
 

UPTEC X 07 005

Examensarbete 20 p
Februari 2007

Proteochemometric modelling 
of protein microarray interactions 

Markus Rasmussen



 
 

 

Bioinformatics Program 
Uppsala University School of Engineering 

 

UPTEC X 07 005  Date of issue  2007-02 
Author 

Markus Rasmussen 
 
Title (English) 
Proteochemometric modelling of protein microarray interactions

 
Title (Swedish) 
Proteokemometrisk modellering av proteinmikroarrayinteraktioner 
 
Abstract 
 
 
The interaction strength between two families of protein domains was modelled statiscally 
using proteochemometrics. Partial least squares regression modelled the relationship between 
the interaction data, originating from protein microarray experiments, and mathematical 
descriptions of the respective sequences involved. 
 
 

Keywords 
 
Proteochemometrics, partial least squares, protein interaction modelling 
 
 

Supervisors 
Jarl Wikberg och Martin Eklund 

Uppsala University 
 

Scientific reviewer 
Mats Gustafsson 
Uppsala University 

 

Project name 
 

Sponsors 
 

Language 
English 

 

Security 
 

 

ISSN 1401-2138 
 

Classification 
 

Supplementary bibliographical information   Pages 
26 

 

Biology Education Centre      Biomedical Center       Husargatan 3 Uppsala 
Box 592 S-75124 Uppsala                 Tel +46 (0)18 4710000      Fax +46 (0)18 555217 
 



 
 
 

Proteochemometric modelling of  
protein microarray interactions 

 
 

Markus Rasmussen 
 
 
 
 

Sammanfattning 
 
 

Att kunna förutsäga hur biomolekyler interagerar med varandra blir en allt viktigare del av 
biologisk och medicinsk forskning. Proteokemometri är en metod där man utifrån kända värden 
på hur vissa molekyler binder till varandra försöker prediktera motsvarande egenskaper hos 
andra, liknande ämnen. Prediktionerna görs in silico, d.v.s. med datorer. Med hjälp av statistiska 
och matematiska metoder försöker man hitta en korrelation mellan de ingående molekylernas 
kemiska egenskaper och deras förmåga att interagera med varandra. 
 
I det här examensarbetet gjordes en sådan modell över hur ErbB-receptorer, som är en familj av 
cellmembranbundna proteiner, interagerar med SH2-domäner på de intracellulära proteiner som 
aktiveras av receptorerna. Resultat från försök med proteinmikroarrayer användes för att beskriva 
hur ca 5000 kombinationer interagerade. Från proteinernas aminosyrasekvenser och 
aminosyrornas kemiska egenskaper skapades kvantitativa beskrivningar av varje 
proteinkombination, som tillsammans med respektive interaktionsvärde blev indata till modellen. 
Prediktionsförmågan blev ganska låg, främst p.g.a. den begränsade variationen på 
interaktionsdatat. 
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Chapter 1

Introduction

1.1 Thesis outline

This Master’s thesis describes an attempt to model, or explain, the inter-
action strengths between two families of proteins, based on data from a
microarray experiment performed at the MacBeath Lab (1). This chapter
provides some background information and motivation for the study. Chap-
ter two describes the bioinformatics and statistics methods used to conduct
the study. Chapter three presents the results and some comments on them.
Chapter four discusses the results and possible sources of error. Chapter
five concludes the study with lessons learned and suggests future work on
the subject.

1.2 Motive

Finding out the functional properties of a newly discovered or designed pro-
tein by experimental methods is a costly and time consuming task. It
involves not only having the protein, and possible binding ligands avali-
able, but also making sure all molecules involved are folded properly and in
their correct chemical environment. Due to these difficulties, computational
methods are persued. Several such methods exist, but many depend on hav-
ing a well defined 3D structure available, at least of a reference protein as
the function is assessed based on sequence similarity with previously known
proteins. Determining the 3D structure is error prone, expensive and time
consuming, and many proteins function only in very specific environments,
e.g. across a cell membrane, that cannot be reproduced or investigated
properly for a 3D structure. Since there is a strong correlation between the
protein amino acid sequence and its 3D structure as well as between the
3D structure and it’s function, there is much hope that methods which do
not depend on a 3D structure will prove reliable (2). Here proteochemo-
metrics is investigated as a tool to predict the interaction strength between

2



1.3. Chemometric modelling and QSAR 3

intracellular ErbB and SH2 domains.

