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Model selection criteria in the 

NOIA framework for gene interaction 
Carl Nettelblad 

Sammanfattning 

QTL-analys (Quantitative Trait Loci) är ett samlingsnamn på 

metoder som syftar till att identifiera positioner i genomet som 

kan kopplas till kvantifierbara fysiska egenskaper (fenotyper, 

t.ex. kroppsvikt). Detta sker ofta genom att data om specifika 

genetiska markörer och de observerade fenotyperna samlas i en 

regression. 

Det finns ofta fler möjliga positioner i genomet än individer i 

experimentet. Detta är också relevant när man försöker se hur 

olika gener, på olika positioner, tillsammans påverkar en 

egenskap. Varje möjligt par av positioner kan teoretiskt sett ha 

en egen påverkan och man kan även bilda grupper med högre 

antal. 

Detta innebär att det finns oerhört många möjliga modeller, 

som dessutom är olika stora. En större modell i en linjär 

regression har bättre förutsättningar att beskriva ”bruset” och 

därmed uppnå en bra anpassning, men utan att vara biologiskt 

relevant. Frågeställningen om vilken modellstorlek som är bäst 

kallas modellval. Det finns ett antal enkla kriterier som kan 

användas för detta. 

I denna studie utvärderades sådana kriterier för QTL-analys, 

tillsammans med en beräkningseffektiv implementation av en 

ny modell som ger mer biologiskt rimliga parametrar i 

modellerna, NOIA. 
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1 Introduction
This is a study of how to use model selection for detection of Quantitative Trait Loci (Chapter 2) in data
from line crosses. Several methods have been evaluated using simulated and experimental data from an
intercross experiment in chicken. Model selection means, very briefly, methods to determine the most
appropriate model representing the data set, where different models not only vary in parameter values,
but also in complexity or scope (see Chapter 3). Here, we focus on evaluating the Bayesian information
criterion (BIC) (Schwarz, 1978) and the modified Bayesian criterion (mBIC) specifically developed for
QTL analysis (Bogdan et al., 2004).

A main question addressed is whether a previous conclusion that the BIC tends to be overly generous
(resulting in false positives) in QTL applications, is generally true, or an effect of the properties of
the specific methods in which it has previously been used. We also introduce weighted integration,
or model averaging, over the model space, to get probability estimates in genome scans for QTLs. In
addition to performing such scans in experimental and simulated data, the theoretical background for
the feasibility of selecting parameters independently of the background of the remaining parameter set,
using an orthogonal model appropriate for the data set, was studied. Based on the theoretical results we
propose an adapted method to identify an arbitrary subset of interacting pairs of QTLs from a predefined
set of putative QTLs in experimental data.
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2 QTL analysis
Some properties in individuals, like eye color or the properties in peas originally studied by Mendel, are
qualitative, with a finite and relatively small number of distinct classes. This can be contrasted to, for
example, body weight. Body weight is a quantitative trait, i.e. it is generally measured as a real number,
on a continuous scale. There is a genetic determination of the trait (i.e. the heritability is > 0), but a more
advanced analysis is needed to define individual genome locations (Quantitative Trait Loci, or QTL)
contributing to the expression of the trait. The actual system will generally have a genetic architecture of
polygenetic nature, as well as considerable contributions from environmental effects.

It should be noted that even qualitative properties, e.g. cancer incidence, can be studied in a quan-
titative genetic framework by assuming an underlying continuous distribution, leading to observed class
outcomes.

The interest in detecting genetic interactions is increasing (Carlborg and Haley, 2004), and so is the
general understanding of their importance. This means that individual QTLs, as well as combinations of
alleles in different loci, are studied.

2.1 Loci, alleles and genes

A location in the genome is called a locus (pl. loci). This can be viewed as a specific point (a base
pair), but in practice, there is a minimal difference between referring to a particular genome location in
base pairs, or an interval in a limited region. For a specific locus, there can be multiple genetic variants,
alleles. The term gene is generally denoting a locus. The main difference is that “locus” focuses on
physical locations in the genome, while “gene” refers to the functional unit that is placed in a locus. In
addition, not all genome locations are considered to be genes, and some might even be part of multiple
genes.

2.2 Heritability

In quantitative genetics, the concept of heritability is central. The main basis is the concept that the
observed phenotype variance can be decomposed into variances of genetic and environmental origin. If
this decomposition is correct and possible, we can compute the ratio between the genetic variance and
the total variance. This is called the broad sense heritability, or h2. The square symbol is motivated by
the fact that variance itself is related to squares.

As variances are additive, this definition of heritability also implies that simulations can be performed
by first generating the genetic signal. The genetic variance can then be computed, and an appropriate
amount of noise added to generate the desired h2 value.

In biological experiments, h2 can be determined from data on phenotypic traits together with data
on genetic relations between the individuals (e.g. pedigrees). Genomic data is not needed. Data on
monozygotic and dizygotic twins can be one such source for human data. Historically, quantitative
genetics has not been concerned with genes or nucleic material at all, but rather with the different degrees
of genetic similarity between individuals.
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2.3 Pedigrees

QTL analysis can be performed using data from existing populations, e.g. in farm animals and humans.
This is generally less powerful than using data from a well-defined experiment cross. Different crosses
are used depending on the trait studied and the types of species or lines available.

A standard example of an experimental line cross population is where two inbred lines, that display
different characteristics, for one or multiple traits of interest, are selected as founders. From these lines,
an F1 population is bred. The resulting F1 population is expected to be heterozygous in all loci where the
lines differ. All individuals will have 50% genetic material from each founder line. The trait differences
in the F1 generation relative to the parental lines can elucidate some information on the genetic structure,
but cannot be used to identify individual loci and their effects.

An intercross can be bred from the F1. The resulting F2 individuals have, on average, 50% genetic
material from each founder line. Individuals within that population can in theory carry anything from 0
to 100% from each founder line. Some loci in the F2 individuals will be homozygous, as both F1 parents
can contribute the same allele to the offspring. As both homozygotes and heterozygotes can be present
for all loci, the F2 population can be used to identify additive as well as dominance effects of individual
genetic loci.

Backcross populations are also commonly used for QTL detection. F1 individuals are here bred to
individuals from either founder line. This means that one of the alleles in each locus will always reflect
the founder line. Dominance effects from the founder alleles will decrease the observable effects of a
QTL in a back-cross, while dominance effects from the alleles transmitted through the F1 line will be
seen, but not be distinguishable from additive effects.

In QTL analyses of backcross, only one genotype indicator is needed per locus, and the resulting dis-
tribution between the two values, representing the homozygous and heterozygous cases, respectively, is
expected to be uniform 1:1. For F2, at least two genetic indicators are needed, to describe the distribution
of the two homozygous genotypes and the heterozygote. The expected distribution is the non-uniform
ratios of 1:2:1. When covering epistasis (i.e. interactions between genetic loci), the number of indicators
increase exponentially with the number of loci included, e.g. 2/3 genotypes per locus (backcross and F2
respectively) result in 16/81 genotypes in total in a 4-locus system.

2.4 A general formulation of the model regression problem

The following description is analogous to the one used in Zeng et al. (2005) and Alvarez-Castro and
Carlborg (2007).

Let’s assume a population, with known genotypic values (phenotypes) for a trait. These values can
be listed as a vector G∗. If we have data for a set of indicator variables related to genotypes (various
specific transformations between genotypes at specific loci and the indicator values are possible), then
the regression of phenotype on genotype can be written as:

G∗ = X ·E + ε (2.1)

where each row in the matrix X represents the realization of the model for the corresponding individual
in G∗, expressed as coefficients of the estimated values in E. For example, there will generally be one
parameter in E that is simply the arithmetic mean. Therefore, all rows in X will have a value of 1 in
the column for that parameter, while the columns for the other parameters will shift depending on the
genotype data for each individual.

Different parameterizations can be used, i.e. different mappings between genotypes and what coef-
ficients appear in what columns in X , based on the same set of phenotypic observations, and genotypic
indicators. One way to formulate this is to make a distinction between a design matrix S, which should
be universal for a specific model design (set of indicator variables and parameters), and a matrix Z, that

3



represents the values of the indicators in the population under study, ordered in a way matching G∗.
Equation 2.1 will then read:

G∗ = ZS ·E + ε (2.2)

In a one-locus case, the indicator variables in the Z matrix can simply be the presence or probability
of a 11, 12 or 22 genotype. A multi-locus model can be obtained by taking a row-wise Kronecker product
for design (S) as well as indicator (Z) matrices for the individual loci (described in further detail later).

This approach can also be used to obtain a general genotype-phenotype map, G, from a set of es-
timated parameters, in a specific population. This map will simply be an enumeration of the expected
values of the trait, over all indicators, i.e. the value expected in an individual with a value of 1, for that
indicator, and 0 for every other.

2.5 Interval mapping

Initially, QTL mapping was concerned only with establishing the mapping between markers and traits.
The only indicators present in the regression would be directly related to the genotypes at the markers, and
the marker(s) with the highest explanative power would be chosen. This naturally limits the maximum
power in the detection process, as the actual locus is normally not located exactly at a marker. By only
conducting analysis at markers, the estimated QTL effect will be underestimated due to recombination.

Lander and Botstein (1989) formulated the first approach to efficiently consider the intervals between
markers. This was done by defining the total likelihood of a model as a product of the likelihoods for each
individual in the population. The individuals are considered to be mixtures of the possible genotypes.
For a backcross, this becomes:

L = ∏
i

(Gi0Li0 +Gi1Li1) (2.3)

where Gi j is the genotype probability for genotype j in individual i, and Li j the likelihood (derived
from linear regressions) for that genotype and individual. The total likelihood is a product of a weighted
combination of genotype probabilities and the likelihood for the individual cases. This results in a final
likelihood, that can not be computed directly from a simple linear regression.

2.6 MQM (Multiple-QTL-Model)

The approach presented in Jansen (1993), which is generally called multiple-QTL-model (MQM), fol-
lows the general description for interval mapping in the previous section, with a modified linear regres-
sion model. Multiple loci can be added in the model as separate marginal effects, but also with interaction
terms.

The main distinguishing property of MQM relative to other approaches lies in the handling of missing
information. Missing information occur at marker positions where the genotype can not be unambigously
determined, or when QTL genotypes are estimated at non-marker positions.

An expectation-maximization (EM) approach is used, in which expected genotypes and phenotype
parameters are adjusted iteratively. The regression will include rows for every possible genotype, for
each individual. The different realizations are weighted by the conditional probability of the specific
genotype. The probability estimate is based on the present information at flanking markers, and the
relation between the observed phenotype value and the estimated phenotype value for that genotype,
based on the coefficients in the previous iteration of the EM algorithm.

The estimates of genotypic effects in one EM iteration are used in the following iteration, to update
the expected genotype probabilities. This results in the phenotypic effects being modified further. The
iterative process is repeated until a suitable convergence criterion is satisfied (i.e. estimates of phenotypic
effects being consistent with estimates of genotype probabilities).
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The computational demand of MQM is much higher than in comparable methods (e.g. Haley-Knott
regression, described below), since a complete computation in those methods, is just a single iteration
in MQM. The adjustment of genotype probabilities to match the assumed phenotype effects, against the
observed phenotype, might also increase the sensitivity to overfitting as additional degrees of freedom
are introduced. In the degenerate case of no marker information available, MQM and related iterative
likelihood-based, where phenotype information is integrated in the estimated QTL genotypes, methods
will find a “perfect” QTL, for example, unless additional constraints are added.

