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Analysis of biomarker data for multiple

sclerosis in a work�ow environment

Sara Grey

Sammanfattning

Multipel skleros är en autoimmun nervsjukdom som det idag inte

�nns något botemedel för. I ett pågående projekt på AstraZeneca

letar man efter sätt att diagnosticera sjukdomen, främst genom att

identi�era biologiska kännetecken, så kallade biomarkörer, i protein-

uttrycksdata. Med hjälp av sådana biomarkörer hoppas man kunna

förenkla diagnosticeringen av sjukdomen och lättare följa e�ekten av

behandlingar. Stora mängder data gör det nödvändigt att tillämpa

multivariata analysmetoder för att �nna samband mellan diagnos och

proteinuttryck. Den här typen av analys är vanligt förekommande på

AstraZeneca och det skulle därför vara önskvärt att kunna automatis-

era analyser. Arbets�ödesmiljön InforSense KDE erbjuder den möj-

ligheten. Potentiella fördelar med KDE är att många olika analys-

verktyg integreras på samma plattform och att arbets�öden kan åter-

användas och modi�eras för att passa aktuella önskemål.

Syftet med projektet är att utvärdera hur bra KDE är för att skapa

en multivariat analys för att hitta prediktiva biomarkörer i multipel

skleros-data i jämförelse med beräkningsspråket MATLAB.

Slutsatsen är att KDE trots det stort utbudet av funktioner och

möjligheten att återanvända arbets�öden är en alltför instabil och

långsam plattform för den här typen av analyser. KDE kan med fördel

användas för att integrera olika analysverktyg men bör inte användas

för avancerade analys�öden som bygger på KDEs egna funktioner.

Civilingenjörsprogrammet Bioinformatik

Uppsala universitet mars 2007
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1 Introduction

This degree thesis has been conducted at AstraZeneca R&D Södertälje as
part of a larger multiple sclerosis project. Multiple sclerosis is a complex
neuro-degenerative disease with many on-going simultaneous processes
which makes it di�cult to predict symptoms and to diagnose the disease.
The multiple sclerosis project aims at �nding biological characteristics, or
biomarkers, that can function as indicators of the disease. Biological features
are in this case protein expression levels obtained from two-dimensional
electrophoresis gels. The vast amount of data produced by this technique
requires advanced and powerful data analyses for identifying features
of interest. Such data analyses are the multivariate analysis methods.
With multivariate methods all variables are analysed simultaneously and
underlying patterns can be identi�ed. If data is labelled according to class,
in this case diseased or healthy, prediction models can be created. Prediction
models use known samples and their respective label to create mathematical
models that classify unknown samples and identify important features. Such
features can be used for diagnosing the disease. The objective is to �nd as
few biological features as possible that can predict the outcome of the disease
in order to save costs, time and minimising the discomfort for the patients.

This type of multivariate analysis can be used for building prediction
models for many datasets of di�erent character. AstraZeneca has several
similar on-going projects where it would be useful to have some kind of
general guidelines for conducting such analyses. A work�ow environment,
InforSense KDE, has been introduced in order to create analysis �ows that
can be reused in�nitely or modi�ed to suit the current analysis. KDE is
a platform where data is handled primarily in the form of tables. Table
operations are represented by nodes that are connected into a network. The
nodes provide a structured graphical overview of the analysis �ow. Many
di�erent tools can be integrated on the platform, such as the computing
language MATLAB and the visualisation tool Spot�re. Once a work�ow
has been created it can be distributed as a general component that can be
executed by many users repeatedly. These are advantages that make KDE
a potentially useful environment.

Previously this multivariate analysis has been done using MATLAB.
The advantages of MATLAB are the fast executions and the enormous
possibilities to design scripts. Disadvantages are di�culties in visualising
and comparing results and getting an overview of how scripts are related. It
is also di�cult to distribute MATLAB scripts to users that are not familiar
with computing languages. The work�ow environment KDE could provide
solutions to these disadvantages, but the question is if the performance and
results of a multivariate analysis in KDE would be equivalent to MATLAB.
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1.1 Project objectives

The objectives of this thesis were to

• Perform a multivariate analysis for identifying predictive biomarkers
in proteomic data from patients with multiple sclerosis

• Evaluate the performance of the work�ow environment InforSense
KDE on the above mentioned analysis and compare it to MATLAB

• Integrate MATLAB with the work�ow environment InforSense KDE
and evaluate the performance on the above mentioned analysis
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2 Biological background

2.1 Multiple sclerosis

Multiple sclerosis (MS) is a chronic, autoimmune neuro-degenerative disease
with a life expectancy of more than twenty years after discovery. It a�ects
more women than men and is most common in the Northern hemisphere.
It typically outbreaks in the early adulthood. Symptoms and prognosis are
fairly unpredictable and depend on age, gender and environmental factors.
Early symptoms are loss in sensation and vision, clumsiness and fatigue.
This is caused by demyelination and degeneration of axons throughout the
nervous system (Calabresi 2004, Bielekova & Martin 2004, Ibrahim & Gold
2005).

The disease can be categorised into three subgroups: (1) relapse
remitting MS (RR) where the patient has outbreaks of symptoms that last
from hours to weeks with no progression between relapses, (2) secondary
progressive MS (SP) which di�ers from RR in that symptoms worsen
between relapses until body functions gradually deteriorate and (3) primary
progressive MS (PP) where symptoms increase continually (Noseworthy et

al. 2000).
The heterogeneity of the disease makes it di�cult to diagnose and to

predict symptoms. There are many di�erent stages of the disease and many
parallel on-going processes a�ecting the total state (Bielekova & Martin
2004).

2.2 Biomarkers

Biomarkers are measurements of biological characteristics that can
distinguish between di�erent biological states, for example healthy or
diseased. A biomarker can be a quantitative measurement from an analysis
or a combination of measurements. The MS project looks for surrogate
biomarkers, which are biomarkers that give information about clinical
prognosis and the e�ects of treatment. To be useful, surrogate biomarkers
should indicate the prognosis of a treatment faster than the time needed
for following the progress in patients. They are desirable features in drug
development as they may decrease time and cost (LaBaer 2005, Bielekova
& Martin 2004).

For some complex diseases, such as MS, it is impossible to �nd a single
biomarker. Many processes work simultaneously in MS making it di�cult
to screen all mechanisms at once. 95% of all biomarkers for MS target
the in�ammatory stages of the disease, while few target processes such as
remyelination and demyelination that could correspond better to long-term
disability (Bielekova & Martin 2004).
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2.3 Proteomics

Proteomics is the study of the proteome, which is the total complement of
proteins present in a biological system. The proteome is not constant and
changes after cell type and time. A method for �nding expressed proteins
is two-dimensional polyacrylamide gel electrophoresis (2D PAGE). Large
amounts of data can be generated by this high-throughput method because
of the possibility to run multiple gels and the large number of protein
spots on each gel (Chang et al. 2004). Proteins are separated according
to isoelectric point (pI) and molecular weight (MW), see �gure 1. These
two measures are independent of each other so that protein spots become
evenly distributed over the gel. 2D PAGE can detect di�erences in proteins
down to one charge and can estimate the number of proteins present in a
biological system (Kenrick & Margolis 1970, O'Farrell, 1975).

