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Predicting refractive index increments for 

small molecules from molecular descriptors 
  

 

 

Emma Haraldsson 
 

 

 

Sammanfattning 
 

 

När ett läkemedel binder till en annan molekyl hämmas eller ökas molekylens funktion. 

Biosensorer används inom läkemedelsforskningen för att mäta om, hur starkt och hur 

fort ett potentiellt läkemedel binder till en biomolekyl. Dessutom vill man veta hur 

specifik bindningen är. Dessa egenskaper går att undersöka med hjälp av Biacore 

instrument. Man har den ena molekyl immobiliserad på en yta och den andra molekylen 

finns i en flödeskanal. När molekylen i flödeskanalen binder till molekylen på ytan 

ändras brytningsindexet vid ytan och denna förändring registreras av instrumentet. 

Brytningsindex är ett mått på hur mycket en ljusstråles bana förändras när den passerar 

mellan två media. Brytningsindexinkrementet är ett mått på hur mycket brytningsindex 

ökar med ökad koncentration. Förändringen i brytningsindex är proportionell mot 

mängden molekyl som har bundit in. Om en stor molekyl binder in kommer även 

brytningsindexet att öka mer än om samma mängd av en mindre molekyl binder in. 

Signalen som man får från instrumentet brukar därför justeras med hjälp av 

molekylvikten för de interagerande molekylerna. En ännu bättre justering borde kunna 

uppnås med hjälp av brytningsindexinkrementvärdet för molekylerna men i de flesta fall 

vet man tyvärr inte brytningsindexinkrementvärdet för de molekyler man jobbar med.  

 

I det här examensarbetet har möjligheten att prediktera ett ämnes 

brytningsindexinkrement från molekylstrukturen undersökt. Målet var att skapa en 

matematisk modell där brytningsindexinkrementet predikteras från beräknade kemiska 

egenskaper hos molekylen så kallade molekylära deskriptorer.  
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1. Introduction:  
 

Many biosensors are using a phenomenon called Surface Plasmon Resonance (SPR) to 

monitor interactions between molecules. SPR is an optical method that detects changes 

in refractive index (RI) at the chip surface caused by analyte molecules interacting with 

the target molecule immobilized on the surface. The SPR response given by the 

instrument will be proportional to the amount of analyte bound to the available binding 

sites of the target molecule on the surface. Since the instrument is measuring the change 

of RI at the chip surface the response will also be dependent on the refractive index 

increment (RII) of the interacting molecules. The refractive index increment is a 

quantity describing how RI of a solution increases with increasing concentration of the 

compound of interest. The change of RI represented by the SPR response is measured at 

a surface layer consisting of both bulk solution and the interacting molecules. In 

applications such as binding kinetics, concentration series of analyte is injected and the 

number of binding sites and the bulk contribution can be eliminated by mathematical 

modeling.  

In screening applications the SPR response is measured at only one single concentration 

and the signal can only be used for ranking if the compounds have very similar RIIs. 

For most proteins RII is approximately constant (0.18-0.19
1
). Small molecules however, 

have a larger variation in RIIs as shown by Davis et al
1
. Molecular weights of small 

molecules have previously been used to normalize the screening signal. 

 

In this paper results are presented from measurements of RIIs for 50 low LMWs. The 

relationship between the molecular structures and variation in RIIs is discussed. An 

attempt to make a prediction model of RII to be used for signal corrections of screening 

data is also presented. 
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2. Theory 

 
2.1 Refractive index (RI) 
 

When a light beam passes from one media to another and the two media have different 

densities, the course of the light beam will change. The angle with which the light beam 

travels through the first media is called the angle of incidence (ΘI), and the 

corresponding angle in the second media is called the angle of refraction (ΘR) (Figure 

1). The refractive index (RI) is calculated as n1 ×sin ΘI = n2 sin ΘR, where n1 and n2 are 

the refractive indices of the two media respectively. RI is usually denoted n and it is a 

unitless measure. It is dependent on both the temperature and the wavelength of the 

light beam. RI decreases when the temperature increases. RI is usually measured at the 

Sodium D line, at 583.9 nm. Depending on the molecular structure of the compound the 

RI will be different, but most organic substances have a RI between 1.3 and 1.7
2
. The RI 

of water is 1.3329
1
. 

 

  
Figure 1 : A light beam passing from one medium to another 

 

 

The Lorentz-Lorenz equation shows the relation between molar refractivity, density and 

refractive index
3,4

;  

 



MW

n

n
MR 






1

1
2

2

        Equation 1 

  

           

where MR is the molar refractivity, MW the molecular weight and ρ is the density of 

the compound. Molecular weight is measured in g/mol, density in g/cm
3
 and n is 

unitless. MR is an additive measure; it can be calculated from the refractions of all 

bonds in the molecule
4
. Since n is unitless, the unit of MR is (g/mol)/(g/cm

3
)=cm

3
/mol, 

which can be interpreted as the volume taken up by one mole of the substance. 

 

A quantity related to molar refractivity is the molar polarizability
5
, which is given by; 

 



MW

D

D
P 






2

1
        Equation 2 

 

P is the molar polarizability and D is the dielectric constant of the environment.  D is 

related to n; 

 



 5 

2

 nD          Equation 3 

 

The radiation from visible light can only displace electrons, the nuclei is not influenced. 

If n is measured using visible light we have; 

 



MW

n

n
PE 






1

1
2

2

        Equation 4 

PE is the electronic polarization, and it represents the polarizability caused by changes of 

the molecule’s electronic cloud.  The right-hand side of the formula ovan is the same as 

MR, implying that MR is not only related to volume but also to the polarizability of the 

molecule.  

 

After some rearrangements of the Lorentz-Lorenz equation one obtains: 

  

MR
MW

MR
MW

n










2

        Equation 5 

 

 Using the formula above it is possible to estimate the refractive index value of a 

compound.          
 

2.2 Refractive index increment (RII) 

 

The refractive index increment (RII) is a measure of how much the refractive index of a 

compound increases when the concentration of the compound increases
4
. As seen in 

Equation 6 the RII can be calculated from RI of the solution and the buffer as long as 

one knows the concentration of the substances for which the RII is wanted. RII is given 

by the following formula; 

  

sample

buffersolution

c

nn
dcdn


/         Equation 6 

 

where dn/dc denotes the refractive index increment of the sample, nSolution and nbuffer the 

refractive index of the solution and the buffer respectively and csample the concentration 

of the sample. RII is, as RI dependent on both the temperature and the wavelength
4
. RII 

is also dependent on the buffer used to dissolve the substance
6
. RII is however 

independent on the salt concentration in the buffer
7
. The excluded volume of molecule 

is a measure of the volume of solvent that is displaced by the molecule. Two molecules 

that have the same RI, but different excluded volumes will have different RIIs.   
 

