshold is set which is
not allowed to be trespassed. The number of samples specifies
in how many samples the gene needs to fulfill the two first
criteria as to be selected.

derivedFLAPs Selects peptide fragments (FLAPs) which are derived from the
allergens of the training set.

θφ and θΩ
apparent Apparent error rate, results from a test based on the training

data, which has not been held out from the training procedure.
cv(n) Cross-validation, where n stands for the number of folds.

Table 2: Reference table of values used in this work of the model input parameters. For
further details regarding the parameters see the references[5][1].

17



2.2 Validation

In the former subsection the implemented model selection procedure was de-
scribed, which leaves us to the issue of validating the selected model. The
model selection described above utilizes a dataset, D, to find the best model.
As to perform an unbiased validation of the selected model a separate dataset,
V , which has not been part of the model selection procedure is needed. Hence,
among all models the model with optimal value of the optimization criterion,
J , is selected and tested against the validation set, V . The validation can be
done by any conventional error estimator, and those implemented in this work
were cross-validation and holdout test.

As validation methods also are used for retrieving performance criteria, J ,
upon which model selection is based, these methods are being applied twice.
This results in that the the data needs to be split twice. First in an outer
split, dedicating one piece of the data to validation and the other for model
selection. Then the piece of data dedicated to model selection is further split to
train and test the set of models as to give performance measures which provide
guidance for model selection. Thus, a common scenario is that a cross-validation
procedure is utilized twice, both in an inner loop for model selection as well as
an outer for validation. This type of double cross-validation loop procedure has
been reported in several articles[9][16][18]. Such a “double-loop” is also realized
by the implementation in this work.

2.3 Model Selection and Validation Algorithm: Test of

Implementation on Simulated Mixed Gaussian Data

A test problem was designed as to verify the correctness of the implementation.
A simulated dataset of two classes was generated, where each class was generated
by a separate 3-dimensional Gaussian distribution. The mean values of the
distributions were (0,0,0) and (2,1,0) respectively, and with correlation matrices





2 1 0
1 2 1
0 1 2



 and





2 −1 0
−1 2 1
0 1 2



 ·

The models were allowed to vary in terms of two different feature selection
methods and four different classifiers. Among the classifiers was quadratic dis-
criminant analysis (qda) which should perform well since it assumes that the
data to be classified is generated from Gaussian distributions, which in this ex-
periment also is the case. The model selection was performed on two different
datasets, one smaller with 10 samples from each class, and a larger one with
100 samples from each class. The final selected models for each dataset were
validated against a validation set of 100 fresh samples from each class.
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Figure 8: Scatterplot of two 3-dimensional Gaussians. 100 samples from each Gaussian.

Experimental Setup: Two 3-dimensional Gaussians.

Parameter Value

D 2 Gaussians. Small dataset: 20 samples, 3 features. 10 samples from
each class. Large dataset: 200 samples, 3 features. 100 samples from
each class.

n 2

σ Individual, Correlation with outcome

I euclidean distance

θφ crossvalidation(5-fold)

ψ none

ω distance to mean(distance to mean of class 1, correlation thresh-
old=0.0), fisher, knn(3), qda

θΩ crossvalidation(10-fold)

V 200 sample holdout, 100 samples from each class.

Table 3: Parameter settings of learning systems for classification of simulated Gaussian data.
Two different feature selection search paths and four different classifiers were used. fisher:
fisher’s discrimant, kNN: k Nearest Neighbors, qda: quadratic discriminant analysis.
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2.4 Application to Breast Tumour Classification

The 78 tumour samples used by van’t Veer et al.[48] were employed in an at-
tempt to find a predictor yielding higher performance. The range of learning
systems searched was formed by taking all possible combinations of the input
parameters listed in table 4 below. Notably, the feature selection is of filter
type as the information content criteria are not classifiers. Another consider-
able difference to the procedure presented by van’t Veer et al. is that three
different classifiers are evaluated here, in contrast to a single one only. All
three are though relatively simple in the sense that they all have linear decision
boundaries. Three different validations of the model selection were performed.
The 19 holdout samples used in the Nature publication[48] and the 180 samples
from the publication in New England Journal of Medicine[47], were applied in
two separate holdout tests as to enable comparison of the selected model with
the 70-gene predictor presented in these articles. Additionally, a 5-fold outer
cross-validation was also used, hence forming a double loop since the model
selection is based on 10-fold cross-validation. In this last case of outer cross-
validation the 78 and 19 samples were pooled before input to the double-loop
procedure. The reason for choosing 5-fold cross-validation is that the number of
samples available for model selection are then approximately 78, allowing better
comparison with the holdout performance estimates. The 5-fold external vali-
dation procedure was repeated 5 times with different splits of the dataset used
for the cross-validation. This results in that the model selection procedure is
being called 25 times in total. The experimental setup describing all parameter
settings is presented in table 4 below.

Experimental Setup: 19 sample and 180 sample holdout validation

Parameter Value

D Microarray dataset of breast cancer tumours. Dimensions: 78 samples,
24 481 features. Classes: 44 good prognosis, 34 bad prognosis.

n 5, 10, ..., 75

σ Individual FS, greedy forward FS

I mahalonobis distance, euclidean distance, inter-intra distance

θφ apparent

ψ correlation with outcome FS(correlation threshold = 0.23) expres-
sion change FS(intensity ratio ≥ 2, pvalue < 0.01, ≥ 3 samples)

ω distance to mean(distance to mean of good prognosis class, correlation
threshold=0.4), fisher, nmc

θΩ crossvalidation(10 fold)

V 19 sample holdout: Classes: 7 good prognosis, 12 bad prognosis. 180
sample holdout: Classes: 138 good prognosis, 42 bad prognosis.

Table 4: Parameter settings of learning systems for breast tumour classification with
microarray data using holdout test as validation error estimator. apparent: performance is
evaluated on the training data, nmc: nearest mean classifier.
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Experimental Setup: 10-fold crossvalidation

Parameter Value

D Micro-array dataset of breast cancer tumours. Dimensions: 78+19=97
samples, 24 481 features. Classes: 51 good prognosis, 46 bad prognosis.

θΩ crossvalidation(10 fold)

V crossvalidation(5-fold). Repeated 5 times.

Table 5: Parameter settings of learning systems for breast tumour classification with
microarray data, using cross-validation as validation error estimator. Only the dataset
differs from model selection parameters used in the holdout validation. θΩ is shown as to
clarify that a double cross-validation loop is being run.

2.5 Application to Allergen Classification

A novel representation of the protein sequences was designed. The design was
mainly inspired from two articles, Dubchak et al [23] and Soeria-Atmadja et

al.[15], the former introduces a novel representation of protein sequences and
the latter presents a novel method for extraction of peptide fragments from al-
lergens. However, none of the methods presented in these articles can without
modification be directly applied to select peptide fragments that contain a gen-
eral allergen-motif. In the article by Soeria-Atmadja et al., a set of slightly less
than 5000 peptide fragments forms the basis for classification, which is a too
large set as to enable interpretations of biological relevance. The goal was there-
fore to design a learning system that may reduce the set of peptide fragments
input to the trained learning system. Apart from the possibility that one may
find a set of peptides that carry information about allergenicity, such a learning
system may also be able to achieve higher performance as less features lessens
the noise and thereby the risk for overtraining on the training data.

2.5.1 Summary of DFLAP algorithm

The DFLAP algorithm described by Soeria-Atmadja et al [15] is here outlined
since the algorithm designed in this study is a modification and extension of
that algorithm. The algorithm is illustrated in figure 9.

A database of 762 allergens is split into a training set of 500 allergens and a
holdout validation set of 262 allergens. The allergens are cut by a sliding win-
dow of length, l. The generated fragments are then aligned, by the application
of a BLAST algorithm using the BLOSUM 62 substitution matrix, against a
set of non-allergens. The non-allergen set is composed of all sequences of the
human proteome that do not have annotations related to allergenicity as well as
non-allergen sequences from skin prick preparations. A fragment derived from
the allergens having too high sequence similarity to any of the non-allergens is
discarded, where the critical level of similarity is determined by an alignment
score threshold, f . The peptides left after this filtering process of the allergen
generated peptide fragments is referred to as FLAPs, Filtered Length-adjusted
Allergen Peptides. The length-adjustment is performed whenever two or more
consecutive peptides, where consecutive peptides are peptides where the slid-
ing window have slided only one amino acid, all are deemed being dissimilar
enough to the set of non-allergens and ought to be assigned as FLAPs. These
overlapping peptides are then concatenated into one single unit, resulting in a
set holding peptides of variable length.
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Figure 9: The DFLAP algorithm. FLAPs are extracted from a set of allergens. The FLAPs
are filtered and then aligned against a set of allergens and a set of non-allergens. The four
highest scores of each alignment entails a feature vector for each protein sequence. These
features are used as input to a learning system.

The idea behind this filtering process is that the set of FLAPs ought to form
a base of peptides with a higher density of allergenicity information than that
of a non-filtered set of allergen peptide fragments.

Out of the training set of 500 allergens a set of several thousands FLAPs is
generated. Next, the features describing a protein sequence is defined by align-
ing each peptide from the FLAP set against a protein sequence, retrieving an
alignment score for each FLAP. The similarity of a FLAP against a sequence is
defined as a feature, hence giving a feature set of several thousands of similarity
scores. Since this feature space is of too large dimension to be of sensible use for
classification, a somewhat unconventional method for reduction was invented.
The alignment scores were sorted in descending order followed by selection of
the top n similarity scores for each sequence. These n scores make up the final
feature vector describing the protein sequence.

Subsequently a linear kernel support vector machine (SVM) classification
algorithm was trained utilizing the 500 allergens of the training set as well
as 1000 non-allergen training samples obtained by randomly sampling proteins
from Swiss-Prot (followed by removal of possible allergens). Additionally, 5
vertebrate tropomyosins, regarded as non-allergens, were included in the train-
ing data phase. Tropomyosins originating from non-vertebrates are commonly
found to be allergenic, whereas tropomyosins found in vertebrates is not known
to induce an allergic reaction. Since sequences of the tropomyosin family are
homologous across species and contains both allergenic as well as non-allergenic
representatives, the members of this family are difficult to predict with respect
to allergenicity.