Figure 1: A two-dimensional gel where proteins are separated according
to isoelectric point (pI) and molecular weight (MW). Picture from
SWISS-2DPAGE.
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Data is extracted from gels using spot identifying software such as
PDQuest and Progenesis. Transferring spots on a stained gel to computable
data includes the following three steps: (i) protein spot detection, (ii) spot
quantitation, (iii) gel-to-gel matching of spot patterns (Marengo et al. 2005,
Rosengren et al. 2003).

The stained gel is scanned to assign each pixel with coordinates for x
and y and a signal intensity value. Limits for smallest, largest and faintest
acceptable spot are set to identify the pixels that will be considered. The
result is an image consisting of marked spots with densities modelled as ideal
Gaussian distributions. Spots can be matched across gels, by comparing with
a reference gel, a so called master image. Statistical analysis is performed
to establish if there are di�erentially expressed proteins on the matched gels
(Marengo et al. 2005, Rosengren et al. 2003). When processing of the gels
is completed spot information is obtained as data. Spots are represented
as data matrices where protein spot intensities form rows and samples form
columns (Chang et al. 2004).

Missing values in the data can be caused by biological or experimental
factors. It is important to distinguish between these two and examine
if there are systematic errors and which missing values they correspond
to. Missing values can be excluded from further analysis, but may hold
important information. For example a decrease in protein level may appear
as a missing value (Chang et al. 2004).
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3 Material and Methods

3.1 Multivariate modelling

In multivariate modelling all variables are evaluated simultaneously.
There are several methods available, for example random forests, neural
networks, support vector machines and projection methods such as principal
component analysis and partial least squares (Eriksson et al. 2001, Hastie
et al. 2001).

A model is a simpli�ed approximation of reality and therefore
computable. A model can never fully explain reality so that a part of the
data will not be �tted into the model. This is described by the relationship:

Data = Model (factors, parameters) + Noise

A well-tuned empirical model will approach the correct model so that the
noise will be negligible (Eriksson et al. 2001).

3.1.1 Predictive modelling

With large amounts of data, such as those generated from microarrays or
two-dimensional electrophoresis gels, it is often of interest to classify data
into groups. Samples can be labelled according to a certain outcome, for
example diseased or healthy. Groups can also be organised according to
similarity (Bø & Jonassen 2002). The aim with predictive modelling is
to build a mathematical model that can correctly predict the outcome of
new samples. A subset of the data is used for training the model and
the remaining samples are applied to the model to get an estimate of its
predictive performance (Hastie et al. 2001).

3.1.2 Projection methods

One group of multivariate modelling methods are the projection methods
or dimension reducing methods. Projection methods assume that there are
underlying linear relationships that can describe the data, so called latent

variables. The measured variables are modelled as linear combinations of a
set of latent variables that follow two basic ideas: (1) The measurements are
by de�nition the sum of the underlying latent variables. (2) The data are
assumed to be measurements of a set of similar observations.

The idea is to let every observation of the data be represented by a point
in multidimensional space. The points can then be projected onto a surface
of fewer dimension, see �gure 2. This way the data points are described
by fewer variables. The surface is rotated in space to �t the data points in
the best possible way, in principal component analysis (PCA) to maximise

8



Figure 2: Data points described by the axes X1, X2 and X3 are projected
onto a plane of lesser dimension. The plane is rotated to �t the points in the
best possible way. The axes of the new plane are the principal components
PC1 and PC2. Figure modi�ed after Eriksson et al. (2001).

the explained variance and in partial least squares (PLS) to maximise the
covariance between two matrices X and Y (Eriksson et al. 2001).

3.1.2.1 Principal Component Analysis (PCA) is a multivariate
projection method for �nding systematic variations in a matrix with data
that is assumed to be correlated. In PCA the projections of the data
points onto a surface are called the scores. The loadings are the weights
combining the original variables to form the scores. The loadings represent
the orientation of the surface in space where variance is maximised and hold
information on how important every variable is to the model. The axes that
span the surface are called the principal components, see �gure 2.

PCA can be used for classifying objects by estimating the distance of
new samples to the model. Samples that are very distant to the model are
referred to as outliers. Data is on the form N observations and K variables.
The relation is described by

X = TP ′ + E

where T is the score matrix, P are the loadings and E is the residual. The
scores and loadings are orthogonal linear combinations of the variables and
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observations. A standard procedure for �nding the principal components is
the NIPALS (Non-linear Iterative PLS) algorithm. It works on data that is
symmetrically distributed in the following way:

1. Get a starting vector t
2. Calculate the loadings, p

p =
X ′t

t′t

(the projection of X onto t)

Norm p to ‖p‖ = 1
3. Calculate the scores, t

t =
X ′p

p′p

(the projection of X onto p)

4. Test if the change in t has reached convergence, i.e. if

‖told − tnew‖
‖tnew‖

< ε

(ε = 10−6 or smaller)

If not, return to 2
5. De�ate X by removing the present component and return to 1 to
compute the next component

Explanation from Wold, Esbensen & Geladi (1987).

3.1.2.2 Partial Least Squares (PLS) Data with strongly collinear,
noisy and numerous X-variables can be analysed with PLS-regression. PLS
is based on the same idea as PCA. The di�erence is that PLS relates two
data matrices X and Y by a linear multivariate model so that the dimension
is reduced for both X and Y , the covariance is maximised and the structure
of X and Y is modelled. Y are response variables to the predictor variables
X (Wold, Sjöström & Eriksson 2001). The Y -matrix could contain the
outcome of a disease and the X-matrix protein expression data. Proteomics
data is well analysed with PLS because of the structure of the data, which
is few samples and many correlated variables.

The X and Y -variables are assumed to be modelled by the same latent
variables and are assumed to be dependent. The precision of the model
parameters increase with the amount of relevant variables and observations.
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Data is on the form N samples with K X-variables and M Y -variables.
The X-scores, T , are orthogonal, estimated as linear combinations of the
original variables, X, with the coe�cients W .

T = XW

X = TP ′ + E

where P ′ are the loadings and E the X-residuals, E is small.

Y = TC ′ + F

where C ′ are the Y -weights and F the Y -residuals. A multiple regression
model can be created with the following relation

Y = XWC ′ + F = XB + F

where the PLS-regression coe�cients are

B = WC

Figure 3: Matrix representation of data tables in PLS. Modi�ed after
Eriksson et al. (2001).

Depending on the type of data there are di�erent methods of scaling and
transformation that apply. Appropriate scaling for the X-matrix is usually

11



auto-scaling, i.e. mean-centring the data and scaling to unit-variance by
dividing each variable by its standard deviation. Auto-scaling gives the
variables the same weight since variable importance is related to variance in
PLS. Variables of particular interest can be given other weights in order to
stand out. For numerical stability it is good to mean-centre both the X and
Y -block by subtracting the averages from all variables (Wold, Sjöström &
Eriksson 2001).