2.3 Surface Plasmon Resonance (SPR) 
 

In Biacore systems, as well as in many other biosensor systems, RI of a compound is 

measured using an optical method called Surface Plasmon Resonance (SPR). The 

method works as follows; a light beam passes from a medium e.g. glass, which has a 

high RI, to e.g. water, which has a low RI. The light beam hits the glass at a certain 

angle. Depending on the angle, different amount of the light beam will be reflected. The 
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part of the light beam that is not reflected is refracted into the glass medium. At a 

certain angle all light will be reflected, this angle is called the critical angle. An 

evanescent wave arises and travels a short distance into the medium with the lower 

refractive index. If a thin layer of a noble metal, e.g. gold, covers the boarder between 

the two media, metal atoms will absorb energy from the electrical wave and start to 

oscillate. Electron charge density waves called plasmons are generated. The intensity of 

the light beam decreases and the loss of energy are registered. If the direction of the 

wave vector for the plasmons is the same as the direction of the wave vector of the 

photons the electrons starts to resonate. This phenomenon is called surface plasmon 

resonance (SPR). The angle at which the energy loss of the incident light is greatest is 

called the resonance angle (the SPR angle). The strength of the evanescent field 

increases when passing through the metal surface. The amplitude of the evanescent field 

decreases with distance. At a distance of ~300 nm the intensity of the wave has decayed 

to 1/e, which means that about 37% of the intensity is left. The evanescent field 

interacts with the neighborhood of the metal, which means that optical changes of this 

region will affect the SPR angle. Changes in the SPR angle reflect changes in the 

surface concentration
8,9,10

.  

 

 

  
Figure 2 : The light beam is wedge shaped in order to receive a fixed range of incident angles 

9
 . 

Illustration used with permission from Biacore AB. 

 

 

An investigation of interactions between two molecules is carried out as follows; the 

ligand is first immobilized onto the sensor surface. The second molecule (the analyte) is 

then injected in a sample buffer through the flow cell. When and if, the analyte binds to 

the molecule on the sensor surface (the ligand) RI will increase, causing a change in the 

SPR angle. The change of the SPR angle will be dependent on the amount of analyte 

that binds to the ligand, and the change of the SPR angle is measured by the Biacore 

instrument. The change of the SPR angle is quantified in resonance units (RUs), where 

1 RU equals a refractive index change of 10
-6

 which also is approximately an angle shift 

of 10
-4

 degrees. If 1 pg/mm
2
 of protein binds to the sensor surface one will receive a 

response of ~1 RU
10

. 

 

The SPR response received from the biosensor is visualized using a sensorgram; an 

example of a sensorgram is seen in the right-hand bottom corner of Figure 2. The SPR-

signal in RU is plotted against time. The SPR response given by the instrument will be 

proportional to the amount of analyte bound to the available binding sites of the target 

molecule on the surface. If the binding affinities between two different molecules is 

compared and one of the molecules are much larger than the other, the SPR-signal 
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representing the first molecule will be higher even if the same number of molecules has 

bound to the ligand molecule on the surface.  

 

XnRobs *max           Equation 7 

 

where obsRmax  is the observed instrument response measured in RU,  n is RI at the surface 

and X is a factor used for converting n to obsRmax

1
. The change in n is, as mentioned 

earlier, detected by the instrument as a shift in the SPR angle, a change of 10
-6

 in RI 

equals 1 RU. For protein interaction the general RII for proteins can be used as a part of 

the X factor. Proteins have a RII of around 0.18-0.19, independent on their amino acid 

composition
1
. Davis et al showed in an earlier study that RIIs for small molecules vary 

more, a variation corresponding to a factor two. 

 

    analyteligand

obs dcdndcdnnR ///*max       Equation 8 

 

For protein-protein interactions the ratio will be approximately one, and can therefore 

be omitted. For small molecule interactions the RII for the interacting molecules need to 

be known. Since the RII is usually not known, and RIIs are time consuming to measure, 

the ratio between the molecular weights of the interacting molecules is used instead as 

an approximation.  

 

The obsRmax value can be compared to the theoretically calculated max response, i.e. all 

ligand sites are saturated
10

; 

 

valenceonseligandresp
MW

MW
R

ligand

analyte
max      Equation 9 

where MWligand and MWanalyte is the molecular weight for the ligand and analyte 

respectively. Ligand response is the experimental amount of ligand molecules 

immobilized on the chip surface, and valence is the possible number of analyte 

molecules that can bind to one ligand molecule. By comparing obsRmax with Rmax it is 

possible to decide the binding affinity of the molecules.  

  

If the same ligand is used and its immobilized level is the same, obsRmax expressed in moles 

should be the same independent on the molecular weight of the analyte, assuming a 

linear correlation between RII and MW; 
 

MW

R
Rnorm

max          Equation 10 

 

2.4 Quantitative Structure-Activity Relationship (QSAR) 
 

It is important to understand and model the relationship between biological responses 

and the molecular structure e.g. in drug discovery applications. The molecular structure 

is described by physical-chemical properties, so-called molecular descriptors. In 

Quantitative Structure-Activity Relationship (QSAR) analysis the aim is to find a 

mathematical formula where the biological activity is expressed in terms of molecular 
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descriptors. Instead of having to measure the biological activity, a QSAR-model makes 

it possible to predict the biological activity
11

. 

 

A method often used to model a variable y as a function of a variable x is linear 

regression (LR). The relation between x and y is the assumed to be linear; 

 

 bxay          Equation 11 

 

where ε represents the experimental errors (residuals, noise, model errors etc.), and a 

and b are constants. If one wishes to model y as a function of more than one variable, 

LR is extended; 

 

 cbxaxy 21         Equation 12 

  

where both x1 and x2 are variables, and a, b and c are constants. This extension is called 

multiple linear regression (MLR)
12

. In order to receive an equation system that is 

solvable one needs to know the value of y for as many compounds as there are x-

variables. In most cases one only knows the y-value for a limited number of 

compounds, but one has usually a large number of x-variables.  In such cases Principal 

component analysis and Projection to latent structures by means of partial least squares 

can be used instead.  

 

2.5 Principal Component Analysis (PCA) 
 

Principal Component Analysis (PCA) is a projection method used for pattern 

recognition. PCA is often used to reduce the dimensionality of a multivariate data 

matrix and for data classification. PCA reduces the data into a number of principal 

components (PCs). The first PC describes most of the variation in the data, the second 

PC second most variation and so on. This means that in most cases the largest part of 

the variation in the data will be included in the two or three first PCs. How PCs are 

calculated are described and visualized in Figure 3
11

. 
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Figure 3.  Graphical presentation of principal component analysis. 