1.3 Chemometric modelling and QSAR

The origin of proteochemometrics, chemometrics, is a broad field of science
which generally involves relating some available measurements to a state of
a chemical system. Chemometrics has evolved steadily for a long time and
includes a wide range of mathematics and statistics methods and technolo-
gies. In quantitative structure-activity relationship (QSAR) modelling, the
interaction between a specific target such as a protein, a cell or an organism
and a series of ligands is considered. The physio-chemical properties of the
ligands are collected into set of descriptors, which is a mathematical rep-
resentation (typically a long vector) of experimentally and computationally
derived properties. They range from simple, such as the molecular weight,
to highly complex, such as molecular interaction fields derived using the
3D structure of the molecule (11). The descriptors are then fitted, using
regression or machine learning techniques, towards the respective interac-
tion strength (empirically derived) exhibited by the ligands, according to
formula 1.1. The resulting regression coefficients can be used to to predict
the interaction between the target and untested or hypothetical ligands that
are sufficiently similar to those tested (2).

f(dligand) + ε = y (1.1)

1.3.1 Proteochemometrics

Proteochemometrics differs from QSAR in that it covers a series of targets
rather than one, and the data to be correlated to each interaction strength
describes the chemical properties of both the current target and the current
ligand as in formula 1.2. Instead of describing the ”chemical space” of the
ligands as in QSAR, the entire ”interaction space” is thus covered by the
descriptors. That way the complete set of properties considered is likely to
include more properties of importance, and it is possible to use the model to
discover active sites on both the target and the ligand. As the target and the
ligand are not treated differently, either or both may be a protein (usually at
least one of them is.) This project will concern proteochemometric modelling
of protein-protein interactions (2).

f(dligand, dtarget) + ε = y (1.2)

Cross terms

The statistical methods, such as PLS and MLR, commonly used in QSAR
and proteochemometrics usually reveal only linear covariances between the
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molecule properties and the interaction strength. To expand them to cover
some non-linear covariances as well, cross term expansion can be used. An
example of a cross term expansion is taking products of descriptors and
adding them as new descriptors. This approach makes nonlinear relation-
ships available for the model and may reveal pairs of active residues or
conformation determining sites. The biggest problem with cross terms is
that the data matrix tends to grow very large, leading to computational
problems and possible model overfitting. The number of cross terms can be
limited to e.g. cross terms between areas of different molecules or expected
active sites.

1.4 ErbB receptors and SH2 domains

Epidermal growth factor receptor (ErbB1) and its close relatives ErbB2,
ErbB3 and ErbB4 are initiators of a very thoroughly studied set of signaling
networks. Such networks are involved in a wide range of cellular activities,
including apoptosis, growth, migration and adhesion. All ErbB receptors
have three components: one intracellular component including tyrosin ki-
nase, one transmembrane component and one extracellular domain which
binds signaling compounds. As the receptors are activated, they phospho-
rylate each other on several tyrosine residues, which in turn serve as docking
sites for downstream adaptor proteins and enzymes, illustrated in Figure 1.1.
Such proteins will often depend on phosphotyrosine binding (PTB) or Src
homology (SH2) domains for the interaction. The interaction between such
intracellular docking sites and ligands with SH2 domains is what is investi-
gated in this study (1).

1.5 Protein microarrays

Similar to DNA microarrays, protein microarrays are designed to experimen-
tally test the interaction strengths between a set of peptides (representing
protein domains) fused to a solid surface and a set of dissolved proteins,
which have been altered to be fluorescent. After incubation, the fluores-
cence level of a specific microarray spot correlates to the amount of pro-
teins bound to the peptides. Protein microarrays is a technology still under
developement, and it is more difficult to achieve good results than with
DNA microarrays. For this study, a protein microarray experiment from
the MacBeath lab, in which an interaction network between ErbB phospho-
tyrosine sites and PTH and SH2 domains was built, has been chosen (1).
Protein-protein interactions are known to be extremely difficult to model,
but from a modelling point of view, it is interesting to develop an idea of
how much can be accomplished with present tools and data sets such as
this one. Also, developing a quantitative protein interaction network with
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Figure 1.1: PTB and SH2 domains of intracellular proteins interact with
tyrosine and phosphotyrosine residues on intracellular domains of ErbB pro-
teins.

protein microarrays is an interesting approach to finding new knowledge and
we may see many similar experiments in the future.

1.6 Software tools

Simca, a multivariate data analysis software developed by Umetrics Soft-
ware, has been used for all statistical analysis and modelling in this project.
Protein alignments were done with online alignment tool Muscle. Java code
was written in Eclipse and this report was typeset with Texmaker and Mik-
Tex.