Using this training data the four parameters of the learning system, that is,
the sliding window length, l, the similarity threshold for filtration of FLAPs,
f , the number of alignments scores selected as features, n, and the SVM cost
parameter, C, were optimized using 3-fold cross validation. The optimal model
selected was found to have the following values of its parameters, l = 22, f = 48,
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n = 4 and C = 100, which results in a filter that returns 4776 FLAPs.
The performance of the selected system optimized and trained on the above

described training data was evaluated by a holdout test of the remaining 262
allergens. It was also tested on 193 non-allergens sampled from 3 “difficult”
protein families, each of them known to contain both allergens and non-allergens.
The three “difficult” families represented were tropomyosins, parvalbumins and
profilins. The performance achieved by the DFLAP classification system is one
of the best ever published, and ought therefore to make a good starting point
for design of a new detector of allergenic proteins.

2.5.2 Modification of DFLAP: from Feature Extraction into Feature

Selection

As aforementioned, one drawback of the DFLAP algorithm is that the trained
learning system requires as much as 4776 features as input. The reduction into
four features made before input to the SVM classifier is done uniquely for each
query protein, resulting in that the four peptides selected may be unique for
each query. This procedure clearly makes it difficult to find peptides that can
represent generalized epitopes. It is also probable that a substantial fraction of
all 4776 features contains information of little relevance to allergenicity and such
uninformative features may therefore cause the DFLAP predictor to perform
worse than hypothetically possible.

To overcome this problem a reduced feature set that is the same no matter
what the query sequence is would be preferable. Designing an algorithm that
allows the same selected features to describe all sequences and using those same
features for classification, could potentially result in the selection of generalized
epitopes.

A method where a learning system requires a larger set of features as input,
but then the feature set is reduced before classification is generally called fea-
ture extraction. A well-known method used for feature extraction is principal
component analysis. In this view, it is clear that the DFLAP algorithm involves
a feature extraction step, since the original set of 4776 features is required as
input but the dimensionality is reduced to four before classification. In contrast,
the method called for, where it is set beforehand what subset of peptides is to
be input, is an instance of what is known as feature selection.

The DFLAP algorithm was therefore modified as to allow feature selection,
see figure 10.

This feature selection process may be more clearly understood by viewing
the FLAP alignment scores against a certain protein sequence in a spectrum.
Since all features have the same unit of measure it makes sense to put them in a
spectrum, having FLAPs on the x-axis and their corresponding alignment scores
on the y-axis. Such a spectrum can be regarded as a fingerprint of a protein
sequence. Such a fingerprint of a sample are also commonly denoted profile. As
described in the section “Model Selection and Composed Pattern Recognition
Systems” above, we let the feature selection procedure be a component of a
learning system, and in this way we may also utilize the methods implemented in
the PRTools toolbox. The set of model parameter values evaluated is described
under “Experimental Setup” in the end of this section.
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Figure 10: Modified DFLAP algorithm as to perform feature selection instead of feature
extraction. All FLAPs are kept instead of only taking the four top-scoring features for each
protein sequence. All these features (FLAPs) are instead selected among by conventional
feature selection processes, thereby enabling the possibility to select general patterns.

2.5.3 Modification of DFLAP: Feature Representation

To aquire ideas of possible improvements to the feature representation used
by the DFLAP algorithm, the problem of peptide and protein representation
in terms of features is given an overview. This may help to distinguish and
facilitate reflections on pros and cons of the DFLAP representation.

To describe a protein in terms of a peptide, we assign a similarity score that
describes the similarity of the peptide to the protein sequence. To be able to
define this similarity two components are needed, a representation of the peptide
and protein, as well as a “similarity measure”, that defines the distance between
the two in a given representation.

An intuitive way to represent peptides and proteins is in terms of their
amino acid sequences. Using this representation, the most widely employed
technique to measure similarity is to apply a dynamic programming algorithm,
such as BLAST, using a substitution matrix based on evolutionary amino acid
substitution frequencies. As an oversimplified generalization it may be said
that in this similarity measure two amino acids are more similar if they are
statistically found to be more frequently substituted with one another. One
disadvantage of this type of conventional alignment is that the representation is
“local”, in the sense that the substitution of amino acids may not always reflect
substitution of other more global properties of a sequence. We can for example
imagine that there can be two sequences that may differ on the amino acid
sequence level, having rather rare substitutions, but that they form a tertiary
structure which is very similar. Such conserved structural motifs may be hard to
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represent with just information about the conservation of amino acid residues,
at least if the substitution matrix is based on sequences from a range of different
functional and structural classes.

As a way to alleviate the issue of “locality” that the algorithms employ-
ing substitution matrices based on amino acid distances suffers from in this
thesis project, a more global representation was implemented. This representa-
tion was originally presented by Dubchak et al.[23] for the purpose of protein
fold classification, and has more recently been implemented in a web server
called SVM-Prot[13] and which has been successfully applied to a number of
classification problems[33][34][22] one being allergen classification[26]. The high
performance of the classifiers based on this representation made it an interest-
ing target for implementation. This more global representation of polypeptide
chains will here be denoted CTD-encoding, and is described below.

We may observe that in studies by Dubchak et al.[23][24][12] and subsequent
publications utilizing essentially the same encoding, notably by employment of
the web servers SVM-Prot[13] and PROFEAT[49], the complete amino acid se-
quence of a protein has been the direct subject for CTD-encoding, resulting in
a CTD feature vector representing the whole protein sequence. The representa-
tion of a protein is in other words not based on a set of peptides, which is the
focus of the work presented here. The representation presented here is there-
fore novel, forming a fusion and extension of the ideas contained in the DFLAP
algorithm and the CTD-encoding.

2.5.4 CTD-encoding

Algorithm

The basic units used in CTD-encoding are amino acid properties. Straight-
forward amino acid properties are physico-chemical attributes, such as weight,
charge or hydrophobicity. Let’s consider one such amino acid property to be
subject for CTD-encoding.

An amino acid property gives rise to a set of 20 values, one for each amino
acid. The initial step of the encoding is to categorize the amino acids into one
of several groups with respect to the value of that property. In other words, a
number of amino acids that have a similar value for that property should be
mapped to one discrete group. Dubchak[23] as well as Li et al.[49] group the
amino acids into three categories for each specific amino acid property. The
sequence of amino acid letters is by this procedure replaced by a sequence of
numbers representing each amino acid’s category assignment, with respect to
the amino acid property being encoded, see figure 11.

Taking charge as an example, there are three natural categories: posi-
tive(K,R), negative(D,E) and neutral(remaining amino acids). Next, three de-
scriptors, composition (C), transitions (T), and distribution (D), are introduced
to describe the global composition of the property. The C, T and D descriptors
are calculated for each category of the property. Composition is the number of
amino acids belonging to one category divided, with the total number of amino
acids in a protein sequence. Transitions characterizes the frequency with which
one category is followed by any other category of the property. For example,
for a sequence of 1112113, where the digits represent categories of the property,
there are three transitions from or to category 1, resulting in a transition fre-
quency, T = 3/(7 − 1) = 0.5, since the number of possible transitions is the
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(a) The amino acid sequence is translated
into groupings within each property. Each
group for a property is then CTD encoded.

(b) Example of coding of one group of one
property.

Figure 11: The CTD-encoding algorithm is based on amino acid properties, grouping of
these properties and finally calculation of the “CTD” feature vector for each group.

number of amino acids in the sequence minus one. Distribution refers to the
proportion of the chain length within the very first, 25%, 50%, 75% and 100%
of the occurences of the particular category is covered. In the above example,
100% of the first category is covered after six of the seven amino acids, hence,
D(100%) = 6/7. CTD-encoding of one category of one property thereby results
in 1 + 1 + 5 = 7 features. For a property of three categories, such as charge,
3∗7 = 21, features is generated. The complete feature vector is formed by using
a multitude of amino acid properties, and the size of the final feature vector
representing a sequence is therefore 21 ∗n, where n is the number of amino acid
properties, assuming that all properties were divided in three categories.

Properties Subject for Encoding

Physico-chemical attributes are a straightforward choice for the type of amino
acid properties suitable for CTD-encoding. A sensible question to ask is which
physico-chemical attributes are most appropriate to encode. Preferentially, one
would like to restrict the number of amino acid properties encoded to a minimal
set of properties that contains the most physico-chemical information about the
amino acids.

Seven physico-chemical attributes

In a later article by Dubchak et al.[24], the number of CTD-encoded amino
acid attributes had increased from three to six. They are: hydrophobicity, nor-
malized van der Waals volume, polarity, polarizability, secondary structure and
solvent accessibility. References to the original measurements of each of these
attributes are found in their article. To quote the authors, the reason behind
choosing these six properties is motivated by that they are “representing the
main clusters of the amino acid indices of Tomii and Kanehisa”[30]. In the arti-
cle by Tomii and Kanehisa a set of 402 so called amino acid indices was clustered.
An amino acid index is defined as a set of 20 numerical values representing any
of the different physico-chemical attributes of amino acids. These amino acid in-
dices have been mined from publications and gathered in a database. There are
more aa-indices than amino acid properties represented in the database, since
several measurements of the same amino acid attribute may have been reported
in separate publications, and also because there may be several definitions of
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the amino acid property, such as is the case for hydrophobicity. Interestingly,
Tomii and Kanehisa state that the volume and hydrophobicity can be used to
reproduce the PAM substitution matrix to a very high degree, and that these
two properties are the major factors influencing the amino acid substitution
during evolution. Dubchak et al.[24] divided the above mentioned six attributes
into three categories for CTD-encoding. Li et al [49] used the same six attributes
as Dubchak and the same division into categories but also added the attribute
charge, though without any motivation found being stated in the article. It is
obvious that the information contained in the hydrophobicity attribute ought
to be highly correlated to charge.