1. All observations are plotted in the k-dimensional space (in this example k equals three). 

2. In the next step the average point of all observations is calculated.  

3. The data is mean-centered by the subtraction of the mean value; the origin of the coordinate system is 

moved so that it overlaps with the average point. The data is also unit variance (UV) scaled; all variables 

are divided by their standard deviation, i.e. all variables get identical variances.  

4. The first PC is calculated. The first PC is the direction vector that goes through the average point, and 

that best approximates the data in a least square sense. PCs are the eigenvectors of the data matrix. All 

observations are projected onto this vector. A new coordinate system is obtained, so far only consisting of 

one dimension. Each observation receives a new coordinate in the new coordinate system; these values 

are known as scores. From the direction vector one receives the so-called loadings, the loading values for 

each principal component are the cosine of the angle between the principal component direction vector 

and each of the axis representing a variable. Loadings are the relative contribution of each variable. 

5. A second principal component is calculated, orthogonal to the first one.  

 

 

The number of PCs needed in order to explain the variation in the data is determent with 

cross-validation. In cross-validation a certain number of elements are left out when 

creating the model, the model is then validated with those substances that were left out. 

This is done iteratively until all substances have been left out once. If the last calculated 

PC significantly improves the model, the PC is significant and is kept in the model. One 

more PC is calculated. If the last calculated PC is not improving the model significantly 

the PC is not included in the model and no more PCs are calculated
13

. 
 

The data used in PCA is usually mean-centered and UV scaled (Unit variance scaled), 

as described in Figure 3. UV scaling means that all values are divided by the standard 

deviation for the variable they represent. This ensures that all variables will affect the 

model to the same extent. If the data is not scaled, and it consists of variables with 

different numerical ranges, variables with large ranges will affect the model to a greater 

extent than the variables with small ranges. PCA finds the variance in the data and 

variables with a larger range also have more variance.  
 

2.6 Projection to latent structures by means of partial least squares 

(PLS) 
 

Projection to latent structures by means of partial least square (PLS), which is a multiple 

regression extension of PCA, is used to connect two blocks with each other, for example 

to connect a response to a number of different variables. How the PCs (PLS 

components) in PLS are calculated is described and visualized in Figure 4
11

.     
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.  

 
Figure 4. 

1. All observations are plotted in the variable space X (in this example three dimensions are used), and 

also in the response space Y (one dimension is used in this example).  The average point in both 

coordinate systems is calculated, in the plots marked with grey circles.  

2. The first PC is calculated.  t1 corresponds to the score vector for X, and it corresponds to a new 

variable containing most of the information  in the original x-vector. w1 is the loading vector for y.  t1w1 

is an estimate of y.   

3. t1w1 is subtracted from the original y value.   

4. A new PC is calculated. 

 

R
2
 and Q

2
 are two quantities used for deciding how good the obtained PLS-model is. R

2
 

is a measure of how much of the variation that is explained by the model. Q
2
 is a 

measure of how good the model predicts the variation. R
2
 will increase with increasing 

complexity of the data, Q
2 

however, will first increase with increasing complexity of the 

model, but at a certain point the predicting ability will not increase anymore but will 

instead start to decrease
11

. The model has been overfitted, is also tries to explain 

experimental errors within the data.  

2.7 D-Optimal Onion Design (DOOD) 
 

Selection of a subset of compounds that gives a good representation of a large dataset is 

often needed. It is often practically impossible to measure data from all compounds. The 

compounds included in the subset need to cover as much of the structural variation 

found in the whole dataset as possible. 

 

A technique often used to select subsets is Statistical molecular design (SMD). In SMD 

score vectors calculated by PCA or PLS are combined with statistical experimental 

design schemes
14

. Such design schemes can sometimes be made by hand. In cases 

where one has a lot of compounds and many variables, one instead uses algorithms that 

help creating these schemes. Two methods often used are the Space filling (SF) design 

and the D-Optimal (DO) design
14,15

. According to the least square criteria the best 

coefficients in a regression model is given by b=(X'X)X'y. D-Optimal design maximizes 
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the determinant of the variance-covariance matrix (X'X). This means that the selected 

compounds will span as much as possible of the property space. A draw back of the 

DO-design is that it tends to select the most extreme points. The inner regions are often 

poorly represented. SF-designs main goal is to cover the space as evenly as possible. 

Space filling works in a similar way as grid based approaches. A grid is placed over the 

descriptor space or score space. Those points that are found closest to each grid point 

are chosen. Large SF-designs tend to over represent the inner regions of the candidate 

set, which means that one will receive unwanted redundancy. Areas that are represented 

only by a few compounds tend to be poorly represented.  A method, developed to 

overcome the problems with DO-designs and SF-designs is the D-Optimal onion design 

(DOOD)
15,16

. First a center point is defined as the compound closest to a theoretical 

center of the experimental domain. The dataset is then divided into subsets i.e layers. 

Splits are made based on their Euclidean distance to the center point. The number of 

layers needed depends on the dataset one wishes to investigate, how the experiments are 

distributed in space, the number of compounds in the dataset and the number of 

compounds one want in the subset. In the next step, a separate DO design is performed 

on each layer. DOOD is good to use when the model complexity is not well known. It 

does not only focus on the most extreme points as DO and it does not mainly focus on 

the inner regions as SF.     

 

3. Material and Methods 

 
3.1 Softwares 

 
 SMILES codes were created using ChemDraw 8.0 (CambridgeSoft) 

 Representative subsets were selected using Modde 8.0 (Umetrics) 

 PLS and PCA were performed using SIMCA-P 11.0 (Umetrics) 

 Statistical analysis was performed using Statistica 7.0 (StatSoft) 

 Plots of raw data were created in  Microsoft Office Excel 2003 (Microsoft) 

 

 

 

3.2 Molecular descriptors 

 
SMILES codes for each substance used in this project, except the ones included in the 

Maybridge fragment library, were generated using the ChemDraw software. A SMILES 

code is a linear notation of a molecular structure. Molecular descriptors for all 

substances have been generated, using above-mentioned SMILES codes, by Johan 

Gottfries at Astra Zeneca in Mölndal (Sweden). All descriptors are listed in Appendix 

B. 

 

3.3 Selection of substances 
 

The substances used in this project can be divided into 4 groups; substances from the 

literature, halogen substituted molecules, substances belonging to Maybridge fragment 

library and amino acids. 