The two most used algorithms for PLS are NIPALS and SIMPLS
(Straight-forward implementation of a Statistically Inspired Modi�cation
of the PLS method) (deJong 1993). The NIPALS algorithm works on
transformed, scaled and centred X and Y -data. The NIPALS algorithm for
PLS is equivalent to 1,5 iterations of the NIPALS algorithm for PCA:

1. Get a start vector u, usually one of the Y -columns. If Y is univariate,

u = y

2. Calculate the X-weights, w

w =
X ′u

u′u

(the projection of X onto u)

Norm w to ‖w‖ = 1
3. Calculate the X-scores, t

t = Xw

4. Calculate the Y -weights, c

c =
Y ′t

t′t

(the projection of Y onto t)

5. Update the Y -scores, u

u =
Y c

c′c

6. Test if the change in t has reached convergence, i.e. if

‖told − tnew‖
‖tnew‖

< ε

(ε = 10−6 or smaller)
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7. De�ate X and Y by removing the present component (not necessary
for Y )

p =
X ′t

t′t

X = Xtp′

Y = Y tc′

8. Return to 1 to compute next component until all signi�cant components
have been found

Explanation from Wold, Sjöström & Eriksson (2001).

3.1.3 Cross validation

The basic idea with cross validation is to divide data into K equally sized sets.
Each set is excluded from model construction once and used as new data
for estimating the predictive ability of the model (Ambroise & McLachland
2002, Hastie et al. 2001).

There are two reasons to perform cross validation on PLS models. The
�rst is to validate the predictive power of a model by testing it with data
that have not been included in the model. The ideal case is to test the �nal
model with external data, but such data is not always available. Samples
are usually few and are needed for building the model. Cross validation
can provide an option to unknown data, as data that are excluded from
building the model can serve as new data (Eriksson et al. 2001, Wold,
Sjöström & Eriksson 2001). However, having a small sample size can cause
bias in performance estimation, because cross validated data follow three
dependencies: (1) Training and test sets are dependent, since the selection
of samples for training set consequently puts all the unselected samples in the
test set. (2) Training sets are inter-dependent, since information gained from
the samples of a model holds information on samples that could potentially
be selected for the next model. (3) Test sets are inter-dependent, since
samples that have contributed to previous models give information about
samples that could be selected for next test set (Wickenberg-Bolin et al.

2006).
Further, there is a risk of getting too optimistic error rates when selecting

the best parameter settings from a large number of alternative settings using
cross validation. To avoid bias an external set of samples is needed for
validating the prediction estimate of the best model (Soeria-Atmadja et al.

2005).
The second is to determine the best number of PLS-components for the

model. It is important not to over-�t a model by adding PLS-components
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until the data is described perfectly. The predictive ability may then
decrease since it is a measure of how well the model can predict the outcome
of new data. The contribution of each PLS-component can be estimated by
cross validation. The excluded group serves as validation set, to estimate
di�erences between the actual and predicted Y -values (Wold, Sjöström &
Eriksson 2001, Eriksson et al. 2001).

Figure 4: The relationship between explained variance, R2, and the
predicted variance, Q2, where A is the number of PLS-components. There
is a trade-o� between the model's �t, described by R2, and the model's
predictive ability, described by Q2. R2 is proportional to the number of
PLS-components in the model, while Q2 reaches a maximum. Modi�ed
after Eriksson et al. (2001).

There is a trade-o� between a model's �t and predictive ability. Figure
4 shows the relationship between R2, the explained variation of a model,
and Q2, the predicted variation (from cross validation). R2 increases in
proportion to the number of PLS-components and the complexity of the
model while Q2 reaches a plateau. The point where Q2 has its maximum
corresponds to the number of components that gives the model the best
predictive power (Eriksson et al. 2001, Hastie et al. 2001).

3.1.3.1 �Three-fold bootstrap cross validation� The dataset is
randomly divided into three equally sized groups. Each group is excluded
once from the model and used as test set. This results in a good balance in
size between training and test set. Then the dataset is randomly divided into
three new groups and the same procedure followed. The process is repeated
N times.

14



3.1.4 Variable selection

All variables in a large dataset may not be relevant for a study. To identify
the best subset of variables is referred to as the feature subset selection
problem. Finding subsets of features is relevant because costs can be reduced
if fewer features need to be measured, time can be saved and perhaps less
complicated technology needs to be used (Bø & Jonassen 2002). Moreover,
if a dataset has many variables with low weights variable selection may
improve the predictive ability (Freyhult et al. 2005).

One approach is to consider each variable's individual ability to assign
the correct outcome to a sample. The K features with highest score are then
selected as the best feature subset. Bø & Jonassen (2002) state that it can
be inappropriate to rank features individually because a pair-wise ranking
can �nd informative variables that would not be selected in an individual
feature search. Another approach is to �nd correlated variables and exclude
those that show high similarity with others. This could be advantageous for
proteomics data which has a lot of correlated variables. A feature subset can
also be obtained by reducing the dimensionality of the model by selecting
the N �rst principal components.

Test set samples should not be part of the variable selection procedure.
Ambroise et al. (2002) has shown that there will be selection bias if samples
from a test set that are not part of the model are included while selecting the
best features. To avoid such bias the same feature selection method must
be applied to all training sets.

3.1.4.1 Variable importance for the projection (VIP) The
parameters of a PLS model hold information on the contribution of
the individual variables to the model. Variables that are important for
modelling Y have large PLS-regression coe�cients while variables that are
important for modelling X have large loadings. The variable importance
for the projection score estimates how well a variable contributes to both
X and Y . The VIP score is a sum of squares of the PLS-weights, weighted
with the Y -variance for each PLS-component (Wold, Sjöström & Eriksson
2001).

V IPk =

√√√√ A∑
a=1

(
W 2

akSSYa
K

SSYtot

)

where k is the variable number from 1 to K, a is the component number
from 1 to A, W is the PLS-weights, SSY is the explained variance (%) and
SSYtot is the cumulative explained variance (%) (Eriksson et al. 2001).
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3.1.5 Prediction performance measures

To evaluate the predictive ability of a model it is necessary to have some
parameters to measure this by. A predictive model tries to distinguish
between groups. The simplest case handles two classes, they can be called
true and false. Parameters for assessing if a prediction is correct or not
are true positives (TP ), true negatives (TN), false positives (FP ) and false
negatives (FN), see table 1.

Correct Predicted class
class True False
True TP FN
False FP TN

Table 1: Prediction performance parameters.

A standard measure of predictive power is the total success rate, i.e.

Predictive ability =
TP + TN

TP + TN + FP + FN

This can be rewritten as

Predictive ability =
Number of correctly predicted samples

Total number of samples

Measures of how well each class is predicted are sensitivity and speci�city.
They can also be referred to as recall :

Sensitivity =
TP

TP + FN

Speci�city =
TN

TN + FP
Sensitivity and speci�city are parameters that remain the same irrespective
of the population tested, given that they have been estimated thoroughly.