In this work, these same seven attributes were employed for CTD-encoding
and with the same division of categories, see table 6. The seven attributes, each
divided into three categories, results in a feature vector of length 3∗ 7 ∗ 7 = 147,
since each category gives rise to 7 features as described above.

Attribute Category 1 Category 2 Category 3
Hydrophobicity Polar Neutral Hydrophobic

R,K,E,D,Q,N G, A, S,T,P,H,Y C,L,V,I,M,F,W
Normalized van der Waals volume Small Medium Large

G,A,S,C,T,P,D N,V,E,Q,I,L M,H,K,F,R,Y,W
Polarity Low Medium High

L,I,F,W,C,M,V,Y P,A,T,G,S H,Q,R,K,N,E,D
Polarizability Low Medium High

G,A,S,D,T C,P,N,V,E,Q,I,L K,M,H,F,R,Y,W
Charge Positive Neutral Negative

KR ANCQGHILMFPSTWYV DE
Secondary structure Helix Strand Coil

EALMQKRH VIYCWFT GNPSD
Solvent accessibility Buried Exposed Intermediate

ALFCGIVW RKQEND MPSTHY

Table 6: Amino acid attributes and the division of the amino acids into three groups for
each attribute used in this work. For such attributes as secondary structure and solvent
accessibility the division is based on statistical appearance of each amino acid in a specific
state.

Five latent variables from multidimensional scaling of 237 physico-

chemical attributes

The issue of finding a minimal set of properties that represents the difference be-
tween the amino acids in the physico-chemical space, can be approached in other
ways than by means of clustering. By viewing the amino acids as data points in a
space spanned by physico-chemical features, we can identify that this is a matter
of reduction of feature space where one seeks to keep the information contained
in the distribution of the dataset. This type of reduction is commonly done by
feature extraction methods such as PCA7 or multidimensional scaling, which
both extracts latent variables that are ranked according to how much informa-
tion they contain[5]. In multidimensional scaling latent variables are sought
and ranked in respect to how well they are able to reconstruct the geometrical
configuration of the point set, that is, it seeks to conserve the distances between
the points when represented in a lower dimensional space. The perhaps most
comprehensive analysis utilizing a method similar to multidimensional scaling

7Principal Component Analysis. Orthogonal latent variables that maximizes variance are
extracted.
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for the problem of reducing the large redundancy in physico-chemical proper-
ties was reported in year 2001 by Venkatarajan and Braun[45]. They report five
latent variables that were found to be able to represent the distances between
the amino acids in an original space of 237 physico-chemical properties.

These five variables were in this work identified to be good candidates for
CTD-encoding, and will henceforth be referred to as ZZ-variable one to five.
As mentioned above, the first step of CTD-encoding is to categorize the amino
acids into one of several groups for each property. It was decided that each of
the five ZZ-variables were to be divided into three categories, and this was done
by partitioning the value range into three equally sized intervals. This decision
was taken after having sorted the 20 values in descending order for each of the
variables and inspecting the plots of these values against their corresponding
amino acids. No plateaus were seen in the plots, which for example would arise
if all amino acids can take only one of either of two values, see figure 12.
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Figure 12: Amino acid values on the five most prominent multidimensional scaling vectors.
No specific group of amino acids is identified.
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Figure 12: (cont’d) Amino acid values on the five most prominent multidimensional scaling
eigenvectors. No specific group of amino acids is identified.
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Similarity Measure

Given a representation in CTD-encoding, how then to measure the similarity
between a peptide and a protein sequence? There are no substitution matrices
based on that representation so a dynamic programming algorithm would not
be directly applicable. A straightforward idea is to take the euclidean distance
between CTD feature vectors representing the sequences. In analogy with con-
ventional local alignment it would then be reasonable to compare the peptide
for which similarity is to be determined with peptide fragments from within the
query protein sequence. This is implemented such that the peptide fragments
of a protein sequence is generated by a sliding window of fixed length l. The eu-
clidean distance between the peptide and each of the sliding window generated
peptides are then generated. The shortest distance among these is chosen as
the similarity-score between peptide and protein. An overview of this algorithm
is given in figure 13.

Figure 13: DFLAP algorithm with the representation of protein sequences modified as to be
based on CTD-vectors instead of amino acid vectors. Alignment of CTD-encoded sequences
is performed in an euclidean distance metric instead of alignment based on an evolutionary
substitution matrix. AA: amino acid sequences. AA-FLAPs are the same 4776 FLAPs
extracted by Soeria-Atmadja et al.[15]. Allergens and non-allergens from a database are
fragmented into peptides by a sliding window method. The FLAPs and the peptide
fragments are then CTD-encoded. In this CTD-representation the FLAPs are aligned
against the peptides of each protein sequence, with alignment based on euclidean distance
between FLAPs and fragmented peptides. This gives rise to a pattern of alignment scores
for each protein from the database. Using this representation the protein samples of the
database are input to a learning system, which selects informative features, corresponding to
informative peptide fragments.
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CTD-encoding Issues

During implementation of the CTD-encoding algorithm three issues arose
that required special handling.

• Undetermined amino acids in the given sequences, abbreviated as ’X’.
These amino acids are not being assigned to any of the categories that the
amino acids are being divided into. However, they are not totally ignored
in the CTD-encoding, since they are included in the calculation of the
total length of the amino acid sequence.

• Another issue that can arise is that for a given peptide there are no repre-
sentatives to be found for a certain category of a property to be encoded.
For example, it may be that there are no positively charged amino acids
present in a sequence. Omitting such a property in the encoding of a
sequence would cause the feature vector to be shorter as compared to
completely encoded sequences without missing representatives for a cate-
gory. The euclidean distance comparison between sequences is then diffi-
cult to implement in a way that gives comparable similarity scores. For
this reason, such sequences were completely excluded. Many FLAPs were
considerably shorter than the peptide fragments since the fragments were
generated by a sliding window of length 28, which was the mean FLAP-
length. Since many FLAPs are shorter than the peptide fragments it
makes them more prone to miss representatives. Therefore mainly FLAPs
were subjects for exclusion.

• The sliding window length used to cut the query protein sequences into
peptide fragments for comparison against the FLAPs, also requires special
attention. A straight forward length to employ would be to let the sliding
window length be equal to that of the FLAP against which similarity-score
is to be computed. In the FLAP set of 4776 FLAPs there are though
peptides of 96 different lengths represented. Due to limitations in com-
putational resources and time, the sliding window length was instead set
to the mean length of all 4776 FLAPs, which was found to be 28. Thus,
protein sequences were split in peptide fragments of length 28, irrespective
of length of the FLAP against which comparison was made. See figure 14
for a histogram of the lengths of the 4776 FLAPs.
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Figure 14: Histogram of FLAP-lengths for the set of 4776 FLAPs. The mean value of 28
amino acids is chosen as the sliding window length.

2.5.5 Overview of Implemented Feature Selection and Representa-

tion Methods

A summary of the above described methods for feature selection and feature
representation of peptides as well as similarity measures used in this work is
found in table 7 below. Two pieces of information, both concerning the similarity
measure, and neither of which have yet been described, are included in the table.

First, conventional local alignment algorithms based on dynamical program-
ming allows for adjustment of the alignment with respect to insertions or dele-
tions that may have occurred by evolution of the DNA. For example, if the
only difference between two sequences is a minor segment having been inserted
into one of the sequences, then a so called gap is introduced by the alignment
algorithm, and the alignment score is penalized for the introduced gap. When
applying the alignment algorithm based on euclidean distance presented above,
this kind of gap-handling is not featured.

Second, substitution frequencies for a substitution matrix such as BLO-
SUM62 is based on a large set of sequences covering many structural and func-
tional groups. For the purpose of functional classification, it may be though
imagined that it might be better to base the substitution frequencies on how
common certain substitutions are between two functional classes of interest. Us-
ing physico-chemical attributes directly, such as is the case for CTD-encoding,
avoids such bias of the substitution frequencies towards the sequence set upon
which they are based.

32



Feature space reduction method

Feature Extraction Implemented in DFLAP-algorithm. Requires in-
put of a large set of FLAPs. No reduction to epi-
topes.

Feature Selection Reduction of FLAP set to a set of possible epi-
topes.

Feature representation of sequences

Pure amino acid sequence represen-
tation

Local representation.

CTD-encoding of amino acid
sequence using seven physico-
chemical amino acid attributes

Global representation. Possible to evaluate if se-
lected physico-chemical attributes are relevant.

CTD-encoding of amino acid se-
quence using five variables ex-
tracted by multidimensional scaling
of 237 physico-chemical amino acid
attributes

Global representation. The variables subject for
encoding are known to be highly informative.

Similarity measure for feature vectors

BLAST alignment Gap-handling. Substitution frequencies based on
a large set of sequences. BLAST alignment was
only performed on pure amino acid representation
of sequences.

Euclidean distance No handling of gaps. Unbiased to any particular
sequence set. Euclidean distance was used to mea-
sure distance between CTD-encoded amino acid
sequences.

Table 7: Comparison of implemented feature selection and extraction techniques, of
sequence representations and finally of the similarity measures measuring the distance
between feature vectors. The feature extraction in the DFLAP algorithm is compared to the
selection technique implemented in this work. The three different representations of protein
sequences used in this work are compared, pure amino acid representation, CTD-encoding of
seven physico-chemical features and CTD-encoding of five multidimensional scaling
eigenvectors. Finally the utilized similarity measures are compared, that is, conventional
BLAST alignment and Euclidean distance.
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2.5.6 Genetic Algorithm

Motivation and Overview of Algorithm

Running feature selection methods in order to reduce the FLAP set of 4776
peptides to a size of up to 200 we learnt that only the relatively simple fea-
ture selection search path methods (σ) implemented in PRTools are reasonably
expedient, while the more sophisticated methods are too slow, taking several
weeks to finish on a 2GHz 64-bit AMD processor. More specifically, only indi-
vidual and greedy forward feature selection are fast enough. Individual feature
selection evaluates each feature by itself and then ranks them all, while forward
selection builds up the feature set by repeated addition of one feature at a time
selected to maximize increase of the information content[5]. A drawback is that
none of these two methods starts out with investigating a large feature subset.
The forward selection method may take an early decision in its search path that
is non-optimal in the search of finding an optimal subset of a certain final size.
The individual feature selection is even more simple than forward selection since
it does not consider existence of correlations between features.