 

All substances belonging to the halogen dataset were selected specifically to investigate 

the influence of halogens on RII.  
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A subset of compounds was selected from a commercially available fragment library 

consisting of 500 compounds (Maybridge fragment library). These 500 compounds 

were known to have a good structural diversity. The aim was to find a subset 

representing the whole library as good as possible, since it was impossible to measure 

RIIs for all 500 compounds during this project. A subset containing approximately 30 

compounds seemed more realistic. A PCA was performed and it resulted in 18 PCs; a 

variable reduction had to be made. The molecular descriptors matrix was divided into 

three groups; molecular descriptors generated using Astra Zenecas in-house program 

Selma, molecular descriptors generated using the Volsurf procedure and molecular 

descriptors generated using a various number of different sources
17

. A PCA was 

performed on each of these three groups. Four PCs from each PCA were selected and all 

twelve PCs were compiled. A new PCA was performed and four PCs, describing 77% 

of the variation in the data, were imported into Modde where a DOOD analysis was 

made.  A subset containing 32 compounds was selected.    

 

Amino acids and some other substances already in stock at Biacore were selected 

mainly to further increase the structural diversity. 

 

3.4 Sample preparation and refractive index increment measurement 
 

Approximately 2.5 mg and 5 mg of each substance was dissolved in 1 ml 10mM PBS 

buffer containing 5% DMSO, the buffer was prepared following the recipe below. The 

exact mass of the substance added and the exact mass of the solution obtained was 

carefully noted.  

 

For all substances, RI was measured at three concentrations, 0 mg/ml, ~2.5mg/ml and 

~5mg/ml. RI was measured using an ABBEMAT Digital Automatic Refractometer, 

measuring at 583.9 nm. The instrument uses an internal solid state Peltier thermostat to 

control the temperature, which was set to 20 ºC. RI was then measured by placing the 

sample on the surface of a prism. A light beam was projected towards the bottom side of 

the sample at different angles, depending on RI of the sample the angle of refraction 

will change and RI is calculated. The accuracy of the obtained RI is 0.00004
18

. All RI 

measurements were made the same day as the sample was prepared.   

 

All substances were not soluble in the buffer used. For substances that were 

significantly but not fully soluble the solutions were further diluted.  

 

RIIs were calculated by plotting the concentrations (g/ml) against RI (RIIconc) and 

molarity (mol/dm
3
) against RI (RIImol). The slope of the line connecting the dots is the 

RII. 

  

 

3.4.1 PBS Buffer 

 

Na2HPO4 × 2 H2O 7.07 g 

NaH2PO4 × H2O 1.42 g  

KCl   0.20 g 

NaCl   5.70 g 
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The buffer used was prepared by adding 100 ml H2O to the substances listed above. pH 

was adjusted to 6.8 giving a 50mM PBS Buffer  

 

Next, 5ml DMS0, 10 ml 50mM PBS buffer and 85 ml H20 were mixed together, and the 

pH was adjusted to 7.4, giving a 10 mM buffer containing 5 % DMSO. 

 

3.5 Replicates 
 

Replicated RII measurements were made for seven substances. The substances used 

were selected to represent all groups of substances, and to cover the RII-variation range. 

For each substance three replicates were made. The sample preparation was performed 

the same way as described earlier. RII measurements were performed both on the day 

the substance was diluted and the day after. An additional buffer was prepared and the 

same procedure was repeated a second time. 

 

The relationship between RI and concentrations is supposed to be linear. The linearity 

was tested by diluting the highest prepared concentration of all seven substances. Eight 

1:3 dilutions were made and the RI was measured. 

 

3.6 Data analysis and model generation 
 

The obtained RIIs were analyzed together with corresponding molecular descriptors 

using the SIMCA-P software and Statistica. The goal here was to create a QSAR-model 

for the prediction of RIIs from the molecular descriptors. A better understanding of 

what properties that influences the RII was wanted, and also how and if the model can 

be used to compensate for RII-differences for affinity rankings.  

 

First PLS-models were created and analyzed. The dataset was divided into a training set 

and a test set. The training set was selected from the dataset by performing a DO 

analysis in Modde. The structural diversity of the training set was compared to the 

whole dataset’s diversity by analyzing the distribution in structural space. The 

substances that were not selected to belong to the training set were instead used as a test 

set. PLS-models representing both RIIconc and RIImol were generated.  

 

Based on the results obtained in the PLS analysis, LR-models were calculated using 

variables that had been seen to be important for the prediction of RII. Models that are 

supposed to be used for signal correction should preferably be as simple as possible. 

Results from predictions of RIIconc and RIImol were then compared. 

 

3.7 Validation   
 

The models obtained were validated using a dataset of LMW fragments binding to 

thrombin.   

 

RIIs predicted by the models were compared to calculated saturated SPR responses 

obtained from affinity fitting (Rmax). 

 

 

 

 



 14 

4. Results 

 
The dataset used in this work has been selected/collected in different ways. The part 

consisting of halogen substituted molecules had been selected prior to this project, one 

had earlier observed that halogen substitution resulted in higher RIIs. Substances in the 

literature part consist of those substances for which RIIs were found. The third part was 

selected from a fragment library that had been selected for its structural diversity in a 

prior project. From this fragment library a selection of a subset was made. A number of 

additional substances were later added, since they were already in stock at Biacore. 

 
4.1 Selected subset from the Maybridge fragment library 
 

The selection of a subset from Maybridge fragment library was carried out as follows; 

The DOOD analysis resulted in a subset containing 32 compounds, out of the 500 in the 

fragment library. Due to delivery problems four compounds were replaced by 

substances that were close in structural space (figure 5a). Twelve compounds out of the 

32 were not soluble in the buffer used, and RII measurements could be made on only 20 

compounds. The subset containing 32 compounds selected by DOOD covered the 

structural space well. The subset containing 20 substances for which RIIs could be 

measured covered the structural space reasonably well (figure 5c). The smaller subset 

does not represent molecules with high MR, but higher MR (up to 10) is represented in 

the halogen dataset. In the smaller subset the representation of molecules with high 

molecular weight and at the same time high lipophilicity is not covered. Compounds 

located to the right in figure 5a are all substances that have high values on steric 

descriptors.  

 

a)  
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Figure 5.  

a) Score plot from PCA showing t1-t2 of the Maybridge fragment library. Substances marked with blue 

numbers represent substances belonging to the subset selected by DOOD analysis. 4 substances had to be 

replaced and their replacements are marked with arrows. Substances for which RII measurements could 

be performed are encircled.  

b-c) Scatter plots visualizing the distribution of the two subsets (b-32 compounds subset, c- 20 compound 

subset) in comparison to the fragment library when  lgD vs. MW (left-hand side plot) and MR vs. polar 

surface area(right-hand side plot)  are plotted.  