MQM includes multiple loci in the regression by introducing indicators, far from the locus currently
analyzed, as covariates. The motivation for this is an increased power to detect individual loci, by ac-
counting for the genetic background (isolating the effects of the loci under study). The matrix design
used in the regression can, however, be used without these genetic covariates if desired.

2.7 Haley-Knott regression

Haley and Knott (1992) presented an implementation of interval mapping, where the likelihoods of dis-
tinct genotypes are not completely separated. The likelihood in equation 2.3 can not be formulated as a
linear regression. In the new approach, the likelihood is approximated through an approximation of the
phenotype, as a linear mixture of different genotypes in each individual. The genotype probabilities are
determined from marker data, and a mapping function (translating mapping distance into recombination
probabilities).

Each individual is included only once (in contrast to MQM), and if the probabilities are 0.5/0.5
for two genotypes, the phenotype will simply be the mean of the estimated effects, of the two alternate
genotypes. This has no obvious biological interpretation. The individual should indeed have either one
genotype, or the other, and the marginal expected distribution for phenotypes would not generally match
an assumption of a normal distribution, around the mean of the two underlying possibilites, which is
what this regression method predicts.

A limited example of this distinction is showed below, with plausible Z matrices, based on the same
marker information, for Haley-Knott and the first iteration of MQM:

ZHK =
(
0 0.5 0.5

)
(2.4)

ZMQM =
(

0 1 0
0 0 1

)
In MQM, we get two estimated genotypes, where the RSS influence is weighted by the likelihood

for the genotype itself. Each estimation will include the parameters for that genotype “in full”, though.
The Haley-Knott Z matrix, on the other hand, makes a single estimate where the parameters for the
heterozygous genotype is included to one half, and the parameters for one of the homozygous cases is
included to one half. The estimated effect will be an arithmetic mean of the two.

A positive side of the Haley-Knott mixture is that the approximations, while not mapping well to
real world concepts, are “smoothed” in a way. The variance penalty caused by an uncertain genotype in
Haley-Knott is lower than the one achieved by simply introducing two rows of equal weight (equivalent
to a first-iteration MQM). A more thorough treatment of the differences between Haley-Knott and other
approaches can be found in Kao (2000).
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2.8 NOIA

NOIA (Natural and Orthogonal InterActions) (Alvarez-Castro and Carlborg, 2007) is a general model
framework for bi-allelic, multi-locus systems, preferably in linkage equilibrium. Other models, like F2,
F∞ and G2A (Zeng et al., 2005) all make specific assumptions regarding the structure of the population
under study, for the estimated variables to be orthogonal, while NOIA does not. Orthogonality is im-
portant to ensure a statistical model where estimates are independent of each other. It is central when
model selection is applied as removal of parameters in a model should not influence the estimates of the
remaining parameters.

The NOIA model framework includes a change-of-reference operation, allowing the transformation
from an orthogonal, statistical model into a functional genetic model. This functional model is useful for
interpretations of the predicted effects of individual allele changes in specific genotypes (individuals).

The single-locus design matrix S for an orthogonal bi-allelic single-locus statistical NOIA genetic
model is: 1 −p12−2p22 − 2p12 p22

p11+p22−(p11−p22)2

1 1− p12−2p22
4p11 p22

p11+p22−(p11−p22)2

1 2− p12−2p22 − 2p11 p12
p11+p22−(p11−p22)2

 (2.5)

where pi is the average frequency for genotype i in the specific population studied.
For a single-locus model, NOIA maintains orthogonality when there is complete genotype informa-

tion in populations with any combination of genotype frequencies. This is a distinct advantage over the
F2 model (only orthogonal for ideal F2 populations), F∞ (orthogonal in a population, without heterozy-
gotes and with equal allele frequencies), and G2A (allowing non-equal allele frequencies, but only in
Hardy-Weinberg equilibrium).

Even in populations expected to be suitable for modelling using F2, F∞ or G2A, NOIA has an advan-
tage, as e.g. an experimental F2 population will not show perfect 50/50 allele frequencies, nor Hardy-
Weinberg equilibrium, in every locus of the genome. These sampling errors would disappear in asymp-
totically large populations, but make usage of a normal F2 model improper in experimental populations,
of realistic sizes. NOIA, on the other hand, accounts for actual genotype frequencies in the population,
and thus maintains orthogonality.

The Kronecker product can be used to easily construct a multi-locus NOIA model. The Kronecker
product is a computation of the element-wise product between two matrices. A n ∗m matrix combined
with a p∗q matrix results in a (np)∗(mq) matrix. All elements in the left-hand operand are iterated over.
The right-hand operand is multiplied with each such iteratee from the left-hand side, and inserted as a
contiguous block in the result. An example where the Kronecker product is applied is shown in equations
2.10, 2.11, and 2.12.

This symmetrical approach for including multiple loci in the NOIA model also results in one of the
model’s current weaknesses. Although sampling errors in single loci are accounted for, deviations in
frequencies for pairs and higher-order combinations of loci, are not handled. In practice, there might
be a slight over-representation of some multi-locus combinations of alleles. This might lead to a loss of
orthogonality, which results in “spilling” of effects, especially if the real underlying effect for one of the
loci is strong. This also implies that the estimated effects for one parameter might change greatly, if a
related parameter is removed when model order is altered.

The same argument also applies to linkage disequilibrium, where two loci are located close enough
on the same chromosome to not segregate independently to the next generation. The combinations of
linked alleles found in the parental populations will then be overrepresented in the population under
study. Despite this, the allele frequencies in the loci, when studied individually, might show the expected
proportions. It is important to note that NOIA is currently far from orthogonal, if the sampling error
regarding multi-locus allele frequencies is large, or the loci are closely linked. Further development is in
progress to resolve these problems.
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2.9 Requirements for orthogonality

A QTL model should ideally be orthogonal when applied to the population studied. In general, an
orthogonal matrix is a matrix, where the columns are linearly independent. i.e., for a matrix A, it should
be true that:

Ai ·A j = 0 (2.6)

for all i and j, or equivalently, that AAT results in a diagonal matrix.
The derivation of orthogonality in appendix C to Alvarez-Castro and Carlborg (2007) is essentially

defining requirements on the design matrix S to satisfy that X should be orthogonal. As X is orthogonal
when XT X is diagonal, and X = Z ∗S, this is equivalent to ST ZT ZS being diagonal. Here, the derivation
assumes that ZT Z can be expressed as a diagonal matrix D, i.e. Z is orthogonal. In the single locus,
two-allele case, this becomes:

D = n

p11 0 0
0 p12 0
0 0 p22

 (2.7)

where pi is the frequency of the 11, 12 and 22 genotypes, respectively. This substitution for ZT Z will
hold when there is full marker information, i.e. the QTL genotype can be inferred without error, resulting
in mutually exclusive genetic indicators. In this case, Z is orthogonal. Example:

Z =

1 0 0
0 0 1
0 0 1

 (2.8)

D =

1
3 0 0
0 0 0
0 0 2

3



ZT Z =

1 0 0
0 0 0
0 0 2

= 3D

ZT Z is diagonal when Z is orthogonal. All off-diagonal elements are sums of scalar products, between
different rows in the original matrix, and for Z to be orthogonal, all off-diagonal elements in the product
with the transpose should be zero.

2.10 Deviations from orthogonality

Now, consider the case where there is uncertainty in determining the genotype of an individual, e.g. an
equal probability for a 11 or a 22 genotype:

Z =

 1 0 0
0.5 0 0.5
0 0 1

 (2.9)

D =

1
2 0 0
0 0 0
0 0 1

2



ZT Z =

1.25 0 0.25
0 0 0

0.25 0 1.25

 6= nD
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Here, ZT Z is not orthogonal, and D cannot be used to substitute ZT Z in the derivation of an orthogonal
model (i.e. an orthogonal matrix X = Z ·S). Thus, we have shown that the presence of multiple non-zero
elements, will invalidate the derivation of the orthogonal S matrix. Therefore, it is important to verify
whether the presence of only a single non-zero element per row is preserved, when a multi-locus model
is created through the Kronecker product, given that this property holds for both operands.

If we consider the definition of the Kronecker product, we see that a non-zero element will only
appear in the intersection between non-zero elements in the factor matrices (Z1 and Z2). For example,
consider the following product Z12 from matrices for two loci (Z1, Z2), with full information (i.e. a single
non-zero element per row):

Z1 =

1 0 0
0 0 1
0 0 1

 (2.10)

Z2 =

0 1 0
0 1 0
1 0 0

 (2.11)

Z12 = Z1⊗Z2 =



0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0


(2.12)

The Kronecker product results in only one single non-zero element in each row in the product matrix,
given that each single-locus factor matrix also satisfied this condition.

Only blocks that are multiplied with non-zero elements in the left-hand operand will be non-zero
(only one per row), and in those, only one element per row will be non-zero, representing the structure
of the right-hand operand. For example, the only non-zero element in the first row is present in the first
block of three elements, as only the left-most element is Z1 is non-zero. Of the three elements in that
block, only the second element is non-zero, mapping to the second element in Z2. Although the example
in (2.10), (2.11), (2.12) is given for a two-locus system, the formalism is general for any number of loci.

Incomplete marker information, and sparse marker maps, lead to Z-matrices for individual loci,
where there are multiple non-zero elements in each row. As shown above, this leads to a non-orthogonal
formulation of the NOIA genetic model (as well as other similar existing models), in the way they are
currently formulated with missing data. If e.g. Haley-Knott regression is used to estimate genotype prob-
abilities, the indicator variables, corresponding to each genotype, will take on real values rather than
binary integers, reflecting uncertainty in assigning the expected probabilities for each indicator, based on
the actual data for that individual.

The deviation from orthogonality due to lack of unambiguous genotype information, has distinctly
different properties from non-orthogonality resulting from the presence of linkage disequilibrium, or
sampling errors, as described earlier in Section 2.8. In the latter case, the non-orthogonality is expected
to average out with an increase in population size. The deviations here are only related to the presence of
non-zero values in multiple columns, in the same row, meaning that increasing the population size will
not cancel this effect. Increasing the genetic information content, by adding more markers, might do so.
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2.11 A new approach to maintain orthogonality with low genotype infor-
mation

Imputations as in MQM (Jansen, 1993) would solve the problem with non-orthogonality due to ambigu-
ous genotype information. In an imputation scheme, the single rows with multiple non-zero values are
replaced by several rows, each indicating a single, unambiguous genotype. Weights can then be placed
on the rows in the regression.

This scheme will affect the actual value of the residual square sum (RSS), but while a different
approximation is used, it is not invalid. The weights are placed on complete genotype realizations. In
Haley-Knott regression, a mixture genotype is assumed, which contradicts the logic behind separating
the d (dominance) and a (additive) effects. Such a mixture genotype is a statistical construct, with no
corresponding biological concept.