Measures for the accuracy that samples that have been predicted as one
class actually belong to that class are positive predictive value (PPV) and
negative predictive value (NPV). They can also be referred to as precision:

PPV =
TP

TP + FP

NPV =
TN

TN + FN
PPV and NPV are of interest when a certain population is to be examined.
They give the probability that a test result is correct in relation to the test
population size (LaBaer 2005). For a test to be accepted as a diagnostic test
the precision parameters are examined, since they should correspond to an
accurately distributed population.
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3.1.6 Cuto�

A PLS model gives predicted Y -values for the samples. These are continuous
values that need to be categorised into one of the classes of the model. To
decide whether a predicted Y -value belongs to for example class A or class
B a cuto� value is needed. The cuto� will label the samples according to:

Predicted value < cuto� ⇒ Class A
Predicted value ≥ cuto� ⇒ Class B

Depending on the aim with the prediction model, di�erent cuto�s may
be applicable. It is possible to in�uence how well one particular class
is predicted by adjusting the cuto� value. If the aim is to predict all
classes equally well, both the sensitivity and speci�city parameters should be
maximised. Then the maximum number of true positives and true negatives
will be obtained at the same time. If one class is more important the cuto�
can be set to optimise the number of correct predictions for this class.

Figure 5: A receiver operating characteristic (ROC) curve. The straight
line corresponds to sensitivity and speci�city measures obtained with pure
chance. The curved line approaches the top left corner, which is where
sensitivity and speci�city are the greatest possible at the same time.

There are several ways to identify the desired cuto� value. The sensitivity
and speci�city values for the model need to be computed for a range of cuto�
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values. They can be visualised in a receiver operating characteristic (ROC)
curve where sensitivity is plotted as a function of (1 - speci�city), see �gure
5. The point in the top left corner corresponds to the highest combined
sensitivity and speci�city values, in this case the cuto� where both classes
are predicted equally well (Vining and Gladish 1992). An ROC curve can
also be plotted for other parameters than the cuto�.

Another way to visualise the relationship between sensitivity, speci�city
and the predictive power is to plot all three parameters as functions of the
cuto� values. The point where the curves intersect is where sensitivity and
speci�city both are the largest possible. See �gure 6.

Figure 6: Alternative visualisation option to identify cuto� value. The point
where the curves intersect is where sensitivity and speci�city both are the
largest possible.

3.2 Inforsense KDE

The KDE system is based on J2EE (Java 2 Platform, Enterprise Edition)
technology, which is a free software from Sun Microsystems. JBoss is used for
the application server and Apache Tomcat is the web container (Saied 2006,
personal communication). Both are open source. The standard installation
is client-server, with a single server to which many clients can connect.
The minimum requirements for a client machine are 1 GB RAM and 250
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MB free disk space. The minimum requirements for a server machine with
up to �ve clients are 2 GB RAM and 10 GB free disk space per user.
The server software alone requires 250 MB. KDE can be launched using
a webstart Discovery Portal, or via the InforSense Client (InforSense KDE
3.1 Installation and Setup Guide). See Appendix B for a screenshot of the
InforSense KDE platform.

In KDE work�ows are built from components, or nodes, that carry out
operations on data. See �gure 7. Data are primarily handled in the form of
tables, passed on in a network of connected executable nodes. Any node in
the network can be executed and its result obtained. All preceding nodes
will be executed in prior.

Figure 7: An example of a work�ow in KDE. The node with caption �iris�
is a table containing the columns sepalLength and sepalWidth. The node
with caption �Derive� is a Derive node which creates new columns from KDE
expressions. In this case a new column named sepalArea is derived from the
product of the two columns. When the Derive node is executed a new table
is obtained - the node with caption �sepal area�, which contains the columns
from �iris� and the derived column sepalArea.

A node consists of three parts: input, action and output. Input can be
either a �le pointer or the output of another node. The input is modi�ed
by the action and passed on through the output port. The output can be
viewed using visualisation tools in KDE such as Table Editor, Spot�re and
Text Viewer. A table is the most common data format but there are other
formats such as model (for regressions and statistics) and database.

There are nodes for all kinds of operations. There are nodes for
pre-processing data such as scaling, deleting and joining tables. There
are nodes for statistical analysis, database operations, text mining and
bioinformatics tools. There are nodes for iterating over work�ows using for
and while loops. There are nodes for scripts using Perl, Groovy or MATLAB.

The nodes are Java classes and can be freely developed through a
software development kit (SDK). The nodes belong to the InforSense package
com.kensingtonspace.sdk.node. A number of structures, classes and methods
are available for node development, mainly based on java.sql.ResultSet. The
node class has three parts: NodeDescriptor, Prepare and Process. The
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NodeDescriptor provides the characteristics of the node such as the number
of input ports, parameters, output ports and their formats. The Prepare
section handles the metadata of the node. This section is executed in
real-time, which gives the user information on whether formats are correct
and what the output of the node will be. The Process part is where the
actual computation is done. Anything that can be performed in Java can
be inserted here. The metadata from Prepare is used as a template for the
ResultSet of Process (InforSense KDE 3.1 Development Guide).

An entire work�ow can be turned into a complete analysis package. This
means that a developer can create analysis �ows that can be used by other
users through the web interface. The developer can decide which parameters
the user can change and the user needs no advanced data experience to run
the analysis.

3.3 Dataset

Proteomic data comes from multiple sclerosis patients diagnosed at the
Karolinska Hospital. Protein expression pro�ling with two-dimensional
gel electrophoresis was conducted at AstraZeneca by Bo Franzén and Jan
Ottervald. The data was adjusted for batch variation and log-transformed
by Kerstin Nilsson.

The dataset has 1499 variables and 98 samples. 36 samples are from a
control group diagnosed with �other neurological disease� and 62 samples
are from patients diagnosed with MS.

3.4 Software/Hardware

Software

• InforSense KDE 3.1, InforSense Limited

• Spot�re DecisionSite 8.1, Spot�re AB

• MATLAB 7.0, MathWorks, Inc.

• PLS Toolbox 3.5, Eigenvector Research, Inc.

• Eclipse 3.1, Eclipse Foundation, Inc.

• Java Runtime Environment 5.0, Sun Microsystems, Inc.

Hardware

• PC with 2 GB RAM. InforSense KDE local server and client

• PC with 1 GB RAM. InforSense KDE client

• Linux Red Hat with 4 GB RAM. InforSense KDE global server
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3.5 Experimental work

3.5.1 Data analysis

3.5.1.1 Pre-processing The data was labelled according to diagnosis
with class 0 for MS and class 1 for the control group. The class labels
formed the Y -variable. Together with the X-block of 1499 variables the
total data block had 1500 variables and a key for identifying the samples.
PCA was conducted to identify potential outliers.

The data in each trainingset was pre-processed before analysis, by
auto-scaling X and mean-centring Y .

3.5.1.2 Prediction model and cross validation The data was
modelled using PLS-regression with the aim to �nd an optimal model with
regard to number of PLS-components, number of variables and cuto� value.
The best number of PLS-components would be the number corresponding to
the model with best predictive ability. The best number of variables would
be the fewest possible without losing predictive power, as it is advantageous
to reduce cost and time by analysing few features during experiments. The
optimal cuto� value would be the one that equally well predicts diseased
and control samples.