 

 

4.2 Substances and their RIIs 

 
The results from RII measurements and data found in the literature are compiled in 

Table 1 and Table 2.  
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Table 1. List of all substances for which RIIs was measured in this work. RIIconc is given in ml/g and 

RIImol in dm
3
/mol. 

 

 
Table 2. List of all substances for which RIIs were found in the literature. RII is given in ml/g. 

1-10 Handbook of Chemistry and physics
19

.  =589.3 nm, T=20ºC, buffer=water 

11-13 Polymer Handbook
4
, =546 nm, T=25ºC, buffer=water 

14-22 Davis
1
, average =590.5 nm, =633 nm and =679.5 nm , T=25ºC, buffer=water 

23-43 McMeekin
3
, =589. nm, buffer=water 

 

 

By comparing RIIs gained from measurements and RIIs obtained from the literature, 

Table 1 and Table 2, one can see that some differences do exist. An example of this can 

be seen in the case of amino acids. My measurements are always lower than the ones 

found in the literature, and the ranking among amino acids is not the same. Further 

analysis was therefore performed without the literature values. Experimental errors are 

then hopefully only of the systematical kind.   

 

When examining the obtained RIIs different patterns were seen. As visualized in Figure 

6, fluorine substituted structures gives lower RIIs than the corresponding parent 

molecule. Chlorine, Bromine and Iodine substitution increases the RII, at least when the 

molar scale is used. The pattern is changed when the weight scale based RIIs are used. 
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Fluorine substituted molecules still receives the lowest RIIs. For the benzoic acid family 

for example, benzoic acid receives the highest RII value (Table 1). The three strongly 

colored substances have the highest RIIs. For those, Folic acid, 4,5-dibromofluorescein 

and 2,7-dichlorofluorescein, absorbance peaks were measured in a Spectrophotometer. 

The lowest concentration from each (~2.5mg/ml) was diluted 100 times before the 

absorbance was measured (Table 3).  

 

 
Substance Wavelength (nm) ABS 

Folic acid 280  1.242 

4,5-dibromofluorescein 507 2.128 

2,7-dichlorofluorescein 503 1.820 

Table 3. Results from absorbance measures in the Spectrophotometer for three strongly colored 

substances.  

 

 

4.3 Replicates 
 

A number of replicates were made to estimate the experimental error in RII 

measurements. Standard deviation values ranged from 0.004 to 0.04 (Table 3). Two 

substances, 4,5-dibromofluorescein and BTB 14322 showed a variation of 8 and 10 

percent respectively. For the other the variation was about 2-4 percent. The variation 

seen for each substance is visualized in figure 7. The relationship between concentration 

and RI was also examined, and was proven to be linear (figure 7). No difference was 

seen between measurement days.  

 

 
Table 4. Table showing the results obtained from RIIconc measurements performed on a number of 

replicates (n=7). 
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Figure 6.  A representation of the structures of a selected number of compounds together with RIImol 

values for all substances.  Bars marked with grey are RIIs belonging to structures containing fluorine.  B) 

RII measured in weight units. 
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Figure 7.  

a) A box plot visualizing the variation within the replicates.  

b) Scatter plot of RI versus concentration shows that the relationship between concentration and RI is 

linear.  

  

 

4.4 PCA and PLS  
 

The data used from now on contains 52 substances for which RIIs have been measured 

in this work. Initial PCA indicated that RIIconc correlated poorly with the molecular 

descriptors. RIImol showed a much better correlation. The same pattern was seen when 

a PLS analysis was made. The prediction ability for RIImol was significantly better then 

it was for RIIconc. The model was generated using 38 compounds from the dataset. 

This training set had been selected by performing a DO analysis in Modde. The rest of 

the substances in the dataset, 14 compounds, built up the test set. The PLS-model for 

RIImol predictions explains 95.3% of the variation in y, and the prediction ability of the 

model is 85.6%. The descriptors that influenced the model most strongly were molar 

refractivity, molecular volume, molecular weight, molecular surface area, and lgD. 

They were kept in the model. The two substances that have clearly the highest RIIs are 

also the two substances that have the most number of rings (5 rings) in their molecular 

structure. Since extreme values tend to have the strongest influence on the model it is 

not unexpected that the number of rings was important for the model. In the dataset 

there are a number of substances that has 1, 2 and 3 rings in their structure, and there are 

two substances that have 5 rings. If the two fluoroscein substances are excluded the 

Number of ring descriptor do not influence the model to the same degree. The number 

of rings variable might be misleading and it was not included in the model. A new 

model was generated using the above-mentioned variables. The model generated 

explained 86.3% of the variation in y, and had a prediction ability of 84.7%. The 

prediction ability was almost as high as when all descriptors were used. When the 

model was applied to the test set the model showed prediction ability of 66%, but by 

excluding the worst predicted substance the prediction ability became 92.6% (Figure 8).   
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Figure 8.  

Predicted vs. observed for a model based on RIImol as y using a selected number of molecular descriptors 

(MR, MW, MSA, MV, lgD).  

a) Applied to the training set, R
2
 is 0.86 

b) Applied to the test set, R
2
 is 0.66. By removing the worst predicted substance, CC 35509 (encircled in 

the plot), R
2
 becomes 0.93 

 

 

4.5 Linear regression (LR) analysis 
 

The PLS model obtained was a simple one factor model indicating that a simple relation 

exists between descriptors and RII.  The correlation between a number of single 

descriptors and RIIs was therefore examined. The correlation between the molecular 

descriptors and RIImol is clearly better than the correlation between the molecular 

descriptors and RIIconc Figure 9). The correlation between MR and RIImol was the 

strongest, R=0.83. The correlation between MW and RIImol was lower, R= 0.77. There 

is a strong correlation between MV and MR (Figure 9). One can also see that there are 

two substances, located in the right-hand side of the plot, for which the correlation is 

clearly worse than it is for the other substances.  
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Figure 9. Correlations between a selected number of descriptors and RIIs.  One can see that there is an 

almost linear correlation between MR and MV. The correlation between RIIconc and the molecular 

descriptors is not as good as the correlation between RIImol and the same descriptors. The three 

substance for which the correlation is not as good as for the others are the three strongly colored 

substances.  

 

 

Since the strongest correlation was seen between RII and MR, MR is easily obtained 

from many computer software’s, models for predicting both RIIconc and RIImol was 

generated based on only MR. The LR-model generated for predicting RIIconc had a R
2
 

value of 0.33, while the LR-model for predicting RIImol had R
2
 value of 0.86.   