To alleviate this it was decided to apply a genetic algorithm as a feature
selection method. One advantage with a genetic algorithm is that it can start
out with a large feature subset. Moreover, it is not as computationally intensive
as the more sophisticated feature selection search path methods implemented
in PRTools. Additionally, a genetic algorithm may be able to find a global
optimum among several local optima, which also is shown on benchmarking
functions below.

The basic idea behind the genetic algorithm is to solve an optimization
problem by simulating evolution. The implemented version is similar to the
basic genetic algorithm presented by Goldberg[17]. This algorithm may be
summarized as follows, and is illustrated in figure 15.

Figure 15: Genetic algorithm overview. A population of individuals is evolved to find an
optimum on the fitness surface. In this work the individuals represents feature subsets, so
that an optimal individual found corresponds to an optimal feature subset.
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The goal of the genetic algorithm is to find the global optimum of an objec-
tive function. The initial step involves the creation of a population where each
individual is randomly placed in the feature space, that is, the domain of the
objective function. The objective score of each individual is then computed by
the objective function that takes the feature vector of an individual as input.
The objective scores is then transformed into fitness values, by the application
of a fitness scaling function. To move the population towards the global opti-
mum of the objective function a selection of fit individuals is performed, by the
help of a selection function. The selection function assigns a higher probability
of selection to individuals with higher fitness. The set of fitness-selected indi-
viduals are the parents allowed to contribute with genetic material to the next
generation. From the parent set a new population is created by the application
of genetic operators. Their purpose is to introduce diversity in the population,
so that it doesn’t get stuck in a local optimum. The genetic operators used are
replication, mutation and cross-over. By applying the genetic operators to the
parents a new generation emerges. It is set to have the same number of indi-
viduals as the parent generation as to keep the population size constant. This
process is iterated until a stop criterion is reached, such as a maximal number
of generations.

Some of the genetic algorithm parameters employed are given a more detailed
explanation below.

Rank is the only fitness scaling function applied in this work. It first ranks
individuals according to their objective scores. The fitness of an individual with
rank n is then set to 1√

n
. The reason for using fitness scaling of raw objective

function values is to smoothen the difference between probabilities of being
chosen to contribute to the next generation. A sharp decline in probability
for lesser fit individuals would lessen the chance of introducing diversity into
the next generation and may therefore cause premature convergence where the
population settles at a local optimum.

The application of the genetic operators is done in such a way that a par-
ent is subject to only one of them, so that the children are either created by
replication of a parent, by mutation of a parent or by cross-over between two
parents. The proportions among these is set by two parameters, nElite and
Pc. The parameter nElite sets the number of parents that are to be replicated.
The selection of the parents subject for replication is done by ranking all par-
ents according to fitness and choosing the nElite top-ranked ones. Among the
remaining parents the variable Pc sets the probability that a parent is chosen
for cross-over. Parents neither selected for replication nor for cross-over are
mutated. The mutational impact applied to each parent selected for mutation
is set by a variable denoted Pm. It sets the probability that a bit along the
bitstring is flipped.

Test of Implementation on Benchmarking Objective Functions

Since no suitable implementation of a genetic algorithm that would be appro-
priate to integrate into PRTools within a reasonable amount of time was found,
it was decided to make my own implementation. Mathworks Inc. does have a
genetic algorithm toolbox for Matlab, but Uppsala University did not have a
license for it at the time.

To test the implementation of the genetic algorithm (GA) and to get a rough
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idea of appropriate parameter value ranges where an optimal parameter setting
may be found, the implemented GA was tested on two objective functions com-
monly used for benchmarking optimization search tools. These two objective
functions, Rastrigin’s function and Schwefel’s function are defined below, and
are also presented in figure 16. They both use a domain of real values. In the
implementation, each real is represented by a bitstring of 60 bits.

• Rastrigin’s function. It is a spherical model with added cosines. It contains
many local optima.

f(x) = −(10n+

n
∑

i=1

x2
i − 10 cos 2πx), −5.12 ≤ xi ≤ 5.12 ∀xi

max f(x) = 0, xi = 0 ∀xi

• Schwefel’s function. In this function the second best optimum is not close
to the global optimum. It contains many local optima.

f(x) = −(

n
∑

i=1

−xi sin
√

|xi|), −500 ≤ xi ≤ 500 ∀xi

max f(x) = −n418.9829, xi = 420.9687 ∀xi
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Figure 16: Surfplots of benchmarking objective functions.

Application to Feature Selection

To apply the genetic algorithm as a feature selection method each individual
feature subset candidate is represented by a binary vector where each bit repre-
sents one feature. The two states of the bit corresponds to whether the feature
is selected as being part of the reduced feature subset or not. For example, the
bitstring 10100 can represent five features where feature one and three is being
selected. Each individual of the population in this way represents a candidate
feature subset. The objective function is the information criterion specified by
the parameter I, see section 2.1 about composed pattern recognition systems
above. In this study a range of different classifiers were used to evaluate the
selected features, entailing a so called wrapper selection since classifiers were
used as information criteria.
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2.5.7 Experimental Setup

Suboptimal model selection: Semi-finals before final competition

It would be preferable to inspect a wide range of different values for each input
parameter defining a learning system, and try all possible combinations of these
values. Considering the relatively large amount of input parameters to combine
as to specify a learning system, see section 2.1 about composed pattern recogni-
tion systems above, it is clear that the number of learning systems to evaluate
would amount to very large numbers if all possible parameter settings in the
parameter space were to be evaluated. Due to limitations in computational
resources a search for the optimal model in such a large space of parameters
settings could not be done in one run, letting all models compete against all.
Instead, and to get an indication of the most promising regions of the parameter
space, the set of parameter settings investigated was split into separate runs of
the model selection procedure. For each such subset of parameter settings an
optimal learning system was selected to qualify to the final. In the final com-
petetion, these “suboptimal” models were assessed on a holdout test using data
that had been held away from the semi-finals. The final model that prevailed in
the competition between the various suboptimal models, was eventually evalu-
ated by a validation data set kept away from all model selection procedures.

Data splitting

The available data was split in the following way. First the 762 allergens avail-
able in the “in-house” database at the Swedish National Food Administration
was split into a training set of 500 allergens and a validation set of 262 aller-
gens, thereby equalling the data sets described in an article by Soeria-Atmadja
et al.[15]. To the training set of 500 allergens was added the same 1000 non-
allergens as used by Soeria-Atmadja et al.. This set of 500 allergens and 1000
non-allergens was further split into an inner training set of 400 allergens and
900 non-allergens used for the suboptimal model selection and an outer set of
100 allergens and 100 non-allergens used for selection of the final model among
the suboptimal models.

Specification of model parameter space

A large range of different feature selection parameters as well as a wide range of
classifiers were evaluated in the model selection procedure. Investigated values
of the input parameters are listed in tables 8, 9 and 10 below, and almost all
possible parameter combinations of these values were evaluated.

In the case of using the genetic algorithm as feature selection search path,
only classifiers that proved to perform well on the 100 allergens plus 100 non-
allergens test set when using the other feature selection methods were evaluated.

Regarding the list of classifiers, a very limited number of learning systems
containing a support vector machine or a artificial neural network were also
used, but they were prohibitively slow to train and those completed showed
poor performance.

Concerning the preprocessing mainly correlation with outcome was used, but
a number of other feature selection methods were also tried as preprocessors in
conjunction with forward feature selection with kNN(3) as wrapper but none
of these returned better performance than correlation with outcome.

An explanation of all classifiers and all parameters of the feature selection
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methods employed is outside the scope of this thesis, and the interested reader
is encouraged to read the references[5][1].

Concerning the number of features to reduce to a maximum of 200 features
was set. The reason for this is that the number of allergens available for training
was only 400 and the features (FLAPs) are all derived from these 400 training
allergens. To be able to extract FLAPs that had some general allergen-motif
200 peptides therefore seemed to be a reasonable limit.

Most inner parameters of the genetic algorithm was optimized on completely
different data sets namely on Rastrigin’s function and Schwefel’s function. These
parameter settings was though found to perform well also on the allergology
dataset, so no major optimization of the genetic algorithm parameters was done
on this data. Mainly two parameters that were tuned in the application on the
allergology dataset, the number of generations until stall and the number of
individuals in the population, while the remaining parameters were kept fixed.
Parameter values of the genetic algorithm are listed in table 11 below. A detailed
explanation of all genetic algorithm parameters is beyond the scope of this thesis,
the interested reader is encouraged to consult the litterature[17].