Chapter 2

Method

2.1 Bioinformatics methods

2.1.1 Data retrieval and parsing

For this study, protein microarray data was retreived from the MacBeath lab
website (http://www.sysbio.harvard.edu/csb/macbeath/). The data con-
sisted of measured interactions (dissociation constants) between a variety of
epidermal growth factor receptors (ErbB) and most of the Src homology
2 (SH2) and phosphotyrosine binding (PTB) domains found in the human
genome. (jones) From the data set describing 44 PTB and 109 SH2 domains
versus 66 variations of ErbB1 through ErbB4 peptides, only the dissociation
constants relating to SH2 domains were extracted for this study (as there
were more SH2 domains, and they appeared to interact more frequently than
the PTBs). An alignment of the SH2 proteins was found at the MacBeath
lab, produced with the Muscle software (www.drive5.com/muscle/). There-
fore, Muscle was used to produce an alignment of the ErbB peptides as well.
The peptides turned out to align well, with rather few gaps in the multiple
sequence alignment. A java parser was written to read, sort and fuse the
corresponding (aligned) sequences, perform the translation into descriptors
described below, and compose a data matrix where each column represented
one property of a corresponding site in either the ErbB peptide or the SH2
domain and each row contained the descriptors from one particular combi-
nation. Most of the dissociation constants were ∞, which is not suitable for
calculations. Therefore they were all inverted (thus most of them became
zero) and then positioned in the last column of the ”spreadsheet”, to be
imported into the Simca software.

2.1.2 Mathematical description of biomolecules

Relating the molecules to their function requires a quantitatively or qual-
itatively comparable description of each combination of ErbB peptide and

6
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SH2 domain. There are many ways to produce such a description, and
the more information that can be included, the better the basis for build-
ing a model. At the same time the information must be easy to acquire,
and each sample should preferably not require additional laboratory work.
One way of describing biopolymer sequences, is to use a set of descriptors
for each of their amino acids. Instead of performing chemical analysis on
proteins, one uses empirically and mathematically derived descriptions of
amino acids, combined with the protein amino acid sequences. The most
evident advantage of this approach is that it uses the polymeric nature of
the proteins to avoid involving a 3D structure of the entire protein. The
descriptors used in this study originate from Sandberg et. al 1998 where
26 measured and computed properties were reduced to five principal com-
ponents covering about 95% of the total variance (3). These components,
each representing a linear combination of amino acid properties, are called
z-scales (z1...z5). All non-modified amino acids present in human proteins
have a set of z-scale descriptors, but not the phosphrylated tyrosine found
in many of the ErbB peptides. As that particular site was always either
tyrosine or phosphotyrosine, a single binary (0/1) descriptor was used for it.

2.1.3 Alignment independent alternatives

As only completely comparable properties can be used in this kind of analy-
sis, only areas not aligned towards a gap in any sequence can be used in the
model unless further processing is performed. Such gap-free areas are called
blocks. They can be translated into z-scale descriptor series and put directly
into the X matrix. If the alignment of the sequences contains many gaps,
significant information can be lost as all sequence stretches aligned towards
gaps must be omitted. If so, it may be possible to process the complete
sequences in such a way that they become independent of the alignment
quality. One such approach is called auto and cross covariance (ACC) (4).
The idea is that rather than finding covariance in every descriptor position,
one looks along the sequences for covariance a certain number of descriptors
apart (lag). While loosing the ability to identify specific important sites in
the sequence, it is possible to find patterns correlating to the structure and
function of the entire sequence, that do not depend on it’s size or sequence
length. Such covariances in a z-scale descriptor sequence can be obtained by
repeatedly (for each lag) running a ”sliding window” along the descriptor
sequence, collecting a covariance of a specific lag each run (Formula 2.1,
Figure 2.1). Auto covariance is obtained for comparisons between the same
type of descriptor (e.g. z1) and cross covariance for comparisons between dif-
ferent descriptors. Auto covariance and cross covariance have been treated
equally in this study. An ACC descriptor is produced for each combination
of z-scale descriptors j and k (such as z1, z4) and lag according to Formula
2.1.
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Figure 2.1: Each ACC entry requires sliding along the entire descriptor
sequence, collecting the covariance between descriptors a certain distance
apart.