 

All substances were divided into two classes, halogen substituted molecules and non-

halogen substituted molecules. The correlation between MW/MV/MR and RIImol was 

examined. When MW vs. RIImol is examined the correlation is better for non-halogen 

substituted molecules. For MV vs RIImol halogen substituted molecules correlated 

better. For MR vs. RIImol the correlation is even better.  2,7-dichlorofluorescein and 

4,5-dibromofluorescein do not correlate as well as the other substances.  

 

 

a) b)  c)  
Figure 10.  Categorized scatter plots. 

a) Correlation between MW and RIImol 

b) Correlation between MV and RIImol 

c) Correlation between MR and RIImol 
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As already seen the correlation between RIImol and MR is linear except for 2,7-

dichlorofluorescein and 4,5-dibromofluorescein (Figure 11). Without these two the 

correlation between RIImol and MR becomes much better. The R
2
 value obtained is 

0.92. The model is highly significant and has a Std. error of estimate of 0.005. Folic 

acid which is colored (even though not as strongly colored as fluoresceins) fits well into 

the model. Three substances were identifies as outliers in the regression model (SD of 

residuals were larger than +/-2). They were however not excluded.  CC 35509 was also 

identified as an outlier in the PLS analysis.  

 

 
Figure 11.   

a) A scatter plot showing RIImol vs. MR. The correlation is linear except for  2,7-dichlorofluorescein and 

4,5-dibromofluorescein. 

b) LR-analysis gives a model with a high significance level, and a R
2
-value of 0.92.  The error of estimate 

is only 0.005.   

c) A close up of b. Benzoic acids are abbreviated as BA, Salicylic acids as SA, Phenylalanines as PA and 

Amino acids are abbreviated with their three letter code. Three substances are marked in italic (CC 35509, 

MO 00127and CC 10209). Their standard deviation values of residuals are larger than two.  

 

 

4.6 Validation of models, both PLS-models and LR-models, using 

saturated SPR responses 

An attempt to validate the model on an independent set of LMW fragments was made. 

The correlation between MW and Rmax is not good, R
2
 is only 0.22 (Figure 12a). The 

correlation is as bad when the correlation MR vs. Rmax and RIImol (predicted by LR 

model) vs. Rmax is examined, R
2
 is only 0.26 and 0.25 respectively.  The correlation is 

independent on if RIIconc or RIImol values have been used. The model based on MR 

used for predicting logarithmic RIImol values is y=0.1199x -0.0716. 
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c)  
Figure 12 Validation of models on an external dataset 

a) Correlation between MW and Rmax  

b) Correlation between MR and Rmax 

c) Correlation between predicted by LR-models based on MR.  

 

 

5. Discussion 
 

The relationship between the molecular descriptors and molar based RIIs was found to 

be clearly better than with weights based RIIs. The explanation for this might be that 

molecular descriptors are molar based. Biacore’s biosensors measure the change in 

mass/area unit at the chip surface i.e. weight as change in refractive index. However, the 

number of binding sites/area unit is molar dependent.  

 

From the data gained from RII measurements made one could see that fluorinated 

molecules have a lower RII then corresponding molecule without fluorine. The pattern 

can be seen for all three homologous families of molecules investigated here. This 

observation also means that there is not a linear correlation between molecular weight 

and RII, since adding fluorine to the structure means that the molecule weight of the 

molecule increases. For the halogen substituted homologous series the parent compound 

had the highest RII when using weight based RII-scale. However, the molar RII scale 

agrees much better with previous findings that chlorine/bromine/iodine substituted 

compounds have high RIIs. 

 

The ability to predict RIIs for the strongly colored substances, Folic acid, 4,5-

dibromofluorescein and 2,7-dichlorofluorescein, was shown to be low. RI has a 

tendency to strongly increase if RI is measured at wavelengths found on the absorbance 

peak. The results gained from the absorbance measurements show that the absorbance 

peaks for three strongly colored substances are all found at wavelengths below the one 
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used for RI measures performed in this work. The high RIIs obtained for these three 

substances can therefore not be explained with the above mentioned effect.  

 

When comparing the RIIs measured in this project with RIIs found in the literature 

some differences could be seen. Those differences might be due to the fact that my 

measurements are made using a buffer which has a higher RI than water, 1.3426 instead 

of 1.3329. In some cases also the temperature and the wavelength used are different. 

The use of a different buffer can in this case account for a deviation of ~5%. The 

deviation seen here is larger than can be explained by buffer differences. The replicates 

made showed that measurement errors in my data were low; the variance coefficients 

indicated an average of ~3% error.  

 

The PLS-models that were generated were not better than LR-models based only on 

MR. For practical reasons an as simple model as possible is wanted. The LR-models 

based on only one x-variable seem to be appropriate for this limited set of molecules.  

The average value of the standard deviations obtained from the replicate measurements 

was 0.011 for weight based RIIs and 0.006 for molar based RIIs. The Standard error of 

estimate in the LR-model when fluoresceins are not included is 0.005 and 0.013 when 

fluoresceins are included. This indicates that the LR-model based on MR explain the 

data to the degree that can be expected considering the measurements errors in the data.   

 

The descriptors that show the strongest correlation with RII is MR. The correlation 

between MV and RII is almost as good. The correlation is significantly better then 

molecular weight, especially when molecules containing halogens are used. MR is as 

MW easily obtained from many computer softwares. MR is computed from the different 

bonds present in the molecule. Fluorine, bromine, chlorine and iodine are among those 

atomic groups and structural contributions whose effect on MR is accounted for, those 

effects are not accounted for in MW.  MR gives an approximate measure of the total 

volume occupied by the molecule
20

. It should therefore be possible to obtain better 

adjustments of the SPR-signal by using MR as a normalization factor. Since the 

correlation with RII is better then for MW and both quantities are as easily obtained, it 

is better to use MR for correction of the SPR response.   
 

The validation of the generated models made on an external data set showed that when 

it comes to correlation with Rmax there is no difference between RIIconc and RIImol. 

The correlation was only slightly better than for MW. Predicted RIIs and Rmax values 

correlated badly so did also MR and Rmax. In order to be able to draw any conclusions 

from this, one would have to perform highly controlled Rmax measurements.  In the data 

used there exist some uncertainties regarding changes in surface quality among the 

experiments.  

 

6. Conclusions 

 
1. Fluorinated molecules have lower RII than the parent molecule. 

2. There is no strong linear relationship between increased molecular weight and 

RII, especially not for halogen substituted molecules.  

3. RII of colored molecules cannot be predicted 

4. Chlorine, bromine and iodine substituted compounds give higher RII than the 

parent compounds, but only if RII is expressed in molar scale. 