Experimental Setup: No Pre-processing and No Genetic Algorithm

Parameter Value

D 1300 protein sequences. Classes: 400 allergens, 900 non-allergens. 3
different representations: 1. blosum62, 2. CTD-7 3. CTD-ZZ

n {10, 50, 100, 150, 200}

σ Individual FS, Forward FS

I Euclidean distance, Correlation with outcome, kNN(1), kNN(3),
kNN(5)

θφ apparent, crossvalidation(5-fold)

ψ derivedFLAPs FS

ω fisher, nmc, lda, qda, kNN(1), kNN(3), parzendc

θΩ crossvalidation(5-fold)

Subopt.Sel. 100 allergens and 100 non-allergens

V 262 allergens, 1000 non-allergens

Table 8: Parameter settings of learning systems for allergenicity classification of protein
sequences where no preprocessing was done. blosum62: pure amino acid sequence
representation with BLAST alignment, CTD-7: ctd-encoded amino acid sequences using
seven physico-chemical attributes, CTD-ZZ: ctd-encoded amino acid sequences using five
multidimensional scaling latent variables, apparent: test based on training data,
derivedFLAPs: selects FLAPs derived from the allergens of the training set, nmc: nearest
mean classifier, lda: linear discriminant analysis, qda: quadratic discriminant analysis, kNN:
k nearest neighbor, parzendc: parzen density classifier. Subopt.Sel: Test data to assess
performance of suboptimal models that were retrieved from each separate model selection
run.
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Experimental Setup: Pre-processing to ∼450 features

Parameter Value

D 1300 protein sequences. Classes: 400 allergens, 900 non-allergens. 3
different representations: 1. blosum62, 2. CTD-7 3. CTD-ZZ

n {10, 50, 100, 150, 200}

σ Individual FS, Forward FS

I kNN(1), kNN(3), parzendc, decisiontree(’maxcrit’, 3), decision-
tree(’maxcrit’, 10), decisiontree(’fishcrit’, 3)

θφ crossvalidation(5-fold)

ψ derivedFLAPs FS * Correlation with outcome FS(Coefficient threshold
set as to reduce the set to approximately 450 features. blos62: c=0.20,
ctd-7: c=0.14 ctd-zz: c=0.175)

ω kNN(1), kNN(3), parzendc, decisiontree(’maxcrit’, 3), decision-
tree(’maxcrit’, 10), decisiontree(’fishcrit’, 3)

θΩ - (all wrappers)

Subopt.Sel. 100 allergens and 100 non-allergens

V 262 allergens, 1000 non-allergens

Table 9: Parameter settings of learning systems for allergenicity classification of protein
sequences, where preprocessing to around 450 features was performed. blosum62: pure
amino acid sequence representation with BLAST alignment, CTD-7: ctd-encoded amino
acid sequences using seven physico-chemical attributes, CTD-ZZ: ctd-encoded amino acid
sequences using five multidimensional scaling latent variables. ’maxcrit’ and ’fishcrit’
specifies pruning parameters of the decision tree.

Experimental Setup: Genetic Algorithm as Feature Selection Search Path

Parameter Value

D 1300 protein sequences. Classes: 400 allergens, 900 non-allergens. 3
different representations: 1. blosum62, 2. CTD-7 3. CTD-ZZ

n {25, 75, 100, 150, 200}

σ Genetic Algorithm

I fisher, lda, qda, kNN(1), kNN(3), kNN(5), parzendc

θφ crossvalidation(5-fold)

ψ derivedFLAPs FS

ω fisher, lda, qda, kNN(1), kNN(3), kNN(5), parzendc

θΩ - (all wrappers)

Subopt.Sel. 100 allergens and 100 non-allergens

V 262 allergens, 1000 non-allergens

Table 10: Parameter settings of learning systems for allergenicity classification of protein
sequences, where a genetic algorithm was used for feature selection. blosum62: pure amino
acid sequence representation with BLAST alignment, CTD-7: ctd-encoded amino acid
sequences using seven physico-chemical attributes, CTD-ZZ: ctd-encoded amino acid
sequences using five multidimensional scaling latent variables.
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Experimental Setup: Genetic Algorithm Parameters

Parameter Value

Number of generations (ngen) 100-1000

Population size 30-200 individuals

Number of elite parents 2

Probability for crossover selection 0.6

Probability of mutation along bitstring 0.05

Fitness scaling function Rank

Selection function Roulette-wheel selection

Crossover function Single point crossover

Mutation function Uniform mutation

Table 11: Parameter settings of the genetic algorithm.

40



3 Results

3.1 Model Selection and Validation Algorithm: Test of

Implementation on Simulated Mixed Gaussian Data

For both the smaller dataset of 20 samples from each of the two classes, as well
as for the larger dataset of 200 samples from each of the two classes, individual
feature selection was chosen ten times of ten in the 10-fold external cross val-
idation. In ten times of ten feature number one and two was chosen. This is
reasonable since the two Gaussian distributions are most separated when pro-
jected onto the plane of feature one and two. Regarding selection of classifier
of the learning systems, it varies depending on the size of the dataset and also
across repeated runs, where new data is drawn from the distributions in each
run. For the larger dataset the quadratic discrimant analysis (qda) classifier
seems to be selected most often. This is expected since the quadratic discrimi-
nant function is based on modeling distributions as normal distributions, which
the underlying distributions in this case really are. For the smaller dataset all
four classifiers were selected with none of them having an outstanding frequency
of selection. The model selection criterion in terms of the prior-weighed external
cross validation error (see section 1.4) is estimated to be approximately 0.2.

As a final model individual feature selection and “qda” were chosen. Training
this model on 100 samples from each class, and making a validation test on 200
fresh samples also gives a performance of approximately 0.2. See table 12 for a
summary of the selected model and its performance.

Parameters and Performance of Selected Model

n∗ 2

σ individual feature selection

I Euclidean distance

ψ none

ω qda

θΩ crossvalidation(10-fold)

J ∼ 0.2

V ∼ 0.2

Table 12: Parameters and performance of selected model for classification of mixed
Gaussians. The “correct” model is selected. The two features known to be most informative
is consistently selected. The classifier supposed to be best, quadratic discriminant analysis
(qda), is chosen most often. Finally, the model selection criterion is seen to be the same as
the validation criterion.
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Figure 17: 10-fold external crossvalidation on two simulated Gaussians. 4 classifiers
are chosen among. Runs on two datasets of different sizes were performed. For the
larger dataset qda is seen to be chosen most often. For the smaller dataset no
classifier is consistently selected. “Bayes-Normal-2” is identical to quadratic
discriminant analysis (qda), “Correlation with means profile” is identical to the
“distance to mean classifier” described above, see 2.1.

3.2 Application to Breast Tumour Classification

Two approaches were realized, model selection followed by holdout validation
and model selection combined with external cross validation.

3.2.1 Holdout Validation

Model selection

In the case of model selection followed by holdout validation, the model selection
is only made once and returns top-scoring models comprised of forward feature
selection as search path, inter-intra distance measure as information criterion
and “Fisher” as classifier.

The two best performing models selected have 30 and 40 genes respectively,
both showing equal performance. The performance is remarkably good, the
10-fold cross validation which the model selection is based upon reported zero
errors. The parameters of the selected model along with the value of the model
selection criterion J are summarized in table 13 below.

Validation

Validation of the very promising model with 30 genes gave negative results. In
the case of holdout validation using the 19 holdout samples from van’t Veer et

al.[48] it misclassifies one out of seven good prognosis patient and eight out of
twelve bad prognosis patients. Classification of the 180 patients from van de Vi-
jveer et al.[47] results in 66 out of 138 good prognosis patients being misclassified
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Model Parameters and Performance of Selected Model for Breast Cancer Data

Parameter Value

n∗ 30

σ Forward FS

I Inter-intra distance

θφ apparent

ψ correlation with outcome FS(correlation threshold = 0.23) ∗ expres-
sion change FS(intensity ratio ≥ 2, pvalue < 0.01, ≥ 3 samples)

ω fisher

θΩ crossvalidation(10 fold)

J 0

V See confusion matrices in table 14 above.

Table 13: Parameters and performance of selected model for breast tumour classification.
apparent: test is based on training data.

and 16 out of 42 bad prognosis patients being misclassified. This corresponds to
prior-weighed errors (see section 1.4) of 0.47 and 0.46 respectively. The results
of the holdout validation are summarized in the confusion matrices in table 14
below.

Good prognosis Bad prognosis
Good prognosis 44 0
Bad prognosis 0 34

(a) Confusion matrix for selected model on 78 training
samples from breast cancer data.

Good prognosis Bad prognosis
Good prognosis 6 1
Bad prognosis 8 4

(b) Confusion matrix for selected model on 19 holdout
samples.

Good prognosis Bad prognosis
Good prognosis 72 66
Bad prognosis 16 26

(c) Confusion matrix for selected model on 180 holdout
samples.

Table 14: Confusion matrices showing the holdout validation results for the selected model.
Each row represents actual class and each column predicted class. On training data the
model is seen to perform exceptionally well, but on validation data the results are less
positive.

3.2.2 External Cross-Validation

Model selection

In the case of the external cross validation, model selection was conducted 25
times, and in these 25 competitions forward feature selection, inter-intra dis-
tance measure and the “Fisher” classifier prevailed 25 times out of 25. This
is the same model as that selected in the case of holdout validation described
above.

The size of the feature subsets varied between 20, 30 and 40 genes, being
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selected approximately 25, 50 and 25 percent of the times respectively. Un-
fortunately, as illustrated by figure 18 the composition of these subsets varied.
There are approximately 10 genes that were selected in at least 10 of the 25
selected models, but almost all of the 221 genes were selected at least once.
However, there is one outstanding peak. Gene number 97 was chosen 25 times
out of 25. A litterature study revealed that the official symbol of this gene is
TSPYL5. Details about this gene are outlined in the discussion. The 10-fold
cross-validation which was used as model selection criterion also in this case
reported an error of zero.

Validation

A histogram composed of the 25 prior-weighed holdout errors that the external
cross validation gives rise to (see section 1.4) was made. This results in a
histogram that is not especially narrow and which is centered somewhere around
an error of 0.35, see figure 19.
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Figure 18: Features used by the 25
selected models in the external cross
validation procedure on breast cancer
data. The selected feature subsets are
seen to be relatively unstable.
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Figure 19: Histogram of 25
crossvalidation-holdout errors from the
external cross validation procedure. The
error distribution is seen to have
relatively high variance.