ACCj,k,lag =

n−lag
∑

i=1

(zj,i − zj) × (zk,i+lag − zk)

n − lag
(2.1)

2.2 Statistics methods

2.2.1 Data processing

Mean centering and scaling

The data set produced by the parser consisted of a large matrix with one row
per ”object” (combination of ErbB and SH2) and one column per variable
(or descriptor). To make sure the variances among the descriptors were not
dependent on differences in unit or scale, all variables were mean centered
and scaled to unit variance. Mean centering means calculating the mean
values of every column and subtracting it from every individual entry. Thus,
all objects were scattered around the origin. Unit variance means that all
columns are scaled to a variance of one. Where large blocks of cross terms
or auto and cross covariance entries are present, they may be scaled down to
a smaller variance. Dividing the variables into groups of different types of
descriptors and scaling accordingly is called block scaling (not to be confused
with alignment ”blocks”).

Log transformation

Some of the variables may not be evenly distributed around their mean value.
Such variables, with a high skewness, may have a bad influence on the model
as statistical methods often expect data to be normally distributed. This is
typically the case for methods that depend on linear relationships. Skew-
ness is usually measured with Formula 2.2. Skewed variables can often be
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Figure 2.2: Histogram of skewed interaction data (inverted dissociation con-
stants) before and after log transformation.

transformed to resemble a normal distribution by using a simple logarithmic,
exponential or polynomial formula on the original values. Figure 2.2 shows
the effect of log transforming the interactions values used in this study.

Skewness =

∑N
i=1

(

Yi − Y
)3

(N − 1) s3
(2.2)

2.2.2 Principal components analysis

This study mainly relies on a regression technique called partial least squares
(or sometimes projection to latent structures). PLS has much in common
with a projection technique called principal components analysis (PCA).
PCA is a common way to simplify, or compress, data of many dimensions
by projecting it onto a subspace of a convenient number of dimensions. The
new coordinate system is chosen as an orthogonal set of linear combinations
of the original system such that the direction of greatest data variance (most
principal component) becomes the first new coordinate axis, the direction
of greatest remaining variance becomes the second coordinate axis and so
on (Figure 2.3). In many data sets, only a handful of principal components
may contain the majority of the total variance. PCA is an optimal method,
with regards to minimizing the squared sum of residual variance (variance
lost), to find the subspace of greatest variance. Performing PCA on a data
set may provide important information on how its variance is distributed.
The principal components will not, however, necessarily be the components
along which the variance is of most importance regarding a specific problem
(5) (6).
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Figure 2.3: PCA can compress data into a new base with fewer dimensions
with a minimum squared error.

Figure 2.4: Matrix operations overview of PCA.

PCA scores and loadings

The transposing of the objects in X onto the new basis can be represented
by a matrix operation X = T × P T where T and P are called the scores
matrix and the loadings matrix, respectively (Figure 2.4). The scores matrix
desribes all objects from X projected onto the new basis. The loadings
matrix describes how the variables in X are combined to form the new base.
To display the projected data in the original coordinate system, simply
multiply T × P T .

The scores and loadings can be used to investigate various properties
of the data set. By plotting the scores of the first components against the
scores of the second component it is possible to discern groups or classes of
objects from each other, or find outliers capable of disturbing the model.
Outliers are objects that do not appear to belong to the same probabilistic
distribution as the rest of the data, and they may have appeared as a result
of faulty measurements or other errors. Removing outliers can improve the
model, as long as there is a reason to believe that they are there because
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of an error. A corresponding plot of the loadings will reveal covariances
among the variables, that is, if one object has a certain value of a particular
variable, which other variables can be predicted. ”Outliers” in the loadings
scatter plot are variables that show an unexpected bahavior, perhaps due
to a faulty measurement instrument.

2.2.3 Principal components regression

A regression model with hundreds or thousands of variables and thousands
of objects is problematic for simple regression methods such as multiple lin-
ear regression. The system is likely to be underdetermined if descriptive
methods such as cross terms are used, and even if it is not, a large number
of variables compared to measurements makes overfitting easy. Therefore
it is usually necessary to limit the regression to the parts of the data that
exhibit the most variance, essentially compressing the data into fewer vari-
ables. With the principal components found in PCA, it is straightforward
to imagine a regression model where the components of greatest variance
are fitted towards the interaction values (or their principal components) so
that TB + E = Y . T would be the (chosen components of the) descriptor
matrix, Y the response matrix (interaction strength), B a regression coef-
ficient matrix and E a noise term (with the same dimensions as Y ). Such
a model, called principal components regression (PCR), has the drawback
that T , the components of greatest variance, might not be the components
of greatest importance for predicting (Y ) (8).