5. Predicted RIIs showed a poor correlation with Rmax, independent on the scale 

used. 
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6. To better validate the use of MR/MV based signal adjustments, focused 

experiment where Rmax is controlled need to be done.   
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9. Appendixes 

 
9.1 Appendix A; Abbreviations 
 

Low Molecular Weight Compounds – LMWs 

Refractive Index Increment – RII 

Molar Refractivity – MR 

Molecular Weight –MW 

Molecular volume - MV 

Surface Plasmon Resonance – SPR 

Refractive Index – RI 

Resonance angle – SPR angle 

Resonance Unit – RU 

Quantitative Structure-Activity Relationship – QSAR 

Linear Regression – LR 

Multiple Linear Regression – MLR 

Principal Components Analysis – PCA 

Principal Component – PC 

Unit variance – UV 

Projection to latent structures by partial least squares – PLS 

Explained variance – R
2
 

Prediction ability – Q
2
 

Statistical Molecular Design –SMD 

Space Filling design – SF-design 

D-Optimal Design –DO-design 

D-Optimal Onion Design – DOOD 

Refractive Index Increments values expressed in weight scale - RIIconc 

Refractive Index Increments values expressed in molar scale –RIImol 

 

9.2 Appendix B; Molecular descriptors 

 
Descriptors Explanation 

Distribution 

coefficient (lgP) 

Distribution coefficient. Calculated as log(coctanol/cwater), a measure of the 

hydrophilicity of the molecule 

Calculated 

distribution 

coefficient (ClgP) 

Calculated logP values 

lgD7.4 Distribution coefficient that takes all neutral and charged forms of the molecule into 

account.  Here measured at pH 7.4 

lgD6.5 Distribution coefficient that takes all neutral and charged forms of the molecule into 

account.  Here measured at pH 6.5 

Molecular weight 

(MW) 

Steric descriptor. Measurement of the size of the molecule 

Number of donors Number of hydrogen donating atoms 

Number of acceptors Number of hydrogen accepting atoms 

Molecular 

refractivity (MR) 

Steric descriptor. Measure of the volume taken up by a molecule in a solution 

Molecular volume 

(MV) 

Steric descriptor. Measurement of the size of the molecule 

Molecular surface 

area (MSA) 

Measurement of the size of the molecule 

Polar surface area 

(PSA) 

The amount of polar atoms on the surface of the molecule 

Non-polar surface The amount of non-polar atoms on the surface of the  molecule  
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area (NPSA) 

%PSA The amount of polar atoms calculated as percentage 

%NPSA The amount of non-polar atoms calculated as percentage 

Polar atoms (PAT) Number of polar atoms in the molecule 

Non polar atoms 

(NPAT) 

Number of non-polar atoms in the molecule 

Acid Is the molecule an acid or not 

Base Is the molecule a base or not.  

Neutral Is the molecule neutral 

Zwitter ion Is the molecule a zwitter ion 

Number of bonds Number of rotational bonds  

Lipinski score Number of parameter satisfying Lipinski’s rule of five 

Amphilic moment The amphilic moment is used as a measure of the molecules ability to penetrate a 

membrane. It is calculated as the length of the vector pointing from the center of the 

hydrophobic domain to the center of the hydrophilic domain. 

Critical packing 

parameter 

The ratio between the hydrophobic and the lipophilic parts of the molecule can be 

used to predict the packing of the molecular packing, such as the formation of 

micells.  

Capacity factors A measure of the rate of hydrophilic regions in comparison to the total molecular 

surface. Measured at -0.2, -0.5, -1.0,-1.2,-3.0,-4.0,-5.0,-6.0 kcal/mol 

Local minima of 

interaction energy 

distances 

Given the three best local minima of interaction energy when the probe is 

interacting with a target molecule. 

Hydrophobic 

regions 

A measure of how hydrophobic a molecule is. It is defined as the envelope 

accessible by solvent water molecules. Measured at -0.2, -0.4, -0.6, -0.8,-1.0,-1.2,-

1.4,-1.6 kcal/mol 

Local interaction 

energy  minima  

Given the three best local interaction energy minima when the probe is interacting 

with a target molecule. 

Molecular 

globularity 

The molecular globularity is a measure of how special a molecule is. This entity is 

also related to the flexibility of the molecule. 

The hydrophilic-

lipophilic balance 

The hydrophilic-Lipophilic balance tell if the molecule is more hydrophilic or more 

lipohpilic.. It is calculated as the ratio between hydrophilic regions measured at a 

certain energy level and hydrophilic regions at a certain energy level. Measued at -

0.6, -0.8 kcal/mol 

Hydrophobic integy 

moments 

A measure of the unbalance between the position of the center of mass and the 

position of the hydrophobic regions. Measured at -0.2, -0.5, -1.0,-1.2,-3.0,-4.0,-5.0,-

6.0 kcal/mol 

Integy moments A measure of the unbalance between the position of the center of mass and the 

position of the hydrophilic regions. Measured at -0.2, -0.5, -1.0,-1.2,-3.0,-4.0,-5.0,-

6.0 kcal/mol 

Volsurf molecular 

weight 

Molecular weight, Steric descriptor. Measurement of the size of the molecule 

Polarizability The relative tendency of the molecule to develop a charge distribution 

Volume/surface 

ratio 

The rate between the volume and the surface area of the molecule is a measure of 

the rugosity (how wrinkled the surface is) of the molecule. 

Volsurf molecular 

surface area 

Molecular surface Steric descriptor. Measurements of the size of the molecule 

Volsurf molecular 

volume 

Molecular volume. Steric descriptor. Measurements of the size of the molecule 

Hydrophilic regions A measure of how hydrophobic a molecule is. It is defined as the envelope 

accessible by solvent water molecules. Measured at -0.2, -0.5, -1.0,-1.2,-3.0,-4.0,-

5.0,-6.0 kcal/mol 

Hydrogen bonding Represents the capability of the molecule to form hydrogen bonds at different 

energy levels. Measured at -0.2, -0.5, -1.0,-1.2,-3.0,-4.0,-5.0,-6.0 kcal/mol 

Volsurf Best 

volumes 

Represents the three best hydrophilic regions generated when a water molecule 

interact with the molecule in question. Measured for both H2O and dry probe, at -

1.0, -3.0 kcal/mol 

Elongation Elongation is a measure of how far the molecule can reach when it is stretched.  

Fixed Elongation The fixed elongation is calculated when considering a part of the molecule as rigid. 

The ratio between the elongation and the fixed elongation represents the portion of 
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the extension given the rigid part.  

Diffusivity A representation of how easily a solute transfers in a given fluid when influenced 

by a concentration gradient. 