The choice of imputations also allows the use of a more efficient process to compute the RSS, as
described in Ljungberg (2005). Essentially, only a single row is needed for each genotype, so we can
achieve results equivalent to those from a model with an infinite number of imputation rows, for each
individual.

The background to why it is possible to compress all rows of identical genotypes into one, is that
all rows in an overdetermined linear system with the same indicators(/genotype) will, by necessity, have
the same estimated phenotype. Variances being additive, we can compute the variance within that set of
rows and then add them together, resulting in a single row.

Due to the fact that the least-squares regression is exactly that: a reduction of squares, we need
to modify the sum slightly; two merged row should only be multiplied by

√
2 to get the same relative

weight. For example, if the best approximation of the phenotype is k, and the actual value is m, then
then RSS for two identical rows is 2(k−m)2. Merging them into one by simple addition would result in
(2k−2m)2 = 4(k−m)2, but a single row resulting in the residual square (

√
2k−

√
2m)2 = 2(k−m)2 is

the appropriate one, showing that a weight of
√

2 is indeed correct.
In addition to evaluating the RSS in the resulting linear system, the “inner” variances, within each

genotype realization, need to be computed as well. That is a relatively cheap computational operation,
compared to an increase in the number of rows in the linear system.
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3 Model selection
Mmodel selection is conceptually a matter of seeking a good balance between fitting the data (explaining
a lot of the variance), while not overfitting the data. That is, we want to identify a model that explains
the underlying reasons for the observations that we made, not just a model where the parameters were
plentiful enough to explain the observations by pure chance.

In some applications, the purpose of a model might be to later perform predictions in conditions
similar to the ones in the original experiment. Such a model is then only a tool developed through
supervised training on a data set. Model selection is used to avoid overfitting, while the actual goal is to
maximize prediction accuracy on new observations. If a parameter adds almost nothing to the prediction
power, it is worth including, as long as it does not contribute significantly to overfitting.

Model selection in QTL analysis is a bit different from situations where maximum prediction accu-
racy is desired. The evidenced QTLs will be used to derive scientific hypotheses regarding the actual
biological processes behind the trait, hypotheses that might subsequently be verified through experi-
ments. The original experiment will probably not be replicated, but it is expected that the results tell us
something about the genetic influences on the traits studied in the studied population (Fridlyand, 2001).

3.1 A Bayesian approach to model selection

The Bayesian approach to statistics is based on the concept of probabilities. Rather than being a simple
matter of frequency counts in sampled data, the probability is in many ways treated as the actual object
of study. An example of this that we can formulate our preconceptions about a situation, before an
experiment is conducted, as prior probabilities.

The model selection problem, or to be more specific, the variable selection problem, in a Bayesian
approach, would properly be computed as the integral of the likelihood of a specific candidate model over
all possible values of the variables included in the model, weighted on the probability for each variable
value. In a genetic model for a trait based on specific loci, the variable values would be the actual genetic
effects. The likelihood, in turn, should be related to the residual square sum (RSS), itself closely related
to the variance, not only for the optimal solution, but for all possible tuples of variable values.

Note that a model, in this case, is a complete set of loci, not only their number and the types of
allowed interactions. If we impose a 1 cM grid on a 1000 cM genome, this would mean that for 3 loci,
we have 109 different models to consider, each consisting of an integral, determining the variance in the
complete population for “every” possible set of parameter values.

There are several model selection criteria related to Bayesian theory. A crucial assumption for all of
these is that the likelihood for a model structure can be estimated based only on the regression with the
optimal coefficients. By assuming normal distribution of the possible coefficient values, a regression is
used to approximate this, theoretical, integral over all possible values (genetic effects). The underlying
assumption is that it is more computationally efficient and convenient to perform a single regression, than
computing an integral, that would include evaluating the RSS in every single point.

The derivation of the criteria is also only valid for least-square regression, when errors follow a
normal distribution, as this is the requirement for maximum likelihood to be equivalent to least-squares.
Recently, ranking methods have also been suggested, to be integrated in model-selection criteria (Zak et
al., 2007). This modification intends to avoid the assumption of normal errors.
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3.1.1 AIC

AIC (Akaike’s information criterion) (Akaike, 1974) is related to information theory and the concepts
of entropy and perplexity. The important point here is that the information content in a dataset relative
to a model is considered to be higher the worse the model is at predicting the data. If the model is able
to predict the data perfectly, we do not gain anything by actually inspecting the data. The information
content has a logarithmic relationship to the probability to get the observed data, given the model (most
simply handled for discrete data, but just as applicable to continuous distributions).

The AIC is based on taking the expectation of the information, and minimizing it, so that the dif-
ference between the model and the actual data, is minimized. The parameter values themselves are not
definite, but only estimations. For a least-squares regression, the criterion is defined as:

AIC = n ln
(

RSS
n

)
+2K (3.1)

where K is the number of parameters, n the sample size, and RSS the residual square sum from a least-
squares regression with a specific model.

3.1.2 BIC

The aim of using the AIC is to obtain a model maximizing the ability to predict the observed values in
a data set. The BIC (Schwarz, 1978), has historically been derived under the assumption that there is a
true, or correct, model, which should more or less completely explain the variance. The idea is to find
among larger, and smaller, models the one that describes everything. The model is often nested within
larger models, meaning that the correct model is included in many of the larger ones.

The actual formula for the BIC, in a least-squares regression context, is:

BIC = n ln
(

RSS
n

)
+K ln(n) (3.2)

BIC and AIC contrasted

A result of the difference in rationale behind the BIC, relative to the AIC, is that it imposes a larger
penalty to model size. This implies that one can more freely extend the model set explored, to include
models that would be highly unlikely to have any biological relevance. The AIC, on the other hand, might
be prone to overfit to such a model that, while not useful for interpretation of the genetic structure, might
produce accurate predictions. It has been proved that the AIC does not asymptotically underfit, while
it can overfit, even asymptotically (an infinite number of observations). The BIC will find the correct
model with an infinite number of observations.

Burnham and Anderson (2002), proponents of AIC in a general sense (while they do not comment
on genetic applications), argue that the model set used with AIC should be constrained to models that are
considered realistic, which would make it impractical for a general search of loci.

Broman (1997) concluded that the BIC, used directly, is too generous with small population sizes,
and suggested adding an additional factor δ next to K, and suggested that δ = 2 would be appropriate in
many situations.

3.1.3 mBIC

Bogdan et al. (2004) proposed a modification of the BIC (mBIC), for use in genetic analyses based on
genetic models with pair-wise interaction terms. The aim with mBIC is to introduce priors dependent on
model size, to give a bound on the expected frequency of false positives (type I errors). This is related to
the work already done in Ball (2001). Both introduce a prior based on the basic combinatorics involved
when model size is increasing, in epistatic QTL models.
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The prior is defined assuming that each main-effect locus has the same probability p to be included.
The loci not included then has a probability 1− p. Pairs of loci, are handled analogously, with a probabil-
ity p′ and (1− p′) for non-inclusion. The set of possible interaction effects has a quadratic relationship
to the set of main effects.

BIC (3.2) with the prior π(i) would read:

BIC = n ln
(

RSS
n

)
+K ln(n)−2ln(π(i)) (3.3)

π(i) = pa p′b(1− p)(Nm−a) +(1− p′)(Ni−b) (3.4)

where a and b are the number of main and interaction effects, respectively. Now, as BIC is a relative
metric, Nm and Ni terms in the respective exponents can be ignored, as they are constant. Introduce
l = 1/p,u = 1/p′. The effect of an increase by 1 in a (analogous result for b not shown) is then, based
on (3.4):

∆π(i) =
p

1− p
(3.5)

ln(∆π(i)) = ln(
p

1− p
) = ln(

1
l

1− 1
l

) = ln(
1

l−1
) =− ln(l−1) (3.6)

Inserting (3.6) in (3.4) gives:

mBIC = n ln
(

RSS
n

)
+(a+b) lnn+2a ln(l−1)+2b ln(u−1) (3.7)

The result here is presented for a backcross (each locus giving rise to one main effect coefficient, and
each included pair resulting in one interaction effect coefficient). l and u are chosen based on the count of
markers and the count of marker pairs, with l = Nm/2.2 and u = Ni/2.2, 2.2 chosen arbitrarily with only
a partial justification (Bogdan et al., 2004). Later publications (Baierl et al., 2006) suggest a two-step
process where these values of 2.2 are used in the first step, to be adjusted using the tentative results, for
a new search in the second step.

3.1.4 Orthogonality in model selection

With an orthogonal model, individual parameters can not only be removed while keeping the regression
results for the remaining parameters unchanged, the variance is also completely decomposed, with com-
ponents mapping to the individual parameters and a residual term. This means that a simple scheme
of forward or backward selection, which has been predominantly used in the literature (Broman, 1997;
Bogdan et al., 2004; Ball, 2001) can be optimal, if performed as described below:

Forward selection consists of extending a model from a base state (zero parameters, for example),
always adding the single parameter that is optimal at that point. Backward selection is an alternative
procedure that reduces a model from a full state (“all” parameters present), in each subsequent iteration
removing the parameter that results in a minimal reduction of explanatory power. In an orthogonal model,
with the decomposition of variance, we can perform the regressions for each parameter in the full model
once and then rank all parameters by their variance to select a final model including the n highest-ranking
parameters.

With a non-orthogonal model, a regression step must be performed in each iteration (i.e. for each
parameter added). Even though forward- and backward selection schemes, based on non-orthogonal
models, can be optimized, there is a qualitative difference relative to models that are orthogonal, or at
least close enough to orthogonality to be treated as orthogonal in this context. For a forward-selection
approach on an orthogonal model to be optimal, it is still necessary to consider all parameters in the
model individually. Requiring main effects to be present, before pairwise interactions are considered, is
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an example of a common restriction in forward selection schemes currently used for genetic mapping,
that will lead to a non-optimal result.

NOIA, like other models presently used, is not orthogonal when employed in a Haley-Knott regres-
sion QTL analysis, even in the case of linkage equilibrium. This has been discussed earlier from a
theoretical standpoint (see Section 2.9).

3.1.5 Integrating over the model space

With a Bayesian approach we should, as already noted, integrate over the set of all possible models. If
we have a defined set of parameters, and a well-defined order for these, only a single regression needs to
be performed for each model size. That single regression will approximate the complete integral over all
possible coefficients, according to the model selection criterion of choice.

However, we do need to consider complete set of loci, with the desired dimensionality. As already
noted, the mBIC tries to account for this. As we have no established approximation of the integral over
this space of all sets, the sensible thing to do is to integrate over the complete set of loci. That is, the BIC
can be employed at each position to estimate the marginal likelihood over all coefficient values. These
estimates are then weighted against each other, by integrating over all positions. Hence, the likelihood at
each position is:

L ∝ e
−BIC

2 (3.8)

This approach is basically consistent with what was done in Ball (2001), but the interpretation is
different.