2.2.4 Partial least squares

A different approach called PLS (partial least squares or, sometimes, pro-
jection to latent structures) has the advantage of extracting components of
the X data that have a high variance and great correlation with Y . Just like
PCA, PLS essentially projects the objects in X onto a new base. However
this new base is selected with respect also to the correlation with Y . Both
regression models, principal components regression and partial least squares
regression, produce linearly uncorrelated factor scores. That is, the new
base describing the X components of choise is orthogonal. The difference
between them is in how the scores T are extracted. In PCA the loadings
matrix P T represents the covariance structure of X, while it’s PLS coun-
terpart represents a combination of the covariance structure in X and the
correlation between X and Y (7).

Algorithm

The most popular and the first partial least squares algotithm, nonlinear
iterative partial least squares (NIPALS), has the advantage to calculate one
regression component at the time. If matrix operations were used instead,
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the entire set of components would have to be calculated at once. That would
lead to unnecessary, potentially very time consuming computations as only a
few components are likely to be needed. Between extracting components, the
model validation described below is performed. The presently used NIPALS
was developed by Wold et al. in 1987 (8).

Scores and loadings

The scores and loadings matrices produced by the PLS procedure can be
examined in roughly the same way as PCA scores and loadings. However,
objects are close together in the score scatter plot not only due to covariance
between X variables, but also because of similar covariance between their
X and Y variables. For example, two molecules with many similar chemical
properties would be close together in a PCA score scatter plot, but for PLS
they would also have to have those chemical properties correlated to their
Y data with similar correlation coefficients. Variables or attributes close
together in the PLS loadings scatter plot would not only be correlated in X
but also show a similar impact on Y .

2.2.5 Model validation

To optimize the number of regression components included in a PLS model,
validation of the model is carried out between calculating the components.
Including too few components will allow part of the relationship between
X and Y to go to waste, and including too many will cause an overfitted
model. The measurements normally used to assess the model are R2X, R2Y
and Q2. R2X represents what fraction of the sum of squares (complete vari-
ance) in X that resides in the components selected so far (remains after
the projection). Similarly, R2Y represents what fraction of the Y variance
that is explained by the model. R2 is displayed cumulatively (not for in-
dividual components, in which case it would represent the fraction of the
total variance that is covered by that particular component). Therefore it
increases with the number of PLS components included. For data scaled to
unit variance, R2X and R2Y would be 1 if all components were included.
However too many PLS components will make the model overfitted as it
covers smaller, noise-like covariances between X and Y . To assess the pre-
dictive ability of a model, a cross validation loop is performed. The objects
are randomly separated into groups that are repeadedly left out of the PLS
regression. The model is then evaluated on those left-out objects. Q2 (cu-
mulative) represents the amount of Y variation that appear be possible to
predict with the model, according to the cross validation. In Simca, Q2 is
calculated as 1 −

∏

A(PRESS/SS). The prediction error sum of squares
(PRESS) is the squared differences between observed and predicted values
for the data kept out of the model fitting, SS is the sum of squares (to-
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tal variance) in Y and A is the set of components selected. Q2 can be no
higher than R2Y and normally starts low for few components, increases to
a plateau for the optimal number of components and then declinies as the
model is more and more overfitted (9) (8).



Chapter 3

Result

3.1 Result summary

An effectively predictive model could not be built from the data set.
However:

• The model was improved by log-transforming the much skewed Y vec-
tor

• The model improved slightly when adding SH2 domain auto and cross
covariance descriptors.

• The model also improved when using cross terms and block scaling.

• It was indicated that a better variance in the Y vector would produce
a much better model

For a complete table of R2X, R2Y and Q2 results in the models tried, see
the appendix.

3.2 Data matrix

The structure of the data set, which was the input for the model, is shown
in Figure 3.1.

3.2.1 Objects

The basic data matrix produced by the java parser ended up covering inter-
actions between all combinations of 52 ErbB peptides and 105 SH2 proteins.
The X matrix and Y vector (produced concatenated by the parser) thus
came to have 5460 rows. This is the number of objects in the model.