Models for 15 rounds of variable selection using the VIP score were
computed. In each round the 100 variables with lowest VIP score were
excluded from further analysis. This procedure was repeated for 1 to 10
PLS-components. The predictive power of each model was estimated for
cuto� values between 0 and 1, with 0.01 steps.

The prediction model was computed for a range of random datasets,
through a three-fold bootstrap cross validation procedure (see section
3.1.3.1). The three-fold partition was made so that each of the three groups
received one third of the samples from the diseased class and one third from
the control class.

3.5.1.3 Parameters For each model prediction parameters described in
section 3.1.5 were calculated.

3.5.2 KDE

Work�ows were built in KDE using already existing KDE nodes. Some
functions were not supported so a few nodes were developed in Java, see
table 2 for a complete list. See �gure 17 in Appendix C for an overview of
the main work�ow.

3.5.2.1 Pre-processing In KDE scaling can be done in many ways.
There are script nodes where practically any expression can be stated, but

21



Node Input Action Output

ScaleAll Table with X
and Y -blocks

Auto-scales or
mean-centres
selected
columns

Scaled table

ExtractModel PLS model Extracts
variance from
model

Variance as a
table

VIP Weights from a
PLS node and
variance from
ExtractModel

Computes VIP
score for all
variables

VIP score for
all variables

DeleteColumns
Column with
column names
to be deleted
and a table

Deletes
columns from a
table

Table

PLSPrediction Table with
Y -predictions
and table
with correct
Y -values

Calculates
prediction
parameters

Table with
prediction
parameters

AddColumns Parameters and
Table

Appends
parameters
as constant
columns to
table

Table with
constant
columns

Table 2: Nodes developed in Java to complete the work�ow analysis.

as they operate on one column at a time they are not suitable for data with
as many variables as the dataset in this project. There are also normalisation
nodes with a selection of pre-de�ned types of scaling. None of these nodes
were applicable for this analysis, so a node named ScaleAll was written in
Java.

The ScaleAll node takes a table with X-block and Y -block as input. It
selects which columns that belong to X and Y and which type of scaling to
apply for each set - either auto-scaling or mean-centring. As described in
section PLS auto-scaling was selected for X and mean-centring for Y .

3.5.2.2 Prediction model and cross validation The data was
randomly split into three sets using a Partition node. This node uses a
random seed represented by an integer. The seed must be changed in order to
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create a new random sampling. By using the loop value of a For node which
changes during iteration, di�erent partitions could be obtained. Before the
partition the samples from class 0 and class 1 were separated. Then each
class was partitioned into three groups. Each third was joined to a third
from the opposite class. To identify the sets each group was given a tag, like
�Test1�, etc. Then a Filter node was used to select the appropriate sets for
training set and test set as input for the PLS modelling.

A PLS model was built from a training set using the PLS node. The
output of the PLS node is a table containing the weights and a model with
some parameters, such as the variance and cumulative variance. As there was
no possibility to use the parameters from the model, a node was developed to
extract the parameters from the node. This node was named ExtractModel.
It takes a PLS model as input and outputs the variance of the model.

The weights and the variance were used for calculating the VIP score
of the variables in the model, see section 3.1.4.1. There was no node for
performing this, so a VIP node was developed. The VIP node takes the
weights and variance of a PLS model as input and outputs a column with
the VIP score for every variable together with the key of the variable. The
keys of the N variables with lowest VIP score were identi�ed in order to
delete them from the X-block.

The Delete node in KDE only supports deleting columns manually, or
by using a KDE expression. Therefore it could not be used for deleting
the variables with lowest VIP score, since these variables were de�ned in
a column. A Join node could not be used for this either as it works on
rows instead of columns. The most timesaving alternative was to create a
node, DeleteColumns, which deletes columns from a table using a column
containing the variable names to be deleted. The new table was written to
a �le to be used as input data for the next round of variable selection.

The PLS model was validated with a test set using the PLSApply node.
This node takes a PLS model and a table with test data as input. The
output is the Y -predictions for the test samples. The Y -predictions were
written to a database to be used for calculating parameters for prediction
performance, together with the correct Y -values for the test set and some
parameter settings identifying the model (the number of components and
variables).

In order to perform the 15 variable selections and the models with 1 to
10 PLS-components, iterations were done on the work�ow using several For
nodes.

The For node takes two tables as input: one table with the data to be
manipulated and one table with a loop variable where each row corresponds
to one iteration. The node has a script parameter called �Do this before each
loop�. Here, parameters may be set and changed according to loop values
or other parameters. The node has a parameter with a pointer to an �inner�
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Figure 8: Work�ow in KDE with a For node. The For node takes two
tables as input, a data table and a loop table. Parameters can be de�ned
or updated during iteration in the �Do this before each loop�-section, either
using Groovy or the KDE language. The parameter �Do� points to a new
work�ow, which is where the data processing takes place.

work�ow where the actual data processing takes place. The table that is
input to the For node will be input to the inner work�ow. The outputs from
each iteration are joined through union with the previous results.

The For node always inputs the same data table to the inner work�ow.
This was a problem for variable selection since columns are removed during
iteration. The workaround was to delete the input table and import the
correct data from Userspace. The table resulting from each variable selection
was subsequently written to Userspace to be imported during next iteration.

There is a While node in KDE which takes the output from a previous
iteration as input for the next, which is what the variable selection procedure
requires. Unfortunately the While node has not as extensive support for
setting parameters by scripting as the For node and could therefore not be
used.

In total, four For nodes were used. The �rst node handles the variable
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selection. It contains the work�ow where most of the data processing is
handled. This node is iterated 15 times. It is incorporated into another
For node, which handles the number of PLS-components to be used for the
model. This node iterates 10 times and is incorporated into another For
node. The third For node handles the selection of the training and test
set to be used for model building and validation. It iterates three times,
since data is partitioned into three sets and each set is used as test set once.
In each round it selects one set for test set and the remaining two sets for
training set. The third For node is incorporated into the last For node,
which creates random partitions of data. This node should be iterated at
least 100 times. However one iteration of this node takes approximately 100
minutes.

3.5.2.3 Parameters The saved Y predictions were used for estimating
the average predictive ability of each model parameter setting. There was
no node available for calculating such parameters so the node PLSPrediction
was made. It takes the predicted Y and the correct Y as input and has a
parameter for cuto� value. It computes the total predictive performance,
sensitivity, speci�city, PPV and NPV.

A work�ow was made that iterates over all model parameter settings
(number of components and variables). It estimates the average predictive
ability for each parameter setting for one cuto� value. A work�ow was also
made that calculates prediction parameters for a range of cuto�s in a selected
interval with a selected step size.

3.5.3 MATLAB

MATLAB is a programming language for creating mathematical functions
and performing numeric computations.

Some functions from PLS Toolbox were used for the multivariate
analysis. Additional functions that follow the procedure described under
section 3.5.1 were written in MATLAB.