3.3 Genetic Algorithm: Test of Implementation on Bench-

marking Objective Functions

The global optimum was successfully found for both test-functions. The max-
and average objective score of the generations can be seen in plots below, as well
as the development over the generations in terms of histograms. Interestingly, in
the case of Rastrigin’s function the population is first settled in a local optimum
next to the global one and no individual has yet entered the pit where the global
optimum resides. Later on however, some individuals find their way to the
global pit causing the majority of the population to move there. In the case of
Schwefel’s function a similar scenario should be harder, since if the population
first settles at the second best optimum it is then relatively far away from the
global one. The population was though found to also in this case settle at the
global optimum. To conclude, application of the GA on test functions with a
real-valued domain indicates that this algorithm seems to behave well.
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Figure 20: Rastrigin’s function. The best individual is seen to find the global optimum,
having an objective score of zero, after around 200 generations. The GA was set to use 300
generations and a population size of 30 individuals.
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(a) gen=1 (b) gen=60

(c) gen=120 (d) gen=180

(e) gen=240 (f) gen=300

Figure 21: Rastrigin’s function. Snapshots of histogram and scatterplot of individuals of a
population for certain generations. The population is seen to evolve as to move to the global
optimum at (0,0). The GA used 300 generations and 30 individuals as population size.
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Figure 22: Schwefel’s function. The best individual is seen to find the global optimum after
around 25 generations. As seen from the population diversity plot the population are at this
stage still highly inhomogeneuous. The inertia of the evolution of the population is desired
as to not give premature convergence. The GA was set to use 250 generations and a
population size of 30 individuals.
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(a) gen=1 (b) gen=50

(c) gen=100 (d) gen=150

(e) gen=200 (f) gen=250

Figure 23: Schwefel’s function. Snapshots of histogram and scatterplot of individuals of a
population for certain generations. The population is seen to evolve as to move to the global
optimum. The GA used 250 generations and 30 individuals as population size.
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3.4 Application to Allergen Classification

For each of the three dataset representations, amino acid alignment with blo-
sum 62 substitution matrix, alignment of CTD-encoded sequences based on 7
physico-chemical properties and third, CTD-encoding based on the 5 most in-
formative eigenvectors from multidimensional scaling of physico-chemical prop-
erties, the two best performing systems retrieved from running the GA and the
best system retrieved from using all other feature selection methods are pre-
sented in table 15. With best performing is meant the highest accuracy on the
test dataset which is used as a model selection criterion to select among the
“suboptimally selected” models. The accuracy is the total number of misclassi-
fications on this test dataset comprised of 100 allergens and 100 non-allergens.
Performance of the models are displayed in table 16. Concerning the genetic al-
gorithms the max- and average objective scores of the generations are presented
in figures 25 to 30 below and also the average diversity of the bitstrings of the
generations.

Composition of selected models

The performance is generally highest when using blosum 62 representation. This
might be explained by the fact that a relatively large number of FLAPs were lost
due to missing group representatives in the CTD-encoding. More specifically,
for CTD-encoding using 7 physico-chemical features only 4365 out of the 4776
FLAPs could be encoded, corresponding to a loss of 9% of the FLAPs. For
CTD-encoding using the 5 multidimensional scaling variables it is even worse,
only being able to completely encode 3364 FLAPs, corresponding to a loss of
30%.

Regarding the feature selection parameters the genetic algorithm is generally
seen to populate as good as all top performing positions, but in blosum 62 rep-
resentation it is found to be surpassed by an individual feature selection method
that gives the very best performance achieved across all parameters. This best
performing system uses a one-nearest-neighbor classifier as feature selection cri-
terion, I, and it applies 200 features. Somewhat surprisingly, it uses the parzen
density classifier as classifier ω instead of the the one-nearest-neighbor classifier.
One would expect that the classifier for which the feature subset is optimized
would be chosen as classifier. The reason for this phenomenon of a different
classifier being chosen as ω compared to what is used as I is not unlikely over-
training. It may also be that the one-nearest-neighbor and the parzen density
classifier have relatively similar decision boundaries on this data. Generally the
parzen density classifier appears most often among the top selected models, and
the one-nearest-neighbor classifier the second most.

Feature subset size

Regarding the number of features selected it can from table 15 be seen that it is
consistently in the neighborhood of 200 features. Notably, the best performing
system with GA as feature selection method starts with all individuals having
75 features, but the best individual of the last generation have 205 features, see
table 15.

Performance and Validation

The best performing model only gives 13 misclassifications on the 100 allergens
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D : id ψ σ I θφ ngen n n∗ ω θΩ
blos62:1 derived i knn-1 app - 50:50:200 200 parzendc 100A+100NA
blos62:2 derived GA knn-1 app 1000 75 205 parzendc 100A+100NA
blos62:3 derived GA parzendc cv(5) 300 200 215 parzendc 100A+100NA
ctd-zz:1 derived GA lda cv(5) 200 200 189 knn-1 100A+100NA
ctd-zz:2 derived GA parzendc cv(5) 200 200 272 parzendc 100A+100NA
ctd-zz:3 derived*

corroutc
(0.175)

f parzendc cv(5) - 50:50:200 200 parzendc 100A+100NA

ctd-7:1 derived i knn-1 cv(5) - 50:50:200 200 knn-1 100A+100NA
ctd-7:2 derived GA knn-3 cv(5) 200 200 232 parzenc 100A+100NA
ctd-7:3 derived GA parzendc cv(5) 200 200 232 knn-3 100A+100NA

Table 15: Parameter values of 3 top ranked models in each representation. id: identifier of
model, blos62: representation using pure amino acid sequence and blosum62 substitution
matrix as dissimilarity measure, ctd-zz: ctd-encoding based on 5 multidimensional scaling
eigenvectors, ctd-7: ctd-encoding based on 7 physico-chemical attributes, derived: selects
FLAPs derived from the allergens in the training set, corroutc: correlation with outcome
feature selection, i: individual, f: forward, GA: Genetic Algorithm, knn: k nearest neighbor,
lda: linear discriminant analysis, parzendc: parzen density classifier, app: apparent test
based on training data, cv: crossvalidation, ngen: number of generations of GA, 50:50:200:
{50,100,150,150,200}, A:allergens, NA:non-allergens.

and 3 misclassifications on the 100 non-allergens, corresponding to a sensitivity
and specificity of 87% and 97% respectively, see table 16. The performance on
the validation data is somewhat lower, with sensitiviy and specificity of 82%
and 94%. Unfortunately, the model gives 121 misclassifications on the 193
tropomyosins which is one of the “difficult” protein families containing both
allergens and non-allergens.

All retrieved classification systems have very poor performance on the dif-
ficult dataset. No protein from any of the three difficult protein families was
however incorporated into the training dataset of these models. Hypothetically,
including some of these into the training set could significantly improve per-
formance on the difficult dataset. Alternatively, performance on the difficult
proteins could be included as part of the model selection criterion, which is also
the approach adopted by Soeria-Atmadja et al[15]. There the number of mis-
classifications on four of the non-allergen tropomyosins was part of the model
selection criterion, J .

Training including 52 non-allergen tropomyosins

To investigate whether improved performance on the difficult non-allergens
could be conferred to the selected model a new training of models were per-
formed where 52 out of 104 tropomyosins were included in the training dataset.
The same parameters as those of the three systems with blosum62 represen-
tation with the best performance when trained on the previous training set
without difficult proteins were applied for this study. The three models were
then tested against a set of 26 other tropomyosins making up part the model
selection criteria, J , together with the 100 allergens and 100 non-allergens pre-
viously used. Finally the models were validated against the same validation set
previously used composed of 262 allergens and 1000 non-allergens, as well as the
remaining 26 tropomyosins, 39 profilins and 14 parvalbumins. The performance
of these models on the 262 allergens and 1000 non-allergens are comparable to
the models not having tropomyosins in their training set, see table 17, but no-
tably higher on the difficult proteins, see table 18. All three models classifies all
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tropomyosins correctly. The 39 profilins are also relatively well classified with
sensitivities of 85%, 87% and 100%. However, the 14 parvalbumins still per-
sist as being problematic. One model correctly assigns 4 of the parvalbumins as
non-allergens while the other two models classifies all of them as being allergens.

D : id J100A J100NA Jtot Jsens Jspec V

262A

V

1000NA

Vsens Vspec V193

diff

blos62:1 13 3 16 0.87 0.97 47 56 0.82 0.94 121
blos62:2 18 1 19 0.82 0.99 46 21 0.82 0.98 114
blos62:3 18 3 21 0.82 0.97 44 40 0.83 0.96 110
ctd-zz:4 28 12 40 0.72 0.88 91 144 0.65 0.86 85
ctd-zz:5 41 0 41 0.59 1.00 140 19 0.46 0.98 75
ctd-zz:6 38 5 43 0.62 0.95 139 54 0.46 0.95 77
ctd-7:7 26 16 42 0.74 0.84 95 115 0.64 0.88 127
ctd-7:8 36 8 44 0.64 0.92 104 47 0.60 0.95 106
ctd-7:9 36 9 45 sens spec 121 51 0.54 0.95 112

Table 16: Value of model selection criteria, J , and validated performance of three top
performing learning systems in each representation. The integer values states the number of
misclassifications. id: identifier of model, A:allergens, NA:non-allergens,
Jtot = J100A + J100NA , sens: sensitivity, spec: specificity, diff: 193 proteins from “difficult”
protein families, i.e. 140 tropomyosins, 39 profilins and 14 parvalbumins

D : id J100A J100NA Jtot Jsens Jspec V

262A

V

1000NA

Vsens Vspec V193

diffNA

blos62:1 +
52 Tropo

20 8 28 0.80 0.92 40 101 0.85 0.90 20

blos62:2 +
52 Tropo

19 2 21 0.81 0.98 43 20 0.84 0.98 37

blos62:3 +
52 Tropo

21 1 22 0.79 0.99 49 12 0.81 0.99 23

Table 17: Value of model selection criteria, J , and validated performance of three top
performing learning systems in each. These models have been trained with 52 of the
tropomyosins included in the training set. The integer values states the number of
misclassifications.