14
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Figure 3.1: Structure of the data set imported to Simca

3.2.2 The X matrix

Each row in the X matrix constitutes one measurement, or object. Each
column covers one variable, an object property of some sort which is compa-
rable within the complete set of objects, such as the hydrophobicity at one
particular position. As several methods of protein description were tried, the
number of columns in the X matrix varied throughout the experiment. As
the ordering of columns is of no importance in the model, blocks of protein
and peptide Z-scales, protein auto and cross covariance data and numbers
representing the lengths of unalignable protein areas were just concatenated
into different combinations as needed. With five Z-scales per amino acid
residue, the number of columns in the protein Z-scale blocks was 160. As
one of the amino acids in the peptide sequences had a binary descriptor
only, the number of columns in the peptide Z-scales was 76. The auto and
cross covariance block had 500 columns (with a maximum lag of 20. No
improvement could be seen for higher maximum lags).

3.2.3 The Y vector

With most combinations of peptide and protein not showing any interaction
in the microarray experiment, the Y vector turned out highly skewed, as
most of the inverted dissociation constants used were zero. The number of
non-zero values were only 171 out of a total of 5460, producing a skewness of
43.4. The set of non-zero values was also skewed towards low values, having
a skewness of 8.55. The Y entries ranged between 0 and 0.08.

3.3 Countering intraction value skew

The Y skewness of 43.4 was reduced to 9.27 by log-transforming the vector:

y′ = lg(y + 0.001), (3.1)
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Figure 3.2: Q2, the predictive power of the model, improves with a log
transformed Y vector. The improvement is greater when excluding objects
with a Y value of zero.

the small addition as lg(0) is undefined). None of the X variables had an
obvious skewness. The Y skewness may have been possible to reduce slightly
further by adjusting the formula, but the underlying problem is the large
number of zeros. After transforming, the skewness of the set of non-zero
values fell to only 1.86, indicating a rather even distribution among them
(Figure 2.2). The effect of log transforming Y on the predictive ability of
the model is displayed in Figure 3.2.

3.4 Countering poor protein alignment

One possible source of poor results next to the Y skew is the rather low
quality of the SH2 domain alignment. The alignment algorithm had not
only aligned areas whose representation of the same function could be ques-
tioned, but also produced quite a few large gaps where stretches of sequences
apparently showed no resemblance to each other. As only blocks, or areas
completely without gaps, can be used in the PLS modelling, any information
in such stretches was lost. Blocks that are of questionable quality may be an
important source of noise data in the PLS model, as they might not repre-
sent comparable functions. Two different approaches were tried to combat
this problem. The first calculated the lengths of stretches lost due to gaps
and added those numbers to the end of the descriptor sequences. Although
their content would still be lost, at least the lengths of the areas would
survive into the PLS modelling.

The other approach implemented an alignment independent method of
describing the z-scale descriptor sequences of the complete (not just blocks)
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Figure 3.3: Q2 did not improve when adding descriptors representing the
lengths of sequence parts lost due to gaps in the alignment. Replacing the
SH2 z-scale descriptors with AAC had a negative impact, but including both
improved Q2. Block scaling improved Q2 further.

SH2 domains, auto and cross covariance (ACC). The ACC columns cover
covariances a certain number of descriptors apart in a sequence, up to a
maximum lag equal to the length of the shortest sequence −1. The number
of covariances becomes the same for all sequences and no parts are left out
of the model. However, ACC cannot be used to find active sites in the
proteins. The results displayed in Figure 3.3 are for ACC with a lag of up
to 20. Including longer lags did not appear to improve the result. Q2 values
are shown for models with and without the protein z-scale blocks, and also
with and without excluding rows where y = 0.

3.5 Block scaling

When several different types of descriptors are used, and their numbers
are very different, some descriptors may be too few to impact the model
according to their importance. Therefore, blocks of protein z-scales, peptide
z-scales and ACC descriptors were rescaled such that each block had the
same total variance. That was done after the first scaling to unit variance.
Rescaling of blocks with certain weights might further improve the predictive
power of this kind of model, but was not tried due to time restriction.
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Figure 3.4: PLS on the reduced data set with non-zero Y values. Cross
terms reduced R2X, the ratio of X variance covered, probably becauce the
amount of X variance increased greatly with cross terms. The increased
descriptive power of cross terms improved R2Y , the ratio of Y variance
explained, and Q2, the ratio of Y variance possible to predict.

3.6 Cross terms for non linear components

As the basic PLS regression only discovers linear components of variance,
any important nonlinear relationships between combinations of descriptors
and Y values will be lost. However, it is possible to convert some nonlinear
combinations to linear by adding cross terms of descriptors to the model.
As the data set grows rapidly with cross terms, for computational reasons
this was only tried for a reduced data set where nonbinding (Y = 0) objects
are omitted. Therefore the result may be seen as a clue to how cross terms
would affect the model had the data set been less skewed. The R2X, R2Y
and Q2 values of Figure 3.4 represent models without ACC, and with and
without cross terms of all z-scale descriptors.