3.5.4 KDE using MATLAB

There is support in KDE for integrating external software such as Spot�re
and MATLAB. There are several nodes available for MATLAB functions.
There is a node for importing data from a .mat-�le (MatViewer), a node
that allows for direct input of MATLAB scripts (Input Script) and a node
for using external MATLAB functions in .m-�le format (Generic Matlab).
The Generic Matlab node was used for executing the same scripts that were
made for the MATLAB analysis.
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4 Results and Discussion

4.1 Data analysis

4.1.1 Pre-processing

Pre-processing in MATLAB and KDE with mean-centred Y and auto-scaled
X had the exact same result. This was veri�ed with test data. PCA did not
identify any outliers.

4.1.2 Prediction model and cross validation

The PLS models were not the same in KDE and MATLAB because of a bug
in the PLS node: the weights from the PLS node di�er from the weights
calculated in MATLAB. The weights from MATLAB were veri�ed with
SIMCA, which is a software product for performing multivariate analyses.
KDE uses the NIPALS algorithm, which InforSense claims to have veri�ed
with SIMCA.

Figure 9: The PLS-weights for the �rst PLS-component, computed in KDE
and MATLAB respectively, plotted against the �rst PLS-component in
MATLAB. The weights are almost identical except for one sample.
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Figure 10: The PLS-weights for the second PLS-component, computed in
KDE and MATLAB respectively, plotted against the second PLS-component
in MATLAB. The weights di�er, but are correlated.

The weights are almost equivalent for the �rst PLS-component, see �gure
9. For all other components the weights are correlated but not equal, see
�gure 10 for the second PLS-component.

The VIP score was exactly the same using the VIP node in KDE and
a VIP function in MATLAB. However, since the PLS-weights di�ered the
VIP scores consequently were a bit di�erent. Despite this, the same variables
were selected during the variable selection procedure. The variables have the
same correlation between themselves, even though the weights have greater
values in MATLAB. This was veri�ed with test data.

Both MATLAB and KDE identi�ed 0,60 as the best cuto� value, see
�gures 11 and 12. The reason that the cuto� is higher than 0,5, which could
be expected in a well-balanced model, is that there are more samples from
class 0 than class 1.
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Figure 11: The optimal cuto� value is 0,60 according to MATLAB.

Figure 12: The optimal cuto� value is 0,60 according to the analysis in KDE.
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PLS Variance (%) Cumulative variance (%)
component KDE MATLAB KDE MATLAB

1 82,87 82,82 82,87 82,82
2 14,0 14,01 96,87 96,83
3 2,46 2,5 99,33 99,33
4 0,53 0,53 99,86 99,86
5 0,12 0,12 99,98 99,98

Table 3: Y -variance computed for models with one to �ve PLS-components.
The variance is almost identical in KDE and MATLAB. The last two
components add almost no further information and since the total variance
approaches 100% it is not necessary to add more components.

Random partition of cross validation sets was done in MATLAB using
the function randperm(n), which performs a random permutation of the
integers from 1 to n. In KDE a random seed was used in the Partition
node. The random seed is generated by the java.util.Random class. The
seed depends on the size of the table, so using the same seed for two tables
of di�erent size does not mean that the same row index will be selected for
both.

The number of cross validation rounds di�ered in MATLAB and KDE.
A run in MATLAB could without e�ort consist of 200 random partitions.
In KDE the maximum number reached was 95. The execution could not
be repeated several times in KDE as the analysis of one random partition
takes approximately 100 minutes, compared to 34 seconds in MATLAB. The
consequence was that the total number of PLS-components was decreased
to �ve, instead of ten, to reduce execution time. First it was validated that
PLS-components six to ten did not contribute any further to the model, see
table 3.

4.1.3 Parameters

The PLS prediction node in KDE returns the same parameter values as the
PLS functions in MATLAB. Test data was used to verify this.

Models with two PLS-components have the highest overall predictive
performance, see �gures 13 and 14. KDE gives in general slightly more
optimistic results for the predictive performance. The reason is probably
because fewer rounds have been run in KDE than in MATLAB, as more
rounds tend to smooth out the curves. This can be seen in �gures 13 and 14
where the curves in MATLAB are smoother than the curves in KDE - more
than twice as many runs have been committed in MATLAB as in KDE.

29



Figure 13: The predictive performance, cuto� 0,60 for 95 rounds in KDE.

Figure 14: The predictive performance, cuto� 0,60 for 200 rounds in
MATLAB.
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Figure 15: A comparison of the two �rst PLS-components in KDE and
MATLAB. The prediction scores are very similar.

The dissimilarity could perhaps also be a consequence of the di�erence in
PLS-weights between MATLAB and KDE. The overall impression is however
that the results are fairly similar. In �gure 15 the predictive performance for
models with one and two PLS-components are compared. From the �gure
it is clear that the di�erence between prediction performance in KDE and
MATLAB is minimal.

The highest prediction scores are 78,8% in KDE for two PLS-components
and 1400 variables and 78,8% in MATLAB for two PLS-components and
1400 variables, which is very good predictive ability. See �gures 13 and 14.
If models with one PLS-component had the best scores it is possible that
the data could be described with one single relation. The fact that models
with two PLS-components have the highest prediction score gives a hint
that there must be several underlying relations. The plots also show that
the predictive performance decreases with variable selection.

There is a trade-o� between the predictive ability of a model and number
of variables. What is considered the best model must be a decision balanced
on those two properties.
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4.2 Evaluation of KDE

4.2.1 User-friendliness

KDE seems fairly easy to use at �rst glance. The concept of nodes and �ow
of information is straightforward and the basic idea is intuitive. InforSense
provides some examples of work�ows that demonstrate how to use some
of the simpler nodes. However, as soon as work�ows and nodes become
more complicated, documentation is sparse and function not always obvious.
There is little description of underlying methods in use, making it di�cult
to compare results with external analyses. For example, how is scaling done
and what is the exact algorithm used for the PLS node?

There is a KDE scripting language available for performing column
operations in script nodes and for setting parameters. The KDE language
has some documentation, but there are no examples on how to use it. There
is also very little documentation on how to integrate the external Java script
language Groovy. It is supposed to be equivalent to the KDE language in
some sense but there is no clear de�nition on when, where and how to use
each language.

4.2.2 Functionality

Simple nodes, such as the numerous pre-processing nodes, are useful and
ful�l their purpose, but more advanced nodes lack functions that are
necessary for in-depth analyses. The workaround is to create nodes yourself.
It is possible to develop nodes locally using a script node, but debugging is
not available and can be complicated. A better way is to create nodes in
Java. The set structure for nodes in KDE is fairly easy to understand and
all Java functions are supported. Debugging is possible through Eclipse, a
developing environment for programming languages, which makes it easy to
�nd errors. Eclipse simpli�es node development since the structure of each
variable can be explored.

It seems as if InforSense has put e�ort into developing a wide range
of analysis tools without extending the functionality of each tool outside
basic needs. Anyone interested in a particular tool will �nd that there are
features that are not supported. One example is the PLS node. The only
results that can be obtained from the node explicitly are the weights. The
node also outputs a model that serves as input for the PLSApply node.
The model can be viewed with the visualisation tool Text Viewer where
some parameters can be found such as the variance and mean of X and
Y . The only way to extract this information is to create nodes yourself.
It is reasonable to request other parameters besides the PLS-weights when
performing even the simplest form of PLS.
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4.2.3 Dysfunctionality

There is a global server for KDE at AstraZeneca. It could not be used
for work�ow development. One reason was that Matlab could not be run
globally because of issues with license and Linux. Another reason was that
it is necessary to be the administrator of a server in order to develop nodes.
A third reason was that execution was faster on a local server with only one
user than on the global server where many users share the resources.