It is also possible to integrate over the complete space of models of a specific size. This gives a total
marginal probability. One then obtains the conditional probability for any model, assuming that there is
in fact a true model in the set, by dividing the probability of that specific model by the total probability.

Even with a principal interest in epistasis and interactions, we should observe that individual loci
are real biological entities. Pairs of loci, on the other hand, are not. Any model can be decomposed
into its constituent loci, by observing the loci that control the parameters included in the model. The
probability will then be computed, not as an integration over models, but rather an integration over loci.
The marginal probability for the full set is identical in both cases (an integral over all models). This
means that the marginal probability of multiple loci is > 1. This is natural, since the loci coexist within
the same models. For example, if a 3-locus model is used, the total probability should be 300%. No
single locus should exceed 100%, though, as the same locus can not appear twice in the same model, and
the marginal model probability is of course only 100%.

In an ideal case, all loci (defined as the surrounding interval ±15 cM) included in the individual
model with the minimum RSS will also have probabilities, as defined by the integrals defined above, that
exceed a chosen accuracy, e.g. 95%. This is equivalent to there essentially being a single dominating
peak; all loci not included in the minimum model have negligible probabilities. This does not eliminate
the possibility that there could be additional loci involved, it only states that there is a very good chance
of the identified loci to be the n most important ones.

The integration approach should also discriminate between loci with genetic support, and simple
overfitting without genetic basis. If we have no genetic effects at all, the basis for overfitting is the result
of a random partitioning into genotypes that by chance matches a sorted partitioning into phenotypes.
For a two-locus model with interactions this means that the 9 different classes, based on the multi-locus
genotypes, end up being relatively ordered with differences in mean between the groups. The end result
is lower variances for all subsets.

If there were only two subsets at our disposal, as in a back-cross analyzed using a single-locus
model, the probability of separation into distinct groups can be described by a binomial distribution: the
phenotypical values can be partitioned into “high” and “low” subsets, and the probability that genotype
1 covers x out of a total of n individuals in the lower half. Now, as we have no real genetic variance, all
models will include some overfitting. To get a single, dominating, model we need a high(er) number of
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x, meaning some degree of separation between the genotypes. The nature of the binomial distribution
makes large deviations of x from the mean highly unlikely.

This is a matter of fringe sampling (within the genome), where the size of the genome determines the
size of the sampling population. As the genome size increases, the expected value of the minimum RSS
decreases, due to chance alone. At the same time, we expect to get more minimas in total, possibly with
the RSS values closer together. An RSS level for which the expected number of peaks is exactly 1, in a
certain genome size, will double to 2 if the genome size is doubled. A peak due to the genetic signal will
not show the same behavior, as doubling the genome size in that case means no repeat of the specific set
of loci that induced the peak in the first place. Therefore, peaks due to overfitting are expected to show
low probabilities.

3.2 DIRECT

The optimization algorithm introduced for the QTL search problem domain in Ljungberg et al. (2004), is
called DIRECT. A complete description can be found in that article. A short overview, and some specific
remarks regarding the expected efficiency in the optmization search, are found below.

DIRECT is based on a divide-and-conquer approach. The possible QTL locations in a genetic map
are considered to be positions in an n-dimensional space. A particular set of QTLs is defined as a point
in that space. In a traditional exhaustive search, the residual square sum resulting from the model is
evaluated in every point of a fine grid in this space (possibly excluding some points due to the symmetry
of the search space as the order of the QTL is irrelevant).

DIRECT assumes that the target function (here the RSS of the QTL regression) is Lipschitz contin-
uous, meaning that a constant K can be found, such that no partial first-order derivative of the function
f will exceed K in any position. If we accept an approximation where the function is trapezoid between
the grid points used in the “ideal” exhaustive search we try to optimize, this is inherent in our definition.

Given a specific value of K, we have a way to define upper and lower bounds for f within any hyper
volume. In practice, K is unknown, but we can still impose a partial ordering of volumes or “boxes”. If a
box A is both smaller and has a higher RSS than another box B, then no value of K for the whole function
can give a lower minimum bound within A, than within B.

DIRECT leverages this fact by in each iteration only evaluating those boxes that are included in a
convex hull in the “radius-RSS” space. Larger boxes are thus given “the benefit of the doubt”. Even if the
RSS in the centroid (which we have evaluated) might be high, there is a reasonable chance to still find a
minimum somewhere else within a larger box. All such candidate boxes are split into three, resulting in
two additional function evaluations (the centroid in one of the boxes remains the same). From an initial
box covering the complete volume, a targeted splitting of boxes, towards the minimum, will take place.

3.2.1 Search efficiency of DIRECT

Asymptotically, DIRECT will evaluate every box. If enough iterations are performed, the result is an
exhaustive search. Therefore, we know that the correct box will be found, given enough evaluations. To
realize the benefits of DIRECT over exhaustive search, the value of K should be rather low, or formulated
another way: the RSS in one point should be a strong indicator of the RSS in the vicinity of that point.
Therefore, it is relevant to know how a QTL, defined as the location with a maximum reduction in
variance, propagates this effect on the RSS along the genome.

Within a chromosome, the presence of linkage ensures a low K, and most prominently in the presence
of a QTL. If we evaluate the function at the QTL, we can observe a reduction of variance r2, basically
correlating to a2, with a being the phenotypic change (consider here only a backcross model) between
the two alleles.

A fully informative indicator, at the exact location of a QTL, will be able to absorb all the variance
attributable to that QTL. An indicator at any other location can be related to this indicator by the proba-
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bility that they match. This relationship is described in more detail below, assuming a simple backcross
diallelic population.

Asymptotically considering loci far apart on the same chromosome, or loci on different chromo-
somes, we have no linkage at all and any match will be random. The probability p of a second indicator
matching an ideal indicator at the QTL will then be 0.5. If the two indicators are identical (infinitely
close), the p will be 1.0 instead. All other situations are somewhere in between (unless some locus due
to selection pressure actually tends to show an inverted preferred heritage structure relative to another
locus).

Assuming that both alleles are equally common in this hypothetical backcross QTL, and that phe-
notypic values for the two QTL genotypes are 1 and 0, the variance with a non-parameterized model
(average only) will be 0.25. If we use an indicator of the real genotype with accuracy p, we get two
symmetrical classes, each being a mixture of both actual genotypes. Below follows a derivation for the
variance of the “high” one (the one dominated by individuals with a 1 phenotype):

r2 = p(1−µ)2 +(1− p)µ
2 = p(1−2µ + µ

2)+(1− p)µ
2 (3.9)

µ = 1p+0(1− p) = p

r2 = p− p2

Here, µ is the average value within the class as defined by the indicator. This is the “target” for the
linear regression. As the variance is 0.25 under the null hypothesis, the relative reduction in variance
possible through the indicator is then equivalent to:

0.25− r2

0.25
(3.10)

In an actual genome with a known mapping distance x between the loci, p here is equivalent to the
complement to the recombination fraction. If we assume no recombination interference, we can relate
this to mapping distances, through the Haldane mapping function, with x in cM:

p = 1−0.5(1− e−
2x

100 ) = 0.5+0.5e−
2x

100 (3.11)

Inserting 3.11 for p in 3.9 and then inserting the result in 3.10, we arrive to a relative reduction in
variance of:

e−
4x

100 (3.12)

This means that the explainable variance is reduced by a factor of 10, for about every 50 cM (actually
57.6 cM). Although not providing a clear guidance on how small the DIRECT boxes need to get, we can
quantify the effect on the explainable variance, and see that even at traditionally “unlinked” distances
like 50 cM, there can a clear signal. On too large a distance, the explainable variance attributable to the
linkage to the actual QTL will disappear, hidden in the noise inherent in the phenotype measurements, and
the fact that the mapping distances are an idealization. The recombination frequencies predicted by the
mapping function can not faithfully describe the population at every distance. Single “offlier” individuals
can affect the RSS greatly, depending on whether they have recombined relative to the genotype at the
QTL position, or not.

A practical example of the consequences of the above result would be a population where a single
QTL can just barely be located for a trait with heritability 0.50 (all attributable to this QTL), with a
maximum box radius of 100 cM. If the DIRECT parameters are adjusted to a maximum box radius of 40
cM, the signal from any possible QTL within the boxes will increase by a factor of more than 10. Thus,
any single QTL for a hypothetical trait accounting for a heritability of 0.05 should be detectable. This is
because the h2 = 0.50 QTL at a distance of 100 cM actually behaves just like a h2 = 0.05 QTL at 40 cM,
according to the derivation above. Figure 3.1 also illustrates this, with the heritability of one hypothetical
QTL being half that of another.
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Figure 3.1: Example illustrating the explainable variance as a function of distance from the actual
QTL, as well as the total explainable variance of that QTL. Two hypothetical cases are shown,
with the QTL represented by the dashed line having exactly half the explanation power of the one
represented by the solid line. If DIRECT reliably detects the dashed line at maximum box radius
20 cM in a trait in a specific dataset, then a QTL with twice the power should be detectable with
maximum box radius 38 cM, as both cases result in the same residual variance (connected by the
horizontal line in the graph).

When the true signal is hidden in too much noise, the successive splitting of DIRECT boxes will
essentially be “blind” (not having access to any actual indication of what split operations to favor) and
approach the minimum only through an approximation of an exhaustive search strategy. A dataset with
much noise (through environmental factors or a small population size) will require a higher number
of evaluated boxes (i.e. more DIRECT iterations), to ascertain with reasonable confidence that the true
minimum has been found.

3.2.2 Epistasis in DIRECT

The current DIRECT implementation for QTL searches basically considers the size of the boxes based
on their radius, i.e. the distance between the centroid and a corner, in the multi-dimensional space. The
derivation in the previous section shows how the explainable variance decreases, as a function of the
linear distance from a QTL in a single dimension.

If we perform a multi-dimensional search, the reason can be to identify several QTLs with indepen-
dent effects, or to detect an epistatic network. A simple example of the latter would be a case, where
functional alleles in multiple loci are needed, for a complete biological pathway to be funtional.

If we have two independent QTLs of equal magnitude, the total reduction of variance when the box
radius is increased is still related to expression 3.10, if we assume that the box centroid is located at the
same distance from both QTLs.

In the case of epistasis (not only multiple main effects), we need an indicator approximating the
genotype at both QTLs. If the distance between the centroid and each genotype lead to an accuracy for
either indicator of p (see Section 3.2.1), the probability that an indicator at this distance represents both
of them correctly (at the same time) is p2.
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The derivation in the previous section regarding reduction in explainable variance was only directly
related to the nature of the genome studied through the definition of p. Therefore, it is possible to plug in
p′ = p2 (into expression 3.9) to obtain an expression for the reduction in explainable variance when the
genotypes for two QTLs are needed. This leads to an approximation of the relative reduction in variance
(a maximum of 1 at x = 0, x in cM):

e−
8x

100 (3.13)

This function declines very quickly. However, this derivation does not take into account that we do
not have two symmetrical classes anymore (indicator indicating “high” and indicator indicating “low”),
something that would add an additional factor. Furthermore, in the multi-locus case, it is also possible
for the indicator to be partially correct, representing the genotype at only one locus as “high”. In that
case, the indicated genotype at the other locus (“low”) might be wrong, with a higher probability than
both genotypes being wrong in the true “low” case. This partial ignorance about the genotype of either
locus corresponds to the main effects of the model. The main effects are the effects that we would see if
we would only consider either of the QTLs, and be totally ignorant about the existence of the other.