3.7 Scores and loadings scatter plots

Figures 3.5 and 3.6 show examples of scores scatter plots from PLS exper-
iments without and with ACC descriptors. Two or three groups of objects
can be seen, but they proved only to be groups objects with similar SH2
sequences. With a bigger data set, such groups might have been suitable
for separate modelling. When ACC descriptors are used, that separation
is mush less visible. Red dots are objects where Y > 0. Although a clear
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Figure 3.5: Scores scatter plot (first 2 PLS components) of all objects, using
z-scale descriptors only.

separation between red and black dots cannot be made, it appears that the
red are differently distributed. Figure 3.7 is a loadings scatter plot from
the same model as Figure 3.5. For a model with a high predictive ability,
the covariances between variables/descriptors and their impact on Y can be
used to find sites of special importance for the interaction.
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Figure 3.6: Scores scatter plot (first 2 PLS components) of all objects, using
z-scale and ACC descriptors but not cross terms.

Figure 3.7: Loadings scatter plot (first 2 PLS components) of a model using
z-scale descriptors only.



Chapter 4

Discussion

With fewer than 200 out of 5000 interaction strengths being above zero,
a highly satisfactory result was not expected from the model. However,
although it turned out difficult to make the data work well in a PLS model, it
must be assumed that data such as this is common in this sort of microarray
experiments. Protein microarrays is a new technology, different in many
ways from DNA microarrays, and making it reliable can take some time.
Protein-protein interactions are also known to be difficult to model. All in
all, the resulting PLS model in this project was not very successful.

4.1 Data set

The skewness of the data set was the most problematic issue encountered
during the project, and no method capable of dealing with it properly was
found. The reason why this occured is mainly that methods such as PCA
and PLS require the input data to be approximately normally distributed.
Log transformation would have helped more against the skewness if not the
majority of Y values had been exactly the same. Excluding objects that
do not interact or certain SH2 or ErbB sequences entirely may improve the
apparent result to a degree, but is contraproductive for predicting unknown
data. Not only is the number of interacting objects rather few, excluding
unwanted objects changes the distribution on which the model is built, re-
ducing it’s real predictive power. Naturally, the space of effectiveness of
the model will be limited to sequences similar (i.e. particular descriptors
represent the same function or feature) to those on which the model is being
built, so the sequence feature space covered needs to be kept as large as pos-
sible. The addition of auto and cross covariance data to the model improved
the result only slightly, but there may be other alignment independent ways
to improve the mathematical description of objects and cover features not
reached by the model in this study. At the same time, in order to use the full
potential of cross terms, the total size of the data set must not be allowed
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to grow out of hand. A statistical analysis of the data prior to modelling
may have predicted the low likelyhood of success, but there was not a many
other such data sets to choose from.

4.2 PLS results

A predictive model could not be produced for the complete data set. Omit-
ting all objects with a Y value of zero provides a hint of what could be done
with less skewed data. It is possible that the result of a more evenly dis-
tributed (more interacting objects) data set could be much better than seen
here as the total number of interacting objects was rather low, only about
170. Log transformation has a good effect on skewed data provided that
it is not concentrated to one value as was the case here. Cross terms also
has a positive effect, and more work could have been done to evaluate their
effect. For example, in Simca it was not possible to produce cross terms
only between separate blocks of variables without tedious manual work. As
cross terms of all possible variables cause polynomial growth of the variable
matrix, it was not attempted on the complete data set. Nothing indicated
that the results would have come close to those achieved with interacting
(Y > 0) objects only, and that produced a Q2 of only about 0.3. As most
models tried became overfitted after the first component, it must also be
concluded that there was little evidence of a strong correlation between X
and Y values.