The PLS/PCAApply nodes have an option to output the input data if
there are 1000 columns at most. It is not possible to choose which columns to
include in the output, so this option cannot be used on larger datasets. The
workaround is to join the output to the original table to retain important
columns such as keys and other parameters. This is a quite demanding
operation that costs unnecessary time.

The results for the weights from the PLS node and MATLAB and SIMCA
di�er. The PLS node ranks the PLS-components in a di�erent order than
MATLAB and SIMCA. It identi�es the �rst principal component as the
component with the best correlation between X and X, instead of X to Y .
This complicates comparing and validating results.

The output of some MATLAB nodes used to be of the type object instead
of numeric format, which means that the output could not be applied to
any numeric functions. This bug has been solved by InforSense, but it
addresses another issue concerning type conversions. There is no e�cient
way to convert the format of an entire dataset. The node Column Converter
works on one column at a time, which results in a tremendous amount of
work when columns are numerous.

With nested For nodes that send parameters across levels there is a
problem with parameter names: parameters on di�erent levels cannot have
the same name. A parameter will not be recognised by a work�ow if more
than one For node separate them. With four nested For nodes this means
that some parameters must go through name changes four times.

Nodes with several output ports cannot be connected directly to nodes
with several input ports. If a node outputs two tables, the same two tables
cannot be input directly to a node with two input ports. An intermediate
node is needed, even though it does not change the data in any sense. A
Delete node can be used without deleting anything to separate two outputs,
which seems unnecessary and time-consuming.

4.2.4 Development

The possibility to develop nodes is a strong feature of KDE. The node
structure is fairly easy to understand and anything that can be done in
Java is allowed. The documentation leaves a lot of unanswered questions,
but there are a lot of example nodes that come along with the installation
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that serve as a valuable source of information.
The source code for the existing KDE nodes is not available, so there is

no possibility to extend KDE nodes.
There is no support for adding documentation to your own nodes in the

way KDE nodes have documentation. The Development Guide claims that
it is possible, but from personal communication with InforSense it is clear
that this will not be available until next release of KDE.

It is necessary to have access to and be administrator of a KDE server
in order to develop nodes. Node development and testing is performed on
the server machine, which means that ordinary client users cannot develop
nodes. However, anyone with a license can install a KDE server locally.

4.2.5 Stability

Due to cacheing of memory, the nodes sometimes do not update their
metadata. When iterating over a work�ow this can be a problem, especially
when input columns change for each iteration. If the nodes do not update
their metadata it is likely that some columns that should be included will
not be selected. There are commands for selecting particular columns by
using the KDE language instead of specifying each column name manually.
These commands, that for example select all columns of a certain type, are
very time-consuming.

The server occasionally shuts down during execution. It usually happens
when there is an over�ow of cached memory. The results from the current
execution will be lost, but usually the server can be rebooted and the client
reconnected. To avoid losing information from long executions it is possible
to continually write results to a �le but this takes time and is not an optimal
solution.

The node �Export to Userspace� sometimes deletes the table it is
exporting and also the �le it was exporting it to.

4.2.6 Reusability

An advantage of KDE is that once a work�ow has been created it can be
reused in�nitely, provided that the same dataset or a dataset of the exact
same form is applied. Having a work�ow that performs a standard analysis
makes it possible to easily create or extend work�ows for testing alternative
parameter settings, etc. A work�ow can be deployed as a generic component
to be used as a node in other work�ows.

Applying new data to an existing project involves going through the
work�ow by hand and correcting all inputs to the nodes to make sure that
the correct columns are chosen, unless the data is on the exact same form
with the same number of variables and the same column names. The caching
of memory can cause problems. Each node needs to update its metadata
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when new data is applied to a work�ow and as this not always happens
automatically nodes may have to be forced to update.

Nodes developed in Java become part of the selection of nodes in KDE
and can be used in any work�ow by any user on the same server.

Analyses made in KDE can be traced-back and recorded for
documentation purposes.

4.2.7 Time aspect

Execution time is one of the biggest drawbacks of InforSense KDE.
Compared to performing identical analyses in MATLAB, the di�erence in
execution time is extreme. One run, i.e. one partition of data into three sets
followed by a complete variable selection and PLS optimisation, takes 6200
seconds in KDE in average. In MATLAB the equivalent is 34 seconds, see
table 4. That makes KDE 180 times slower than MATLAB. The result is
that 200 runs were executed in MATLAB while in KDE the equivalent was
95 runs.

Number of KDE MATLAB Complete MATLAB
runs (time in seconds) (time in seconds) (time in seconds)

1 6200 (620) 34 40
100 ∞ (1354) 3400 7300

Table 4: Execution time of one run and 100 runs in KDE and MATLAB
respectively. One run means one three-fold bootstrap crossvalidation with
15 variable selections and �ve PLS-components. The MATLAB analysis
includes computation of prediction parameters for one cuto�, while in KDE
an additional work�ow is needed for this. The execution time for that
work�ow is inside brackets. The �complete MATLAB� column shows the
execution time for the originally intended analysis with ten PLS-components
and 100 cuto� values.

Two of the reasons that could cause the slowness of KDE are (1) the
Java platform, as Java is not known for being a fast executive language, and
(2) that every single node must receive data, operate on data and transmit
data in a very structural manner. A lot of simultaneous processes take place
beside the computation. For example submitted tasks can be overviewed
during execution, both as a thread of actions and directly in the work�ow.

As there is a risk of losing data during long executions, an option is to
save results to userspace continuously. But exporting data is time-consuming
and only the most important results should be saved to cut down execution
time. Saving data to a database is less time-consuming than writing to a �le.
The time of adding data to a table in a database is independent of the size
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of the table in the database. The time it takes to read a �le from Userspace,
union it to new data and write the result to the same �le, depends on the
size of the �le in Userspace. When the �le is empty the execution time is
identical to the execution time of adding data to a database. However, when
the �le is large the time increases considerably, see table 5.

Number of rows File (time in seconds) Database (time in seconds)

1 6201 6161
700575 18421 6678

Table 5: KDE execution time for saving a table to a �le and a database
during one run of the work�ow described in section 3.5.2 respectively.
Number of rows corresponds to the table size of the data already present
in the �le and the database before addition of new results. Execution time
is practically independent of size when saving results to a database but
increased almost three-fold when writing results to a large �le.

Another time aspect that should be mentioned is the time it takes to
build a work�ow in KDE. Simple work�ows consisting of a few nodes are easy
to create and do not require much time. Time spent on developing work�ows
increases in proportion to the complexity of the work�ow. This is mainly due
to lack of documentation and bugs in the KDE nodes. Developing scripts
in MATLAB that perform equivalently advanced analyses is considerably
faster. The main analysis in this project took a few days to develop in
MATLAB, compared to several weeks in KDE.