The total explainable variance by the main effects alone in a two-locus architecture in a backcross
will be about 1/3 of the actual genetic variance. In 1/4 of the cases, both alleles will be “low”, and the
estimation can correctly be 0. In 1/2 of the cases, the estimate will be 0.5 (if the true maximum effect is
1, one “high” allele will be interpreted as half the effect of two “high” alleles), but the actual effect is 0,
since both alleles are required to be “high” to give an actual effect. In the remaining 1/4, the estimated
effect will be the correct, epistatic effect. This gives a variance of 0 + 0.53 + 0 = 0.125, while the total
variance is 0.2520.75+0.7520.25 = 0.1875 (the mean is 0.25, 1/4 phenotype 1, 3/4 phenotype 0).

Hence, the main effects will only describe a fraction of the total variance attributable to the QTL, even
at zero distance with perfect genotype information. This means that we can approximate the explained
variance, as a function of distance, by the maximum of these two briefly motivated functions:

max

(
e−

8x
100 ,

e−
4x

100

3

)
(3.14)

This is a very crude approximation as, in practice, both main and interaction effects explain the
variance, at all distances. The different properties imply that one or the other will dominate, depending
on the distance. At long distances, which is what is relevant to decide the maximum allowed size on
DIRECT boxes, the main effects term will be the most relevant. It is then important to see that a genetic
architecture of two-locus epistasis will only result in half the detectable variance, compared to a case of
two independent QTLs, with the same total explainable variance at the actual QTL positions.

In short, epistatic architectures are more sensitive to a coarse evaluation grid. This sensitivity also
increases, with an increased dimensionality of the interactions. This has implications, not only for QTL
analysis based on DIRECT, but also for exhaustive search approaches with coarse grids, or for that matter
the results of varying densities in marker maps.

3.2.3 Using DIRECT for integration

As presented in Burnham and Anderson (2002), there are several reasons for performing an integration
over the model space, to obtain probabilities for individual models, rather than simply searching for
the minimum. Ljungberg et al. (2004) only used DIRECT to identify the single best position in the
n-dimensional search-space (i.e. combinations of QTL for a pre-defined genetic model).

The similarities between DIRECT and an actual exhaustive search indicate that it should be adaptable
into a numeric integration method. An exhaustive search can be transformed into a (crude) numerical
integration, by assuming each grid point not to be a point, but a volume, where the function value is
assumed to be constant. This is a realistic assumption in QTL analysis, as for the exhaustive search to be
effective in the identification of the best fitting model, the points are already assumed to be representative
of their vicinity (if not, the grid is not dense enough).
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There is a clear difference between DIRECT and many other search algorithms, as for many of these,
there is simply no way to decide whether the function evaluations map to suitable bounding volumes,
where the function value is representative of the distribution found within that volume.

DIRECT, on the other hand, continuously defines an approximation of the RSS. Potential variation
is bounded within each volume explored. The bounding, in addition to the near-zero probability that
results from the specific variations at values far from the optimum, makes it possible to simply perform
a summation of the integrand (here, a likelihood estimated based on the RSS), computed for all boxes
when the algorithm terminates, weighted by box volumes. The error accepted within the bounds of each
box also controls the total error in the integral.

3.2.4 Possible pitfalls in using DIRECT for integration

DIRECT only considers two things when selecting the boxes to be split further: their radius and the
already evaluated function value at the centroid. The algorithm does not consider any history of the
success of splitting neighboring boxes, for example.

In practice, this means that the area around a relative minimum, once found, will be meticulously
explored. Even after the minimum has been found, other, and so far relatively unsplit, boxes in the
vicinity will be chosen for further splitting. In an application where only the single global minimum
is sought, this is a wasted effort. In that case, it is mitigated by the fact that if there exists an optimal
minimum, different from the minimum already found, that minimum should allow larger boxes with
lower RSS values, and therefore eventually be explored. With high noise levels, that may take long.

In the integration approach, it is possible that the global optimum is found early on, but we still want
to determine whether there is a single, obvious peak. This can only be done by identifying and exploring
all sub-optimal regions with RSS values close to the level of the minimum. The RSS value in the very
minimum of those peaks can still be higher than the values in boxes in the vicinity of the global minimum.
If the global optimum is then found rapidly, the remaining parts of the search space might be explored in
limited detail. Finding the global optimum is thus a necessary, but not a satisfactory, requirement for the
overall integration to be accurate.

Future extensions of DIRECT specific for use in integration might include solutions to diversifying
the evaluation grid, as it with the current algorithm is necessary to manually monitor the maximum size
of the boxes when terminating, as well as perform a far greater number of function evaluations, than
when using DIRECT for minimum searches. It is also possible to constrain the minimum radius allowed
for any box, with limited loss in accuracy, as we are unable to discern any relevant data when getting
down to single cM resolution.
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4 Simulations
An F2 population of 1,000 individuals, with a genome of 5 chromosomes of 500 cM each were simulated.
The markers were evenly spaced with 10 cM distance. Populations according to these specifications were
generated at least 100 times, generally about 250.

4.1 Genetic architectures

Three different genetic architectures were evaluated, with two of them including epistasis. The difference
between the cases is how the loci interact. Hence, there was only a single case for 1-locus architectures,
with a single recessive genetic effect. Table 4.1 summarizes the different cases.

All cases are based on recessive architectures within the individual loci. Case C is the only one where
no epistatic parameter terms are expected in the NOIA model. This case has mainly been included to
illustrate the kind of models and architectures that have been most prevalent historically.

4.2 Further details

In addition to the genetic signals defined by the three genetic architectures, a normal error was added to
result in h2 (heritabilities) of 0.001, 0.10 and 0.50, respectively. By defining the noise level in terms of
h2, comparisons of detection performance for different architectures can more readily be performed.

10,000 DIRECT iterations, each including multiple function evaluations, were used, to facilitate
identification of all multi-locus genetic signals. A lower number of iterations would generally find the
same minimum, but it might find only that one and completely discard other peaks other than the most
prominent one and thereby invalidate the model space integration.

Model fittings were performed for different model sizes, from 1 to 4 interacting loci. Each model was
unrestricted, i.e. including all the parameters arising from the Kronecker product of statistical NOIA S
matrices for individual loci. An unrestricted model means that a model with 4 loci can describe arbitrary
4-way, 3-way, 2-way interactions, as well as single-locus main effects.
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Table 4.1: Genetic architectures used in simulations. gi is intended to represent the genotype of each
locus in the architecture. The architectures are generally referenced by ID or name in later sections. Ex-
amples of possible biological structures matching these genetic architectures are given in the description
column.

ID Name Description Schematic representation Expression
A All recessive Only two possible signals, “high”

and “low”. The “low” signal will
only show when all involved loci
share the same homozygous geno-
type, a “(00)n” genotype. This is
equivalent to a redundant biolog-
ical structure of duplicated genes,
where the function is not impaired
until there is no single allele in the
genome coding for the required
function.

Gene A

Gene B

∧
i
(gi = 00)

B Total dominance Only two possible signals. The
“low” signal will show when at
least one of the loci is homozy-
gous for the recessive allele. This
represents a multi-step biologi-
cal pathway where the total re-
sult is fully dependent on each
step. This could be represented as
a “(00)(xx)n−1” genotype.

Gene A Gene B

∨
i
(gi = 00)

C Purely additive The presence of a homozygous re-
cessive genotype in each locus is
represented as a separate effect.
The biological structure could be
completely separate processes, af-
fecting the same phenotypic trait.

Gene A Gene B
∑
i
(gi = 00)

20



5 Biological data
In addition to the simulations, various model selection criteria were used to study the genetics underlying
body-weight in an F2 chicken intercross between White Leghorn and Red Junglefowl (Carlborg et al.,
2003), where 32 possible QTLs (with either interaction or main effects) were found to reach genomewide
significance (with a tiered ranking of 5%, 10%, 20% significance levels).

5.1 The data set

A new set of 19 loci were identified, in a two-dimensional genome scan for interacting QTL pairs (Arnaud
Le Rouzic, personal communication). The aim in this study was to apply model selection criteria to limit
this set to the subset of effects which have the most pronounced effects on the phenotypic expression in
the data of about 800 individuals.

The traits studied were body weight observed, at 1, 8, 46, 112 and 200 days of age. In addition, the
raw (absolute) weight difference, between adjacent sample times, was treated as a separate set of traits,
somewhat deceivingly referred to as “growth rates”.

There are substantial correlations between the traits listed above. This was hypothesized to make it
difficult to explore the potentially different biological mechanisms affecting the growth, during different
stages in life. By only considering traits representing the absolute weight, those effects could be hidden.

Therefore, a PCA (Principal Component Analysis) decomposition was made on this set of traits,
to obtain a new set of orthogonal and independent traits. The PCA decomposes the values for several
variables (here trait values) into orthogonal vectors. Furthermore, these vectors are constructed in such a
way that they are ordered to maximize the explainable variance in the data set. The first PCA component
will describe the single-dimensional projection along which the maximum amount of variance can be
attributed.

Further analysis could then be made on this set of traits.

5.2 Analyses performed

Model selection was performed, using a combined backward-forward selection procedure. The full set
of loci was ued, with a model including all pairwise interactions. Individual parameters were removed
in a stepwise manner. From a biological perspective, one might naı̈vely expect for example additive-
by-dominance interactions only being present if we also observe main effects, as the general description
of the model as a series of deviations make most sense, if we start with simple effects and then add
further corrections. In a model selection context, this is not applicable. An individual parameter might
be estimated close to zero in the data. This corresponds to limited evidence for the effect really existing.
As the information criteria penalizes the total number of parameters included, the penalty will be even
greater if we want to include all parameters that make logical sense. This penalty will be applied in full,
even if only a single parameter from this larger set really leads to any reduction of variance. The model
selection process should therefore ideally focus on only finding the parameters with significant effects,
independently of what loci they relate to. The approach of treating all parameters as equivalent opaque
entities is not completely applicable for criteria that take the actual model structure into account (like
mBIC), but that is not the case for the AIC or BIC.
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As NOIA is almost, but not completely, orthogonal, it is reasonable to devise an optimized method,
that attempts to reintroduce the removed parameters with regular intervals, but not at every iteration. It is
also possible to cache the already computed effects on the variance, after attempted parameter removal
in earlier iterations, thereby allowing some parameters to be ignored as the results from earlier iterations
may show them to conclusively be suboptimal, even at the current iteration.

These two changes imply that the complete parameter space does not have to be explored at each step
with a very limited loss of generality, but a significant increase in performance.

The backward-forward selection was augmented with genome scans for full models up to 4 loci,
employing the methods described in Chapter 4. These scans were complete, i.e. not restricted to the pre-
determined set of possible QTLs. Here, a low cutoff probability of about 20% was used, to give more
insight into the data, especially as there is no preknown list of correct loci to compare against. The BIC
was also applied to these results.