D : id J26T ropo V26T ropo V39P rof V14P arv Spec

26T ropo

Spec

39P rof

Spec

14P arv

blos62:1 +
52 Tropo

0 0 5 10 1.00 0.87 0.29

blos62:2 +
52 Tropo

0 0 6 14 1.00 0.85 0.00

blos62:3 +
52 Tropo

0 0 0 14 1.00 1.00 0.00

Table 18: Value of model selection criteria, J , and validated performance of three top
performing models on non-allergens from “difficult” families. The families are, Tropo:
Tropomyosins, Prof: Profilins and Parv: Parvalbumins. The models are the same as above,
see table 15, except that the training dataset included 52 non-allergen tropomyosins. The
integer values states the number of misclassifications.

Overfitting of GA

In the objective score plots, the maximum and average classification perfor-
mances of a population of feature subsets are plotted against generation, see
figures 25 to 30. From these plots is evident that the model selection on the
training data of 400 allergens and 900 non-allergens performed by the GA re-
sults in overfitted models. Looking for example at figure 25 which corresponds
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to blosum 62 representation and parzen density classifier, cross validation per-
formance estimates of over 0.97 for the best system of the generation is seen and
rather stabilized averages of around 0.95. However, the performance estimates
on the holdout of 100 allergens and 100 non-allergens used for selection among
the suboptimal models, only give an accuracy of around 0.9, see table 16. The
same phenomenon is observed for the CTD representations where the systems
have higher performance estimates within the GA optimization, but performs
significantly worse on the model selection holdout.

Robustness of feature subset composition

Robustness of subset compositions was evaluated by means of two procedures.
First, by checking the number of peptides in the intersection between the subsets
of the top scoring models, and second, by in the same way checking the overlap
of subsets returned from repeated runs of the top scoring model having GA as
feature selection search path. The subsets all have sizes of approximately 200
features, but the intersections of pairs of these subsets only contain around 3
features as illustrated in figure 24.

Figure 24: Overlap between feature sets of top-ranked models for allergenicity prediction.
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Figure 25: D: Blosum 62. I: parzendc. The performance is the highest achieved among
models employing the genetic algorithm. The best feature subset reaches a value of 98% of
the “suboptimal” model selection criterion, J . The GA used 300 generations and a
population size of 30 individuals.
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Figure 26: D: Blosum 62. I: knn-1. 1000 generations, 30 individuals
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Figure 27: D: CTD-ZZ. I: parzendc. 200 generations, 30 individuals
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Figure 28: D: CTD-ZZ. I: linear discriminant analysis. 200 generations, 30 individuals
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Figure 29: D: CTD-7 physchem. I: parzendc. 200 generations, 30 individuals
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Figure 30: D: CTD-7 physchem. I: knn-3. 200 generations, 30 individuals
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4 Discussion

4.1 Model Selection and Composed Pattern Recognition

Systems

This work implements the viewpoint that a learning system is comprised of
several components such as preprocessing, feature selection and a classifier, each
component itself having a number of parameters. Such a viewpoint facilitates a
more properly performed model selection and validation. Automation of model
selection across all learning system parameters considerably facilitates a search
across wide ranges of different learning systems, and thereby lessens the need
to beforehand select a single learning system to apply for a given problem. The
relative ease with which one can search for optimal learning systems is also
illustrated in this study by the application of the implementation to two rather
complex real world problems, breast tumour classification using microarray data
and functional classification of proteins based on their amino acid sequences.

The implementation of automated model selection in conjunction with val-
idation techniques was successful. This is illustrated by the application of the
algorithm on simulated Gaussian data, where learning systems that ought to
perform best on such data also are selected by the algorithm.

4.2 Application to Breast Tumour Classification

Performance

The application of the implemented automated model selection and validation
on the breast tumour classification problem clearly points out the need for
proper validation of the selected model. This is evident from a model found
which classifies all patients in the model selection holdout test data correctly,
but that same model performs significantly worse than van’t Veers 70-gene clas-
sifier on validation data held out from the model selection procedure, see table
19 and 14. The reason to this is that with a large learning system parameter
space it is highly probably that one finds a model that performs very well on the
model selection data, thereby resulting in an overfitted model on data available
for model selection.

Selected feature selection method: Univariate vs Multivariate

It is interesting to note that forward feature selection was the method of choice
among the various feature selection methods, σ, tested. This is a multivariate
feature selection method whereas that of van’t Veer’s work[48] is univariate.
Since the selected model in this study was overfitted, it is not unlikely that
univariate feature selection may perform better on holdout data. Higher perfor-
mance of univariate feature selection methods, relative to that of multivariate
methods on microarray cancer datasets is also corroborated by a study by Lai
et al. in 2006[9]. In their conclusions they state that correlation structures, if
present, are difficult to extract due to the small number of samples, and that
consequently, overly-complex gene selection algorithms that attempt to extract
these structures are prone to overtraining. As a counterargument one may
though claim that their conclusions may be due to limitations in the methods
applied. The search methods they use investigate a limited search path in the
large set of possible feature combinations, and the application of a method such
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Good prognosis Bad prognosis
Good prognosis 36 8
Bad prognosis 5 29

(a) Confusion matrix for van’t Veer 70-gene predictor on 78
training samples.

Good prognosis Bad prognosis
Good prognosis 6 1
Bad prognosis 1 11

(b) Confusion matrix for van’t Veer 70-gene predictor on 19
holdout samples.

Good prognosis Bad prognosis
Good prognosis 73 65
Bad prognosis 3 39

(c) Confusion matrix for van’t Veer 70-gene predictor on 180
holdout samples.

Table 19: Confusion matrices showing the holdout validation results for van’t Veer’s 70 gene
predictor. Each row represents actual class and each column predicted class. The
performance on the 180 sample holdout is considerably worse than previously reported.

as a genetic algorithm may have produced good results.

Selected classifier

The classifier used by van’t Veer et al. was never selected in the computer exper-
iments of this study. This gives rise to questions as to whether there are better
performing classifiers than that of their subjective choice. With modification
of the model selection procedure as to select systems that are less overfitted,
results presented here indicate that it may be possible to find a model that have
better performance.

Data comments

The van de Vijveer data published in New England Journal of Medicine[47]
need some additional comment. It should be stated that it was difficult to se-
lect patients fulfilling the same class criteria as those used by van’t Veer et al..
It may even be questioned whether metastasis within 5 years is a reasonable
target, or if it would have been more appropriate to use cell biological markers
such as histological data or estrogen receptor levels. The micro-array data from
van’t Veer is also somewhat different since it is based on two-channel microar-
rays whereas data studied by van de Vijveer et al. is produced by one-channel
microarrays. The data used in this study was downloaded in an already nor-
malized format, interpretations should be made with caution since it is unclear
if the normalizations are done such that the datasets are directly comparable.

Gene-list robustness and TSPYL5

As is clear from external cross-validation the composition of gene subsets is
not robust, since there are few genes that are frequently selected to be part
of the “optimal” gene subset, see figure 18 on page 44. This is a well-known
phenomenon in microarray datasets[42][32]. A recent study that employ the
70-gene predictor and also other models reported to perform well on the cancer
microarray domain, finds that although the gene-list is not stable, the perfor-
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mance is found to be stable[8]. This is encouraging for their use as predictors
although it can’t enable interpretations of the genes in the gene-list.

As an exception, one gene in my study, i.e. number 97 among the 221 genes
shown in figure 18, repeatedly occurs in the gene list of models selected in the
external cross validation procedure. This gene is named TSPY-like 5 (TSPYL5 ).
Interestingly, a search in the litterature finds numerous recent articles where this
gene is a member of a list of top-ranked genes extracted from expression data
aimed to predict cancer status. Alexe et al.[20] investigates the same van’t
Veer microarray dataset under study in this thesis and TSPYL5 is found to be
ranked as number 8 in a list of 17 genes. In an article by Niijima and Kuhara
it is ranked as number 2 in a list of 10 top-ranked genes[43]. In an article by
Vachani et al.[4] it appears in a panel of 10 genes, used to distinguish whether
a lung tumour is primary or a case of metastasis of head and neck carcinoma.
The Gene Ontology (GO) states that TSPYL5 is located in the nucleus and
concerning the biological process it is said to be involved in the aggregation
and bonding of the nucleosome. It is therefore hypothetically a critical factor
for epigenetic control and can thereby be controlling the transcription of many
genes. This is found to be corroborated in a study by Kim et al.[46], aiming
to find targets of epigenetic silencing in malignant glioma, which is the most
common central nervous system tumour of adults. The study identifies TSPYL5

as one of a handful of genes that are epigenetically silenced in glioma, and that
the expression of TSPYL5 suppress growth of glioma in cell culture. These
findings indicate that TSPYL5 might be part of a core set of oncogenes, since
it is found to be involved in several kinds of carcinoma.

The genes that were found to be selected more than ten times of the twen-
tyfive external cross validation holdouts are naturally also interesting subjects
for further investigation. Inspired by the success of finding TSPYL5, it could
be of interest to create a filter that selects genes that are repeatedly selected in
the retrieved subsets. Related ideas of robustifying the selected feature subsets
by looking at a population of models have been summarized elsewhere[25].

4.3 Application to Allergen Classification

Performance

The results from the study of allergen classification clearly indicate that a consid-
erable reduction of the peptide feature subset can be done, still withholding high
classification performance. It is also clear that as to achieve high performance
on proteins from protein families containing both allergens and non-allergens at
least some part of it need to be taken into account in the training phase. How-
ever, the parvalbumins still pose a problem, since a clear majority of them are
incorrectly classified even though models were trained on tropomyosins which
are also a protein family containing both allergens and non-allergens. This in-
dicates that the retrieved models do not have the capability to generalize to
“novel” protein families outside the training domain that contain both allergens
and non-allergens.

Selected classifier

Regarding the composition of the top-scoring models it is interesting to note
that the one nearest neighbor and the parzen density classifiers frequently are
selected. One may speculate that this could be due to that the sequences form
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many separate groups in the feature space and these groups of allergens and
groups of non-allergens are inhomogeneously mixed with one another. Such an
explanation could reflect that there is no single linear epitope allergen-motif,
but instead one motif for each allergen group.