4.2.1 Sources of uncertainty

It has been shown that the model improves with a reduced skewness. But
it remains a question whether there were other problems with the data that
showed no interaction. There may have been shortcomings in the microarray
experiment that prevented pairs of ErbB peptide and SH2 domain from in-
teracting as they should. Some peptides are also much more promiscous than
others. Perhaps there are differences in the 3D structure between groups of
sequences, despite a high sequence similarity. Such differences could make
comparisons of certain sites useless as they would differ in function. There
is also a chance that the validation method used may not be optimal to the
problem. However, it is unlikely that the model quality is underestimated.
Freyhult et al. (10) showed that the formula used by the Simca software
to calculate Q2 might produce a slight overestimation under certain circom-
stances and there is evidence that a PLS model can become overfitted unless
a double cross validation loop is used (9). In this particular study, every
SH2 and ErbB descriptor sequence is found in a large number of rows in
the X matrix. That might cause a problem as all sequences will probable
always be represented inside the cross validation loop. Finally there is some
risk of human errors during data handling and programming.
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4.3 Improving the model

4.3.1 Binary classification

The PLS results improve radically when non interacting combinations are
left out of the model. If there was a method capable of distinguishing com-
binations likely to interact from those that are unlikely, the skewness of the
data set might be possible to reduce before running the PLS model. There
are many mathematical and statistical clustering and classification methods
available that might be useful. One classification method, Rough Sets, was
tried briefly during this project. The 5400 objects were designated ”inter-
acting” or ”non interacting” depending on whether their Y value was above
zero. Then a reducing algorithm was used to produce a set of logic rules
for automatically separating them. Cross validation was used to validate
the classifier, which turned out very ineffective. Although a set of rules
was produced successfully, they turned out classifying almost all objects
as ”non interacting”, failing to discriminate significantly between the two
classes. One reason was probably that the large number of non interacting
objects compared to interacting caused the classifier to consider itself rather
successful with a 90% correct classification, and therefore failed to discrim-
inate between good and useless rules. A thorough analysis of the rough set
method was omitted due to lack of time.

Additional information

It might have been possible to improve the model further by adding more
information on the proteins involved. For example, sites known to be active
in the interaction could have been weighted to impact the model more. This
was not considered since the whole idea of proteochemometrics is to enable
prediction of function without relying on the support of a 3D structure
or other advanced additional research. This study aimed only to find a
relationship between the sequences and their interaction strengths.

4.3.2 Using the model

Had the model turned out to have a good predictive ability, a discriminant
analysis might have been able to reveal sites of importance for the inter-
action. By looking at score scatter plots, it would be possible to find out
which PLS components separate interacting objects from non interacting
ones. Corresponding loading scatter plots would then indicate which ones
of the original variables influence the interaction the most. Such knowledge
could be used to engineer new receptors or ligands. A discriminant analysis
has not been made in this project due to the low predictive ability of the
model.



Chapter 5

Conclusion

The ErbB-SH2 interaction data set recovered from Jones et al turned out
to be too skewed towards zero to make a good model. However, some tech-
niques for improving and processing data prior to PLS modelling appeared
to have a positive effect on the model’s predictive ability. Excellent results
were not expected, but it might have been a good idea to try to estimate
what could be done with this data set, and others, before deciding to use
it. It would be interesting to compare the result of this study with those of
other proteochemometric models and look for data set properties necessary
for successful modelling. Perhaps in the future this kind of modelling can
be kept in mind when designing microarray experiments in order to secure
statistically viable data. During parsing of this data set, it was also evi-
dent that standardization of microarray result formatting would reduce the
amount of sorting and programming required to parse the data, and reduce
the likelyhood of errors making their way into the model.
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Appendix: Table of PLS model results. 
 
A = Number of components selected 
 
Experiment configuration   A R2X R2Y Q2 
z-scales all objects   1 0,0227 0,0341 0,00992 
only non-zero   1 0,0579 0,219 0,024 
 all, log(Y)   3 0,0805 0,127 0,0831 
 log(Y), non-zero  1 0,0615 0,348 0,237 
 log(Y), non-zero, cross terms 1 0,0224 0,548 0,291 
 log(all), non-zero, cross terms 1 0,0224 0,55 0,293 
        
with descriptors all objects   1 0,0229 0,0337 0,00968 
representing all, log(Y)   3 0,0809 0,127 0,0834 
lengths of areas log(Y), non-zero  1 0,0604 0,349 0,236 
lost due to gaps log(Y), non-zero, cross terms 1 0,025 0,538 0,274 
        
acc instead of all, log(Y)   2 0,0385 0,124 0,0799 
SH2 z-scales log(Y), non-zero  1 0,0788 0,269 0,119 
        
acc and SH2 all, log(Y)   2 0,041 0,128 0,0884 
z-scales log(Y), block scaling  2 0,0396 0,136 0,0963 
 log(Y), non-zero  1 0,0714 0,365 0,247 
 log(Y), non-zero, block scaling 1 0,0574 0,391 0,264 
 