22



6 Results
All results were obtained by using a modified version of the software originally written by Kajsa Ljung-
berg (Ljungberg et al., 2004; Ljungberg, 2005), including implementations of efficient methods for QTL
scans and evaluation of the RSS for regression at putative QTLs. The code, written in C, was modified to
accomodate the NOIA model framework, and added flexibility concerning the number of loci involved
in the model.

6.1 Simulations

All random numbers were derived from the Mersenne-Twister pseudo-random number generator with
default parameters from the Boost package (Boost C++ Libraries 1.34.1, 31 Jul. 2007). This allows com-
pletely repeatable runs to be performed, assuming that the same Boost version is used, to avoid artifacts
from the rather rudimentary pseudo-random number generators present in standard C(++) libraries.

Two performance metrics were used for evaluating the model selection procedure: false detection rate
(FDR) (Zak et al., 2007) and power. These are defined below, but can in general be considered analogous
to precision and recall, which are used in mainly the domains of AI and natural language processing, or
selectivity and specificity, in medicine.

The detection power is defined as the fraction of “real” simulated loci that were reported by the
method. A number of 1 would indicate a perfect result, while a number of 0 would be poor (even slightly
worse than random chance). Our definition of a correct match is equivalent to the one used in the original
articles on mBIC and rBIC, i.e. a window of ±15 cM around the specific simulated locus. Different
window sizes were tested on smaller datasets. The results indicate that the window size is not critical for
the results presented, under the current experimental conditions.

The FDR is defined as the fraction of incorrectly identified loci, among those identified in total:

FDRi =
FPi

ci +FPi
(6.1)

where ci is the number of correctly identified loci, FPi the number of “false positives”, i.e. loci reported
as part of the model that were not included in the simulated data. If the denominator (and numerator) are
both zero, FDRi is defined as zero as well. FDR is then computed as the average over all FDRi. Hence,
the FDR will not be proportional to a simple sum over the number of false positives in all models.

Power and FDR values are summarized, for different model sizes and actual number of interacting
loci, in Figures 6.1 and 6.2 and Tables 6.1, A.1, and A.2. The cutoff value used for inclusion of a locus
was consistently 95% probability, as determined by integration over all models, where the locus was
included, and divided by the marginal probability over all models (see Section 3.1.5).

These results are then improved by employing aggregation (i.e. model selection criteria for the mod-
els of different size) in the end of this section, and analyzed in the discussion.
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6.1.1 Null models

No null models were technically used in this study, but the simulations based on a h2 of 0.001 proved to
give practically no detection for any model size. The detection power, if it even should be considered,
was at most 4.1%. This was obtained with 4-locus models, and is close to the expected random rate of
1.2% (genome size by window size) per locus included (or 4.8% for 4 loci, if they would be independent).
The FDR is presented for all model sizes in Table 6.1.

Table 6.1: False detection rate for null models (h2 = 0.001)

Size of regression model (loci) FDR
1 0.4%
2 2.9%
3 13.4%
4 44.8%

6.1.2 Simulated epistasis data

For case A (all recessive, reference Table 4.1), 240 simulations were performed for 1 and 2 loci, and
120 simulations for 3 loci. For case B, 300 simulations were performed, while 250 simulations were
performed for case C.

The FDR increases with an increase in model size. This is most obvious in models where the true
genetic architectury is comprised of a low number of loci (Figures 6.1 and 6.2). With a high heritability,
the detection power always approaches 90.0%, with some distinct differences between architectures A,
B, C. An overparameterized model will not decrease the power of detection by much, while a model size
matching the actual number of loci in the architectures is optimal.
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Figure 6.1: Power of detection and False Detection Rate (FDR) for architectures A, B, C (Table 4.1)
for 2 simulated loci, and the single 1-locus case, h2 = 0.10. FDR is scaled by a factor of 4 to better
illustrate the differences.

The power of detection for 2-locus architectures is low in a 1-locus model, even when considering
that the maximum theoretical power for 2 loci in a 1-locus model would be 50% (Figure 6.1). This effect
is even more pronounced in 3-locus architectures, especially for case A (Figure 6.2). The power in the
model size 1 case is equivalent to the first locus detected in a naı̈ve forward-selection method.
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Figure 6.2: Power of detection and False Detection Rate (FDR) for architectures A, B, C for 3
simulated loci, h2 = 0.10.

Refer to Table A.1 in the appendix for the numeric values of power and FDR on which the figures
are based. This includes the values for h2 = 0.5, which are generally similar, the main difference being a
markedly higher (> 85%) power of detection with 3 simulated loci in cases B and C.

6.1.3 Aggregation methods

The results above are presented independently for each model size. By using integration with a sig-
nificance threshold, it is, for example possible to get less than 4 significant loci from a 4-locus model,
for example. To actually be reported, a locus still needs to be included in models with a probability of
95%, related to the integral over all models of that size. To consistently use the largest model would
nevertheless limit the accuracy as FDR, but also the detection power, deteriorates.

What is needed is a way to aggregate these independent results, by using a model selection criterion.
A very simple criterion, specific for this method, would be to only select a model size if all loci in
a n-locus model are classified as significant by the integration method. This is a form of consistency
requirement. If the model type is not internally consistent in specifying a result matching its dimension,
this line of reasoning says it does not make sense to choose it. Therefore, we call this the consistency
criterion (CC). For a series of different model sizes, one should then choose the largest size where
consistent results were obtained (i.e. n significant loci detected for size n). This criterion can be used
without any further information on the actual structure of the models, including their parameter count.

We can also employ the BIC and AIC. Here, we also need to introduce the implicit null model as an
option. The AIC/BIC value for the null model is related to the RSS for a model resulting in the original
variance in the data set.

The actual model (the left-most bar in Figures 6.3 and 6.4) indicates the result for a model size
matching the number of loci simulated, and can be contrasted against results for CC, BIC and AIC.

The AIC gives an unacceptably high FDR in all configurations, with only negligible gains in detection
power. The CC and BIC are overall quite comparable. For the 3-locus simulations with h2 = 0.10, both
CC and BIC drops off dramatically in detection power, but BIC more so. For case A, the BIC detection
power is only 22.8%, while it is 79.4% for CC and 91.1% for AIC with the size 3 model. With a higher
heritability, the FDR increases, but the BIC stays competitive in matching the performance of the actual
model in all simulations. The complete set of results can be found in the appendix, Table A.2.
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6.2 Biological data

6.2.1 Genome scans

Genome scans were performed in the Red jungle fowl x White Leghorn F2 intercross, with a methodology
similar to the one described and used in the simulations section (i.e. full models with size 1 up to 4, al-
lowing interactions up to the order of the model, and integration by DIRECT to determine probabilities).
Table 6.3 summarizes the results for a variety of traits and model sizes.

In Table 6.2 the results from applying BIC to the resulting models is demonstrated. Only a low
threshold was used to filter the loci listed, which should be contrasted to the strict 95% threshold in the
simulations section. For Bw1 and PC3, the number of loci explodes when model size 4 is reached. This
fact can indicate overfitting, but it could also be interpreted as the presence of two relatively independent
interaction networks influencing the trait.

We can note very distinct differences between the different models regarding the proportion of vari-
ance attributable to the loci included in the genetic models. PC1, which is designed to be a scalar
explaining much of the total trait variance, also seems to have a high genetic basis.

The raw (non-PC) traits only show a single significant locus. Despite this, the same set of 3 loci
(1:100, 1:430, 1:485, chromosome number:location on chromosome (cM)) appear multiple times in the
traits related to body weight between 46 and 200 days of age. Two of these (1:100, 1:485) are also the
same ones found to be significant for PC1. There is no indication that the BIC is overall too generous,
although the single Bw1 QTL found is indeed very weak (only 1.8% explained variance).

Table 6.2: Explained variance, and loci chosen by BIC, for the traits and model sizes analyzed. The
portion of explained variance relative to the maximum, and the size of the model (the parameter
count) are the only two factors affecting the BIC. The results are very restrictive in all cases. Note
that the portion of explained variance here should be expected to be higher than the “actual” genetic
variance, as some degree of overfitting is always possible and present.

Model size 0 1 2 3 4 Number of loci
Trait Explained variance chosen by BIC
Bw1 0.0% 1.8% 3.8% 7.7% 15.7% 1
Gr18 0.0% 4.9% 8.4% 13.1% 19.8% 1
Bw8 0.0% 4.4% 7.3% 11.4% 19.4% 1
Gr846 0.0% 11.3% 13.7% 16.8% 23.8% 1
Bw46 0.0% 12.0% 14.5% 17.5% 24.3% 1
Gr46112 0.0% 6.8% 10.0% 13.6% 21.1% 1
Bw112 0.0% 9.6% 13.0% 16.6% 23.4% 1
Gr112200 0.0% 5.4% 8.1% 11.8% 19.8% 1
Bw200 0.0% 9.0% 12.4% 16.1% 23.4% 1
PC1 0.0% 26.6% 33.2% 36.7% 42.4% 2
PC2 0.0% 1.5% 4.6% 8.9% 17.8% 0
PC3 0.0% 2.2% 4.9% 9.4% 16.9% 1
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6.2.2 Backward-forward selection

17 of the 19 loci detected in the pairwise scans were used in the backward-forward selection experiements.
These are presented in Table 6.4. Two of the loci in the original set provided were removed, due to strong
linkage to loci already present in the set (1:139 and 27:0).

Table 6.4: Loci used as initial basis for backward selection with termination determined by
BIC. Normal read order (left to right, then top-down). Locis are denoted by chromosome num-
ber:chromosome location (cM).

Locus Locus Locus
1:102 1:486 2:154
3:025 3:172 4:151
5:014 5:081 6:054

11:059 12:040 13:050
16:001 17:059 20:001
20:040 27:008

The backward-forward scheme first includes all parameters, for main effects and pairwise interactions
between the loci in Table 6.4, in the model, and iteratively removes the parameters with the lowest effect
on the variance.

Table 6.5 presents the sets of loci included in the models and the resulting parameter values (effects)
according to the model, for each of the traits PC1-PC3. Parameter IDs are composed of the loci underly-
ing each parameter, ordered as in Table 6.4, with “a” indicating an additive effect and “d” a dominance
effect. A period indicates a reference effect, i.e. a locus that is not involved. The specific effect values
here are naturally arbitrary, and the traits themselves quite opaque. The interesting aspect is the distri-
bution of magnitudes in effects, and the frequent switching in sign between main effects and epistatic
effects.

We can also observe that there is no clear overlap between the parameters chosen here, and the set of
loci detected in the genome scans for the same traits. The genome scans allow higher-order interactions,
but also only accomodate full models. The models presented here are actually comparable in size with a
full size 3-model, while involving a far higher number of loci. Thus, most of the loci from the original
set are represented for each PC trait, but frequently by only a single parameter each.
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Table 6.5: Parameter IDs and effect values for BIC-chosen models for PC1, PC2, and PC3, by
using the backward-forward selection method. The letters a/d indicate additive, dominance effects,
respectively. The letter position in the ID should be interpreted as the corresponding locus in Table
6.4 (read left-to-right, top-down). Quite a few epistatic parameters are remaining in the resulting
models.