Volsurf  ClogP Calculated logP values 
13

 Krogsgaard, “Text book of drugdesign and discovery” 
21

 Molecular Discovery Ltd, “Volsurf manual”. 

 

9.3 Appendix C; Maybridge subset substances, CAS names 

 
Product name CAS name 

MO07110 3-(1-Pyrrolidinsylsulfonyl)aniline 

CC29209 (4-Methyl-2-phenyl-1,3-thiazol-5-yl)methanol 

AC12605 1-(3-Methoxyphenyl)piperazine 

CC13501 4-Methyl-3,4-dihydro-2H-1,4-benzoxazine-7-carboxylic acid 

CC04409 2-Quindinylmethanol 

CC41801 2-Pyrid-3-ylbenzoic acid 

CC39222 Methyl 4H-furo[3,2-b]pyrole-5-carboxylate 

CC01709 1,3-Benzodioxol-4-ylmethanol 

KM00316 3-(tert-Butyl)-1H-pyrazol-5-amine 

BTB09284 4-(4-Chlorophenyl)-4-hydroxypiperidine 

BTB15113 1-Hydroxy-2-phenyl-1,5,6,7-tetrahydro-4H-benzimidazol-4-one 

CC35509 (2-Thien-2-ylphenyl)methanol 

BTB01858 2-Morpholino-5-(trifluoromethyl)aniline 

GK04786 4-Hydrazinothien[2,3-d]pyrimidine 

CC24601 2-Morpholinoicotinic acid 

MO00127 1-(4-Fluorobenzyl)-5-oxo-3-pyrolidinecarboxylic acid 

KM06872 2,1,3-Benzoxadiazol-5-ol 

BTB14322 Indoline-2-carboxylic acid 

CD09182 3-Amino-2-phenyl-1H-inden-1-one 

CD04786 2-(1H-Pyrrol-1-ylmethyl)piperidine 

CC45596 N-Methyl-N-[4-(piperidin-1-ylmethyl)benzyl]amine di hydrochloride 

CC43113 (2-Morpholinopyrid-4-yl)methylamine 

BTB08846 Methyl 4-(methylthio)-6-oxo-2-phenyl-1,6-dihydropyrimidine-5-carboxylate 

SB01761 Indan-2-amine 

KM01757 3-Amino-4-(phenylsulfonyl)thiophene-2-carboxylic acid 

CC26823 Ethyl 2,5-dimethyl-1,3-oxazole-4-carboxylate 

KM07844 Ethyl 1,4-dimethylpiperazine-2-carboxylate 

HTS07558 2-(2-Hydroxyethyl)-3-methyl-1-oxo-1,5-dihydropyrido[1,2-a]benzimidazole-4-carbonitri 

CC30013 tert-Butyl 4-[4-(aminomethylphenyl] tetrahydo-1-("H)-pyrazinecarboxylate 

AC21377 3-Amino-5-methylisoxazole 

SP01488 5-(aminosulfonyl)-1-methyl-1H-pyrrole-2-carboxylic acid 

CC10209 (5_phenyl-1,3-oxazol-4-yl)methanol 
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9.4 Appendix C; Non-solvable substances  

 
1. 4-Bromo-L-phenylalanine 

2. 4-Iodo-L-phynylalanine 

3. Iopanoic acid 

4. Iophenoxic acid HPLC 

5. 3,5-Diiodo-L-thyronine 

6. Amiloride 

7. Hydrochlorothiazide 

8. Hexachlorophene 

9. Prednisone 

10. Tetracycline hydrochloride 

11. L-thyroxine sodium salt pentahydrate 

12. Amantadine hydrochloride 

13. Carbamazepine 

14. MO 07110 

15. CC 29209 

16. CC 04409 

17. CC 39222 

18. KM 00316 

19. GK 02837 

20. CD 09182 

21. BTB 08846 

22. SB 01761  

23. HTS 07558 

24. CC 30013 

 

9.5 Appendix D; A100 experiment 
 

A test was made to extract RII of a subset of substances from the Maybridge fragment 

library using the Biacore A100 instrument. The hope was that the results would be 

possible to use for comparisons between values obtained from Biacore A100 with the 

results obtained from the Refractometer.  

 

The test was performed as follows: 

 

1. 5 mg of all substances was used. 

2. All substances were dissolved in 100 % to a concentration of 100 mM 

3. A part of the received solutions was then diluted into a concentration of 50 

mM 

4. The solutions obtained from both 2 and 3 were diluted in 10 mM PBS buffer 

in order to reduce the concentration of DMSO to 5 %, a 1:19 dilution. 

5. 100 % DMSO was also diluted into 5 % DMSO using 10 mM PBS buffer 

 

All samples were transmitted onto a 96 well Microtiter plate. The samples were added 

to the Microtiter plate in a way ensuring that the same sample was injected into all four 

flow cells. The sensor chip used was Biacore’s CM5 chip. After the run, the information 

wanted was extracted from spot three, where no protein was immobilized on the 

surface. After each sample 50% DMSO was injected in order to remove sample that 

might have bound to the surface.  
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The result from the first run showed a variation in the obtained values that was not 

consistent with the pattern one would expect only from changes in RII. A conclusion 

made was that the variation in concentration of DMSO was the reason for this, a 

variation due to pipeting that was not as exact as needed. A number of solutions 

containing only DMSO and PBS buffer, no samples, has also been included in the run. 

These solutions should have given approximately the same signal, but that was not the 

case. Their values varied from 300 RU to 900 RU. One could also see that some air 

spikes and that some substances had bound to the surface, this affects the signal but not 

that much. 

 

After gathering of advised concerning a good pipeting technique a new A100 run was 

prepared. The run was made on a 96 well Microtiter plate consisting of only blank 

probes (DMSO + buffer) .The variation was lower, but instead the signal seemed to 

decrease with time. This was probably due to the fact that all probes first were added to 

the Microtiter plate and then the plate was enclosed with cover foil.   

 

A new run with blank probes was prepared. This time the cover foil was cut into smaller 

peaces, making it possible to fill two rows and then directly enclose those. To every 

third row, the rows where the split between two peaces of cover foil were, only buffer 

was added. Data from these rows were later disregarded. The result from this run 

showed a variation due to differences in DMSO concentration of 50 RU. The result was 

though to be good enough and a new run with the Maybridge subset was prepared using 

this stepwise enclosing technique.   

 

The result from this run showed better results then the first, but still the bulk variation 

from the DMSO in the solutions made it impossible to extract RII from the data. DMSO 

had to be added since all substances are not dissolvable in only the 10 mM PBS buffer. 

Unfortunately this was an unsuccessful experiment, and there was no time for further 

investigations on how to extract RIIs from the Biacore A100.  
 
 