4.2.8 Bugs

A number of bugs were solved by InforSense during this project. The
remaining bugs that have not already been mentioned are the following.

The metadata of the PLSApply node is not updated which makes it
di�cult to use the node in an iterative environment, for example where the
number of PLS-components changes. The workaround is to set a parameter
for the number of components and to force it to update using the script-part
of the For node.

When working on the inner work�ow of a For node the system may hang
if a node is added from the right-click popup menu. The workaround is to
drag and drop nodes from the component tree.

The output from the PLSApply node has the same column names as the
output from the PCAApply node, i.e. PCAComp1, etc. It would be less
confusing if the column names were something like PLSComp1, similar to
the output of the PLS node.
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4.3 Evaluation of MATLAB

The advantage of MATLAB is the computational power, i.e. the unlimited
range of options to create functions that do exactly what is needed and the
e�cient execution.

The disadvantage is di�culties to visualise results and keep track of how
and where functions are used.

4.4 Evaluation of KDE using MATLAB

Integrating MATLAB with KDE only has advantages. The execution time of
MATLAB scripts does not di�er signi�cantly from executions in MATLAB
alone. The advantage is the possibility to easily visualise results, both with
Table Editor and with Spot�re. MATLAB results are integrated into KDE
perfectly.

An interesting alternative would be to let all MATLAB functions be
separate and represented by one Generic MATLAB node each. The nodes
could be connected in a similar fashion as functions are called in MATLAB.
However, iterations should preferably be handled by MATLAB scripts rather
than with KDE nodes to reduce execution time. This combination would
be like selecting the positive features from both KDE and MATLAB. The
aspect of well-arranged functions in KDE combined with the fast execution
of MATLAB should be a winning concept.

4.4.1 Dysfunctionality

A disadvantage is that MATLAB currently does not work on a global server,
which means that anyone interested in using it will need a local server. The
disadvantage of working on a local server is that sharing work with other
users becomes complicated.

Not all MATLAB-scripts can be run in KDE. If the output has structs
containing big amounts of data KDE cannot handle it. Structs are viewed
with the MATLAB node MatViewer which has a limit of 1000 columns
and 100 rows. They can be converted to the KDE table format with the
MatViewer node but the size limit makes it useless for large datasets as the
one studied here. The solution is to output MATLAB results as matrices,
which are interpreted as tables in KDE.

The XML-wrapper used for uploading and maintaining MATLAB-scripts
has an unnecessarily complicated structure. The scripts must be organised
into a four-levelled �le system. When changes are made in the XML-wrapper
the Generic Matlab nodes that use the a�ected scripts do not update the
changes. They must �rst be re-created or the entire work�ow re-opened.
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5 Conclusions and Recommendations

The idea of integrating many tools on one platform is brilliant, but the KDE
platform feels somewhat immature and unstable. The range of functions
available is exhaustive and outnumbers the work�ow environment Pipeline
Pilot from SciTegic. Pipeline Pilot is a work�ow environment that previously
has been used mainly in chemometrics. Another strong feature of KDE is
the possibility to develop your own nodes that complete and personalise your
analysis, which is not possible with Pipeline Pilot. This can compensate for
the lack of function that some nodes su�er. While a wide range of analysis
tools is covered, only basic functions are supported for more complex nodes.
On the other hand, simpler nodes such as the pre-processing nodes are very
useful and functional.

The structured overview of the analysis �ow is a very good feature of
KDE. The many options available to visualise data at any point in the
work�ow makes it easy to trace and modify every step of the analysis.
Another asset is the possibility to create work�ows that can be reused by
many users over and over again. A work�ow can be used as guidelines for
other analyses and be modi�ed to suit current demands.

The greatest drawback of InforSense KDE is instability. There are many
bugs in version 3.1, even though many of them have been corrected for
during this project. Cacheing of memory creates problems with selecting
the correct data source during an analysis. This makes it di�cult to trust
that a work�ow performs the correct analysis unless all nodes have been
manually controlled. A work�ow that already has been executed and its
results validated can during a subsequent execution give di�erent results or
error messages.

Another weakness is the exceptionally long execution time of work�ows.
It is not reasonable to have a 180 times slower execution in KDE compared
to MATLAB. It seems as if InforSense did not expect as extensive and
computation-demanding work�ows as the ones that were made for this
project. It is however reasonable to request the possibility to create
work�ows of this complexity. The small and simple examples they provide
all have relatively fast executions, but that is because they only involve up
to ten nodes. The most complex work�ow in this project has 70 nodes that
were executed 225 times in one round.

The overall impression of InforSense KDE is that it has great ambitions,
but does not manage to ful�l essential features such as stability, reasonable
execution time and more than basic functionality of complex nodes. If
you are looking for a reliable platform where you can develop advanced
analysis �ows in a straight-forward manner, KDE is not it. The advantages
of reusability, wide range of functions and ability to develop your own

38



nodes cannot outweigh the disadvantages of instability and extreme time
consumption. However, to use KDE as a platform for integrating di�erent
software tools is excellent. Tools such as MATLAB and Spot�re can easily
be accessed within KDE.

My recommendation is to use InforSense KDE for integrating tools such
as MATLAB and Spot�re but not to build complex work�ows, especially
not with iteration.

The next release of InforSense KDE, version 4.0, is coming up this spring.
It would be very interesting to see what is new and if the stability has been
improved. InforSense has promised an entirely new platform with more
functions and many new features. But new functions and features cannot
compensate for immense execution time and an unstable platform.
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APPENDIX

Appendix A

Abbreviations

2D PAGE Two-dimensional polyacrylamide gel electrophoresis
FN False negative
FP False positive
J2EE Java 2 platform, enterprise edition
MS Multiple sclerosis
MW Molecular weight
NIPALS Non-linear iterative partial least squares
NPV Negative predictive value
PC Principal component
PCA Principal component analysis
pI Isoelectric point
PLS Partial least squares
PP Primary progressive multiple sclerosis
PPV Positive predictive value
ROC Receiver operating characteristic
RR Relapse remitting multiple sclerosis
SDK Software development kit
SIMPLS Straight-forward implementation of the PLS method
SP Secondary progressive multiple sclerosis
TN True negative
TP True positive
VIP Variable importance to the projection
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Appendix B. Figure 16: Screenshot of InforSense KDE

43



Appendix C. Figure 17: Main work�ow
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Node Input Action Output

ScaleAll Table with X
and Y -blocks

Auto-scales or
mean-centres
selected
columns

Scaled table

ExtractModel PLS model Extracts
variance from
model

Variance as a
table

VIP Weights from a
PLS node and
variance from
ExtractModel

Computes VIP
score for all
variables

VIP score for
all variables

DeleteColumns
Column with
column names
to be deleted
and a table

Deletes
columns from a
table

Table

PLSPrediction Table with
Y -predictions
and table
with correct
Y -values

Calculates
prediction
parameters

Table with
prediction
parameters

AddColumns Parameters and
Table

Appends
parameters
as constant
columns to
table

Table with
constant
columns

Appendix D. Table 6: Nodes developed in Java
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