Parameter ID PC1 Effect PC2 Effect PC3 Effect
................. −0.014 −0.003 0.018
................a −0.410 - −0.346
..............d.d - −1.108 -
............ad... - - 0.473
...........a....d - −0.618 -
..........a...... - - −0.228
..........da..... - 0.688 -
.........a....... −0.310 - -
........a........ −0.356 - 0.270
........ad....... 0.661 - -
........d...d.... - - 0.887
.......a......... −0.407 - -
.......a.....a... - 0.557 -
......a.......... −0.336 0.323 -
......a.........a - −0.585 -
......a.a........ - - 0.474
......aa......... 0.464 - -
......d........d. - - −0.844
......d.......d.. - −1.273 -
.....a........... −0.242 - -
.....a...a....... 0.479 - -
.....d.......a... - 0.518 -
....a............ −0.390 - -
....d.....a...... - 0.588 -
....d.a.......... −0.720 - -
...a............d 0.795 - -
..a.............. −0.894 - −0.255
..d...........a.. - - 0.474
..d..........d... −1.153 - -
.a............... −0.627 −0.310 -
.a.......d....... - −0.698 -
.d...........d... 0.937 - -
.d...a........... - −0.465 -
a................ −1.521 - −0.319
d................ −0.486 - -
d.............a.. - −0.530 -
d......a......... - 0.673 -
d......d......... - 0.870 -
d...a............ 0.627 - -
d...d............ - - −0.641
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7 Discussion

7.1 Important QTLs in experimental data

Although the main purpose of this study was to evaluate the model selection criteria and methods de-
scribed in the introduction, primarily based on theory and computer simulations, the experimental study
is a case example that gives additional insight, for example into the effects of covariates and varying
cutoff (“significance”) values.

The most important conclusion for the analyses based on experimental data, is that the BIC is very
restrictive when utilized in genome scans to detect QTL. For all traits but PC1, the BIC results indicate
that no loci, or only a single locus, significantly influence the trait. Despite this, we have identified three
loci (in Table 6.3, approx. 1:100, 1:430, and 1:485) that are displayed in size 3 models for Gr46112,
Bw112, Bw200. Note that these loci were not identified for Gr112200, possibly indicating that these loci
has a more pronounced effect on the development up to 16 weeks of age (112 days). Two of them also
appear in the 2-locus model for Bw8, and the 3-locus models for Gr846 and Bw46.

The fact that these 3 loci are consistently reported indicates that the loci found might not be the result
of simple overfitting of noise. If they are in fact spurious (and the BIC interpretation true), this would
mean that, somehow, the genotypes in these loci map well to some common environmental factors or
other covariates, giving a similar effect for all measured traits. Therefore, a more plausible conclusion
would be that the BIC is overly restrictive in this case.

While there is no way to verify the “true” number of QTLs within the scope of this study, the size 4
models for real data do not demonstrate the same consistency between different traits. In fact, they even
“lose” several loci consistently reported in the smaller models. Considering the fact that full models were
used (resulting in 3 times the number of parameters in size 4 vs. size 3) it is plausible that model size 4
is subject to overfitting in the current data.

Two of the three common loci in the size 3-models for multiple traits (1:100, 1:485), were also present
in the pairwise genomewide scans, based on different methodology, that underlie the locus set used in
the backward-forward selection. A strong pairwise interaction was implicated between these two, for
the traits Gr846, Bw46, Gr46112, Bw112, Bw200 (Örjan Carlborg, unpublished data). Many of the loci
reported in size 3 models for the PC traits, are also reported in the results underlying the selection of that
subset, even including reported interactions between the loci.

The 1:430 locus, on the other hand, is not present in this alternate set based on another method. This
can be due to imposed limits on closely linked loci, rather than an actual absence of the effect. A weak
1:404 locus was present in the results from the other scan method, while not strong enough to be included
in the set of 17 used in the backward-forward method. That locus demonstrated some interactions, with
other loci not specifically picked up in the scans made in this study. It is possible that the genetic effects
related to 1:430 are only manifested when combined with 1:485 and 1:100, while we cannot rule out the
possibility that its presence here is due to artefacts related to linkage. It is still clear that the BIC result,
of only a single significant locus per trait, is overly restrictive.
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7.2 Detection power for different genetic architectures

Figures 6.1 and 6.2 show clearly that the detection power varies greatly depending on the genetic archi-
tecture, including the number of loci involved. This is especially interesting since the total heritability
attributable to the simulated genetic architectures is kept unchanged, unlike in some other studies.

The most obvious demonstration of this is found in case A (all recessive, see Table 4.1). When the
model fitted to data is too small to accomodate the number of simulated loci, the detection power is
drastically reduced. This is not just some theoretical case, but a fact of tremendous importance. Many
existing QTL search methods will perform forward selection or a genome-wide scan for only single loci
or pairwise interactions. A forward selection strategy will not be able to find an unambiguous minimum
in the correct position in the first iteration. Even seemingly more general Bayesian approaches, based
on MCMC (Markov-Chain Monte Carlo), will generally only change the model size in limited steps,
and so the search to identify the posterior probabilities might never discover the true optimums, when
interactions are important. However, the low power reported here (2.2%) is only partially a result from
the genotypes being rare. All three interacting loci will have similar genetic effects and therefore share
similar probabilities. This results in no single locus reaching the cutoff of 95%.

To analyze the effects of the cutoff further, the single most important peak (ignoring whether it
exceeded the cutoff) in each fitting of a size 1 model, to case A, 3 loci, h2 = 0.50, was listed. In 51.7%
of the cases, one of the three simulated loci was chosen. As no cutoff was used, all cases without
correct results were incorrect, to be contrasted against the case in the results section, where the FDR and
detection power do not sum up to 100%. A forward selection process, where only single loci are added
at a time, would match these results in the first iteration. By using pairwise addition steps, the proportion
of correct loci added in the first step increases to be 81.7% (18.3% FDR), whereas 91.1% (1.7% FDR) is
reached, when a three-locus model is used, with a cutoff.

Different genetic architectures result in different absolute effect magnitudes, related to the standard
deviation of the noise component. An architecture with rare effects (e.g. the completely recessive case
A) results in large phenotype deviations in a small amount of individuals that contribute to the genetic
variance.

7.3 The appropriateness of mBIC

The unmodified BIC performs well in our simulations, when combined with an integration (model aver-
aging) approach. This contradicts earlier findings that BIC is overly generous in genetic model selection
(Broman, 1997; Bogdan et al., 2004). The application of BIC to experimental data support what we
found in the simulations, as it appears to be overly restrictive for those data when compared with results
from other analyses of the same data. An integration over different sizes could possibly alleviate this.
Our simulation study show that detection power, and FDR, when using BIC are comparable to those
obtained using mBIC (Bogdan et al., 2004). Our results therefore indicate that the general conclusion
that the unmodified BIC is unsuitable for genetic model selection, does not hold.

The prior in mBIC (Bogdan et al., 2004) might seem sound at first, as an increase in the number of
possible models increases the risk that a good model is found by overfitting. There is, however, only
a weak correlation between increasing model size and a good model fit by overparameterization. A
doubling of the model space will not lead to a model that is twice as good at explaining the data, by
chance. The vast majority of models, no matter what space we sample from, will have minimal support
in the data.

To understand this, one can think of differences in model size as a matter of sampling from the same
distribution, as the RSS value for possible models can be viewed as a distribution. The very best model
is part of the fringe of this distribution. Doubling the model space is then only equivalent to doubling the
population size in the sampling process. The actual position of the fringe will not move by doubling the
sampling population, but the most extreme individual found can shift slightly.
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The sampling interpretation has greater consequences when considering interactions, which is the
motivation for developing the mBIC. The mBIC prior, as noted (Section 3.1.3), basically considers that
there are n2 possible interaction terms if there are n possible additive terms. The mBIC then states that
the fit, when including interactions, should be n2 times “better” to be preferred, in addition to the direct
penalty induced by the BIC through the number of parameters and the resulting degrees of freedom.

If all models of the desired dimension are considered, then this high penalty might be deemed ap-
propriate, but the authors advocate using the prior described in a context where only a single model is
chosen. In that context, the total dimensionality is irrelevant. Even in the case of considering all models,
we should only compensate the added volume of the peak due to the added dimensionality, not for the
increased volume of the model space in full. Further studies are needed to describe the distribution of
RSS values.

Although we used integration for each individual model size in this study, the model selection criteria
were only applied to the minimas. The approach thus still focuses on the minimum found, but uses the
complete optimization landscape to determine how that minimum should be interpreted once the model
has been selected. Integrating over all model sizes and models would make more sense, but require a
larger change in the implementation. One could also argue that, once smaller models are ruled out as
inaccurate, they should not influence the probabilities at all. It would be interesting to explore whether
the cases of very high FDR (especially for h2 = 0.50), reported in some cases, could be reduced by using
a “full-integration” approach, without losing the high detection power.

The high false-detection rate of unmodified BIC reported in the literature (Bogdan et al., 2004; Bro-
man, 1997) is probably related to the forward-selection approach used, rather than the BIC itself. The
mBIC might be appropriate when used as described in these reports, but this is due to the optimization
algorithm used, rather than the structure of the models, or the model selection criteria. The BIC gives
good results when combined with an integration approach, and it should perform even better when it is
adapted to include a common integration over all model sizes.

7.4 Window sizes and filtering

As defined in Chapter 4, the genome scan methods were used with a window of ±15 cM. The reported
probability for including each locus was thus a sum over the probability contributions in a range of
±15 cM. These were, in turn, based on the likelihood, derived from DIRECT evaluation boxes covering
those locations.

One negative result from using this window, is that two loci close to each other will influence each
other, resulting in too high probabilities, i.e. the DIRECT search might find an optimal box where two
loci almost coincide, if that configuration contributes to an added reduction in variance. If the loci are
close enough, the detection windows might overlap, and lead to double contributions from the boxes
representing the same model. This can even result in a probability exceeding 100% for a “single” locus,
which is actually due to the double contributions. Our analysis show that this effect is most apparent for
high-order models with simple genetic architectures (i.e. probabilities of 103% observed for model size
4 in a single-locus architecture).

The current integration methodology employs a homogenous block kernel, simply assuming a uni-
form coverage within each box. Different boxes are centered on different genome locations. When the
specific contribution at one location should be estimated, it could make sense to use kernels based on
weighted averages, from e.g. a mapping function representing recombination frequencies. The prob-
ability for recombination is naturally tightly related to the distribution of RSS influences from a QTL
(Section 3.2.1). Boxes where the centers are close to the actual location would then be weighted higher.

The same kernel that could be used for distributing the probability more accurately in the integration,
basically a convolution, could be turned into a deconvolution. This suggests a method to obtain sharp
peaks based on the “fuzzy” probability distributions resulting from the integration. This could help us
avoid the need of using the somewhat arbitrary ±15 cM window. In addition, the deconvolution process

33



would need to include valid boundary conditions, which would remove the current bias existing against
QTLs where the start and/or end of the detection window falls beyond the actual span of the linkage
group (chromosome). This effect is apparent in the experimental data, as some linkage groups only
contain a single marker that is represented as a single 1-cM point. Using the current approach, there will
be a bias against detecting QTL in these regions, as the probability is not including the full contributions
from linkage.