Feature selection method: GA vs others

Regarding the feature selection component of the selected models it is clear
that a non-linear information criterion, I, in the form of a wrapper is needed.
Concerning the feature selection search method, σ, it is not obvious which one
is best. The very best model utilizes individual feature selection, but most of
the selected models utilize a genetic algorithm.

Overfitting of feature selection

It is interesting to note that the classifier used as information criterion, I, in the
feature selection, often differs from the classifier component, ω, of the selected
models. A plausible explanation to this is overtraining in the feature selection
step. Such an explanation is also supported by the results of this study that
clearly show an overfitting of the GA in the feature selection step.

Representations

Concerning the representations it is clear that similarity based on alignment
score using blosum 62 substitution matrix gives best classification. Two possible
reasons to this is first the lack of gap-handling in the alignment algorithms not
utilizing the dynamic programming algorithm and second, a quite considerable
loss of FLAPs when using the CTD-encoding. Many FLAPs are lost due to the
second CTD-encoding issue mentioned above, i.e. missing amino acid represen-
tatives for certain physico-chemical properties. Hypothetically, the information
contained in the CTD-encoding representation should otherwise cover the infor-
mation in the substitution matrices and extend it by its more global represen-
tation. This statement is corroborated by independent studies by Venkatarajan
et al.[45] and Tomii and Kanehisa[30] that both report high correlation between
their selected physico-chemical features and the BLOSUM and PAM substitu-
tion matrices.

Feature subset size

The selected feature subset is seen to have around 200 features across all rep-
resentations of the dataset and across all compositions of the learning system.
This is illustrated by the second best model which uses a genetic algorithm that
starts out with all individuals having 75 features but ends up with a top scoring
individual of 205 features.

Feature subset robustness

The small overlap between the feature subsets may be explained as follows:
Assume that there are two very close homologues of each allergen within the
given dataset of 400 allergens. Then selecting 200 peptides is enough to retrieve
unique peptides that are specific for each homology-pair. Extracting epitopes
that are specific for each homologous allergen-pair, it would then not matter
which peptide for each such pair we choose except that such a peptide is not
allowed to be highly homologous to any of the non-allergens in the test set.
Since low homology to non-allergens was the very criterion for constructing the
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set of FLAPs it is unlikely that any of the 4776 peptides selected among are
highly homologuous to any non-allergen. The result is that the selected feature
subset can be highly variable. This hypothesis would also explain why we need
approximately 200 features since the number of peptides would reflect the extent
of homology within the allergen set. It is also in line with the fact that the one-
nearest-neighbor classifier and the parzen density classifier perform well. This
is expected in a feature space with many separate groups of allergens with high
homology within each allergen group.

Trying to classify a family of proteins that is homologous but contains both
allergens and non-allergens would then give poor performance, since the classi-
fication would not be based on the signature of the whole spectrum of allergen-
peptide alignment-scores but rather on similarity to a few specific peptides.
This may be the reason to the poor results for classification of the “difficult
dataset”. The 200 peptides do not represent a general allergen-motif but rather
200 unique allergen sequences. It would be interesting to attempt circumventing
this problem by an initial homology filtering of the dataset. Such a homology
filtered dataset may then be split into a training and test set. It might then be
possible to extract a pattern of peptides that is not unique to specific allergens.

To investigate whether the selected peptides are relevant epitopes, one may
also compare the retrieved subsets against epitope databases.

As a final note on this topic, as mentioned in the discussion of the microar-
ray predictors the difficulty of achieving robust feature lists in high dimensional
feature spaces is well-established, but the retrieved predictor found in this study
may still be useful in terms of its predictive power.

Performance comparison

In table 20 below the performance of the selected predictor is compared against
two of the highest performing predictors found in the literature concerning clas-
sification of allergenicity of protein sequences. The sensitivity and specificity
is seen to be comparable for the predictor found in this study. However, the
predictor presented in this work only uses 200 peptide fragments (FLAPs) for
its classification as compared with Soeria-Atmadja et al. who use 4776 FLAPs.
The approach by Cui et al. does not have the possibility to identify possible
epitopes, but instead use the whole protein sequence of a query protein as input
to a classifier. The bad specificity on the “difficult” protein family of parvalbu-
mins is unfortunate, but might be due to the fact that optimization of the model
parameters was not done as thoroughly when the “difficult” protein family of
tropomyosins were included in the training data as when it was not. Doing
that could improve the predictive power, making it competitive with that of
Soeria-Atmadja et al. Notably, in their design they did also use samples from
the tropomyosins in the training phase, similarly to this study.
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Study Number of FLAPs Sensitivity Specificity SensTropo SensProf SensParv

Stadler - 86% 95% - - -

Cui - 93% 99% - - -

Soeria-Atmadja 4776 87% 98% 95% 82% 96%

Edsgärd 200 80% 92% 100% 87% 26%

Table 20: Performance comparison of top performing allergenicity predictors found in
litterature. “Difficult” protein families validated against are tropomyosins, profilins and
parvalbumins. Sens: sensitivity.

4.4 Summary of Conducted Work

The conducted work may be divided into work on a toolbox which may be
reused in other applications, and the application of the toolbox for analysis of
microarray and protein sequence data.

• Pattern Recognition Toolbox

– Implementation of algorithms for automated model selection and val-
idation

– Implementation of a Genetic Algorithm

– Implemenentation of minor methods for the applications, e.g. filter
genes with at least a two-fold change in expression level.

• Applications

Microarray data

– Classification of prognosis for breast-cancer patients.

Protein sequence data

– Implementation of CTD-encoding.

– Classification of proteins to functional class: Allergen or Non-Allergen

4.5 Conclusions

The conclusions listed below answers whether the aims of this thesis, listed on
page 13, have been fulfilled and summarizes the findings of this study.

• General

– The implementation of the algorithm that automates model selection
and validation was successful. Its correctness was illustrated on sim-
ulated datasets of normal distributions. Its usefulness was illustrated
by the application on two real world problems under study in this
thesis.

– Proper validation of selected models is critical as to not report biased
performance estimates. The reason is that promising models have a
tendency of overfitting to data when having been selected from a
large range of models.

– The composition of retrieved feature lists is unstable in both of the
applications.
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• Application to Breast Tumour Classification

– Model selection indicates that predictors performing better than van’t
Veer’s 70 gene predictor should be possible to construct.

– The selected models also indicate that predictors using fewer genes,
down to as few as 30, can potentially reach levels of comparable
performance. However, the composition of the retrieved subsets is
not robust with respect to perturbations of the training data.

– TSPYL5 is identified as a putative oncogene. This finding is corrob-
orated by the litterature.

• Application to Allergen Classification

– High performing predictors can be constructed with a considerably
smaller subset of FLAPs than previously reported.

– Epitopes may not be directly extracted due to unstable feature lists.

– Issues with CTD encoding need to be overcome as to give comparable
results with the BLOSUM62 substitution matrix representation.

– GA is a robust and high performing feature selection method.

4.6 Future

Model Selection

From this work it is clear that a robustification of the model selection is needed.
When models are searched across a large space of learning system parameters
there is great risk for overfitting. Naturally, one would therefore wish to design a
method that allows a search across a large set of models, but which still selects
models that are not overfitted. To solve this, a change of the criterion used
for model selection is needed. Apparently the current criteria give optimistic
performance estimates of the model. One way to get around this is to take into
account the variance of the performance estimate which the model selection is
based upon. Such work is currently in progress. In this work the main selection
criterion has been the cross validation error. This error estimator may not be
optimal since it can have relatively high variability, especially on small sample
sets using a high number of folds.

The problem of unstable feature lists remains unsolved. There are meth-
ods that for example takes the intersection of feature lists retrieved from re-
peated training on perturbed datasets, such as the the sets retrieved from cross-
validation folds, and such approaches might be promising[25]. The finding of
TSPYL5 in this study by looking at repeatedly selected features indicates that
such approaches can be rewarding.

Application to breast tumour classification

In the case of the microarray dataset it would be interesting to use the genetic
algorithm as a feature selection search method as this method seems to perform
well.
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Apart from TSPYL5 several genes were identified to be repeatedly selected
in the external cross validation procedure more than 10 times out of 25. Litter-
ature and gene database searches would be of high interest to conduct also for
these.
Application to allergen classification

Regarding the allergen classification which was the main focus of this work sev-
eral possible improvements may be envisioned, and which are listed below.

• Further optimization of model parameters when ”difficult” proteins are
included in the training phase.

• Improved allergen database. The National Food Administration of Sweden
recently replaced the content of their allergen database, thereby extend-
ing it from 762 to 1251 allergens, by importing all sequences from “Al-
lergenOnline” (http://www.allergenonline.com)[40], one of the worlds
largest and best curated allergen databases, .

• It would be of interest to test other substitution matrices for measuring
sequence similarity. It may for example be of interest to try physico-
chemical substitution matrices instead of evolutionary ones.

• The FLAP-set was now generated based on alignment scores using the
BLOSUM62 substitution matrix. It would be more consistent in the case
of CTD-encoding representation to generate a FLAP-set based on CTD-
encoding.

• It would be of interest to study the extent of overlap of the retrieved
feature subsets with sets of sequences from epitope databases.

• It would be of great interest to modify the algorithm as to be able to
identify discontinuous epitopes. One idea is to use 3-D descriptors as fea-
tures. The algorithm presented in this work could then be used by simply
substituting the representation, and it would then be able to identify dis-
continuous epitopes. The amount of 3-dimensional data for proteins are
limited but recently there have been successful reports on prediction of
discontinuous epitopes using 3D structures[39] indicating that the use of
3D data for epitope identification is feasible.

As a final note I hope that the features added to the toolbox will come to be
of future benefit in both education and research. From this work it should be
apparent that the toolbox is a powerful analysis tool that helps in making more
complete and thoroughly validated studies of the multivariate data at hand.
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