More work is needed to explore whether the theoretical distributions (see Section 3.2.1) actually
match real data in different configurations well enough. The use of non-uniform distributions in integra-
tion as well as QTL detection would, however, most likely solve the problems with arbitrary detection
windows and hopefully improve the results.

7.5 Factors influencing the computed probabilities

The results from applying the BIC to simulated data with h2 = 0.50 are surprising. We would generally
expect higher detection power with a stronger signal. An increased FDR might be plausible, however,
but this increase in FDR should not come at the expense of detection power. A potential reason for the
decreased power where FDR also increases significantly, might be the use of a fixed, and rather narrow,
detection window. The deconvolution approach suggested above might resolve this issue.

In addition to increasing the need for deconvolution, the higher simulated heritabilities also lead to
a far greater span of probabilities (several orders of magnitude), which could lead to precision-related
numerical issues in the summation. The portion of explained genetic variance, relative to the noise,
together with the number of individuals, determine the relative likelihood among models of the same
size (equations 3.2, 3.8). As the number of individuals is part of the exponent (even with normalization
applied), a higher heritability will result in a difference of several additional orders of magnitude between
the noise floor (putative QTLs with no explanative power) and the true optimum.

As the ratio of genetic variance to unexplained noise variance is the key for detecting QTLs, removing
variance due to systematic environmental factors will decrease the magnitude of the noise component,
consequently increasing the probability of the optimum. Thus, an introduction of covariates, like sex or
seasonal effects in the analyses of experimental chicken data, should increase the model size preferred by
the BIC. It is quite possible that the locations and effect values attributed to the QTLs will not change at
all due to the covariates, but as the residual variance is reduced, the results from applying the BIC might
still improve. Using covariates is a common approach, but it was not used in the current study to simplify
the process.

It is important to note that the definition of probability for a QTL here means, that fitting a small
model to data will likely lead to low probabilities for all QTLs. For example, if there are n different loci,
all with comparable influence, then the probability for including any specific one of these loci, in a model
of dimension significantly lower than n, is small. This fact might explain the low probabilities (relative
to the 95% cutoff used in simulations) in the genome scans conducted on experimental data. The real
reason is then that the 3 or so loci identified, are not conclusively the 3 strongest ones, as there are almost
surely more loci influencing each trait. The probability of including a specific locus in the model not
only reflects whether a locus is a QTL for the trait, but also whether it is the appropriate QTL to include
in a model of the requested size.

Numerical improvements are thus needed in the integration implementation. We expect that the BIC
will be less restrictive with added covariates. A cutoff below 95% might make sense for experimental
data, if there is reason to expect additional loci to be involved, but the real solution should be to increase
model size, something that might be hard to do without overfitting making the results unusable.
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7.6 Orthogonality and varying subsets

NOIA is much closer to orthogonality than previous models. Still, the issues of incomplete information
on individual genotypes at tested QTLs (possibly solved through imputations, see Section 2.11), and
linkage disequilibrium, can lead to significant deviations from orthogonality. In practice, this means that
all possible subsets of included parameters can not be considered.

A full 4-locus model for an F2 intercross includes 34 = 81 parameters. A set of 81 parameters means
a power set (set mapping to all subsets) of 281 elements, which is computationally totally intractable if
each set would be evaluated individually. If the model was orthogonal, or almost so, it would suffice to
evaluate the full model once, and then decompose the variance into variances for each model parameter
to identify the optimal models of all relevant sizes.

As the BIC and AIC consider the total number of parameters included, the specific parameter set used
is relevant for what model is chosen. By not including the full parameter set for the loci, the criteria will
favor a higher number of loci (but a comparable total parameter count). This is also tightly connected to
the issues of overfitting: the point of the BIC is to assess whether the reduction in variance is expected,
due to the added degrees of freedom (overfitting), or not.

The backward-forward selection experiments, conducted in this study, included only pairwise inter-
actions. Despite this, the strategy suffered from problems with non-orthogonality. The forward “reintro-
duction” step was included to decrease this problem, but did not manage to circumvent it. If orthogo-
nality is reached through work currently underway (José M. Alvarez-Castro, personal communications),
genome scans with arbitrary subsets, as well as single-point evaluations with more dependable results,
would be possible.

A different approach to determine the degree of overfitting, could be to use random permutations
extensively. This technique is already established to determine significance thresholds in QTL experi-
ments. It is conceptually related to the idea of integrating over the complete model space, estimating the
probability that some other location would match the currently found minimum just by chance (assuming
that there is only a single true minimum). By introducing cross-validation in the permutation procedure,
i.e. parameter estimation on one fraction of the data set, combined with the computation of the RSS on
another one (preferably done repeatedly with different fractions). A related and more computationally
efficient variation of this approach is the introduction of random output data. This is applied to tree-based
methods for QTL analysis, with some success, in Fridlyand (2001).

7.7 Conclusions

Model selection criteria work well in finding the appropriate model from a set of full models in simulated
data and there is good reason to believe that similar results can be obtained for experimental data as well.

Integration over the model space shows great promise, as it gives a simple and concise measure
of the certainty of a specific model. Model selection without any aspect of model averaging would
be a very risky strategy, possibly not utilizing important information about the underlying architecture.
The integration implementation used in the actual experiments is rather crude, and could be improved by
using deconvolution, rather than the current naı̈ve summation, to calculate locus probabilities. Numerical
precision issues should also be addressed.

The most significant problem at hand is the lack of orthogonality. This seriously affects performance,
and makes simple evaluation of all possible parameter subsets impossible, even for reasonably few in-
volved loci. Development of orthogonal models would be the most complete solution to this, although
algorithmic search strategies, in the space of subsets, could be developed, just like DIRECT was intro-
duced in QTL analysis, to replace exhaustive search. Other methods could be used to combat overfitting,
which is the main reason for avoiding an overparameterized model.

As work is underway to resolve both the issues of orthogonality, and the practical details of the
integration implementation, the combined approach of model averaging (model space integration) and
model selection criteria has certainly a bright future in the field of QTL analysis.
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A Appendix: Numerical results
This appendix contains two tables with the full results for the simulation studies. The graphs in the results
chapter omitted, among other things, some results for h2 = 0.50, as they are in many cases very similar
to the values for h2 = 0.10.
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Table A.1: Detection power and False Detection Rate with varying model size and count of loci.
Cases are defined in Table 4.1. Note the differences between h2 = 0.10 and h2 = 0.50 for case C,
especially.

h2 = 0.10 h2 = 0.50
Power FDR Power FDR

1 actual locus
Model size 1 100% 0.0% 97.5% 2.5%

2 100% 2.0% 99.2% 8.0%
3 100% 3.7% 99.2% 14.3%
4 100% 19.3% 98.8% 31.7%

2 actual loci, all recessive (A)
Model size 1 25.8% 0.4% 39.1% 0.0%

2 98.2% 0.4% 98.6% 0.8%
3 98.0% 3.0% 98.4% 8.3%
4 95.9% 14.9% 96.5% 15.3%

2 actual loci, total dominance (B)
Model size 1 35.7% 0.0% 44.7% 0.0%

2 88.2% 0.0% 90.4% 0.8%
3 87.7% 2.9% 93.4% 5.0%
4 87.2% 9.9% 94.5% 10.0%

2 actual loci, purely additive (C)
Model size 1 37.1% 0.0% 43.2% 0.0%

2 95.9% 0.0% 97.7% 0.8%
3 94.5% 3.6% 98.2% 3.9%
4 92.0% 11.2% 98.6% 9.3%

3 actual loci, all recessive (A)
Model size 1 2.2% 0.8% 13.7% 0.8%

2 28.3% 1.7% 62.5% 0.0%
3 91.1% 1.7% 89.9% 9.5%
4 77.9% 15.3% 85.4% 14.4%

3 actual loci, total dominance (B)
Model size 1 15.3% 0.0% 24.4% 0.0%

2 44.4% 0.2% 55.1% 0.0%
3 70.7% 0.8% 86.3% 0.7%
4 65.4% 8.7% 89.1% 4.1%

3 actual loci, purely additive (C)
Model size 1 18.6% 0.0% 27.7% 0.0%

2 49.3% 0.0% 60.1% 0.0%
3 65.2% 0.9% 94.9% 0.5%
4 66.8% 9.3% 95.4% 4.3%
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Table A.2: Model selection criteria used for aggregation of different-sized models on simulated
data. CC = Consistency criterion, AIC = Akaike information criterion, BIC = Bayesian information
criterion. The BIC selects an appropriate model for 1 and 2 simulated loci, only losing marginally
in detection power. For 3 loci, this is not maintained, when h2 = 0.10. The first row in each group
presents the results for the full model of a size matching the number of simulated loci, as a reference.

h2 = 0.10 h2 = 0.50
Power FDR Power FDR

Null model (h2 = 0.001)
Model size 1 0.0% 0.4%
CC 0.8% 15.3%
AIC 3.7% 52.8%
BIC 0.0% 0.4%
1 actual locus
Model size 1 100% 0.0% 97.5% 2.5%
CC 100% 0.0% 97.5% 7.4%
AIC 100% 7.9% 99.2% 16.1%
BIC 100% 0.0% 97.5% 7.4%
2 actual loci, all recessive (A)
Model size 2 98.2% 0.4% 98.6% 0.8%
CC 97.7% 0.4% 98.6% 0.8%
AIC 98.0% 3.5% 98.4% 8.6%
BIC 97.8% 0.4% 98.6% 0.8%
2 actual loci, total dominance (B)
Model size 2 88.2% 0.0% 90.4% 0.8%
CC 85.0% 0.0% 90.5% 1.1%
AIC 88.5% 5.2% 93.2% 6.3%
BIC 85.0% 0.0% 90.9% 0.8%
2 actual loci, purely additive (C)
Model size 3 95.9% 0.0% 97.7% 0.8%
CC 88.5% 0.1% 97.5% 0.8%
AIC 95.3% 6.3% 98.2% 4.9%
BIC 88.3% 0.0% 97.7% 0.8%
3 actual loci, all recessive (A)
Model size 3 91.1% 1.7% 89.9% 9.5%
CC 79.4% 2.8% 89.2% 9.2%
AIC 91.7% 4.2% 88.3% 12.0%
BIC 22.8% 1.3% 89.2% 9.2%
3 actual loci, total dominance (B)
Model size 3 70.7% 0.8% 86.3% 0.7%
CC 48.9% 0.0% 85.3% 1.6%
AIC 72.1% 2.4% 87.8% 1.6%
BIC 41.5% 0.0% 86.7% 0.2%
3 actual loci, purely additive (C)
Model size 3 65.2% 0.9% 94.9% 0.5%
CC 50.0% 0.2% 92.0% 0.1%
AIC 67.2% 3.3% 94.9% 1.5%
BIC 46.2% 0.0% 94.2% 0.1%
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