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A study of DNA base dimers using quantum mechanical

ab initio methods

Göran Wallin

Sammanfattning

Den genetiska informationen i våra celler lagras i DNA-molekylen � en spiral-
formad polymer som består av en socker-fosfatryggrad och fyra olika baser,
adenin, guanin, cytosin och tymin.

Fokus med det här arbetet har varit att studera den direkta interaktionen
mellan olika kombinationer av baserna guanin och cytosin, som de uppträder
i DNA, för att se om den kvantmekaniska orbitalinteraktionen kan vara en
bidragande orsak till dess karakteristiska spiralform.

Resultatet av beräkningarna visade att de här baserna gärna ställer sig i
den formation vi hittar i biologiskt DNA på grund av huvudsakligen kvant-
mekaniska e�ekter.

Även om vägen är lång tills vi kan beskriva DNA i sin helhet med kvant-
mekaniska metoder, och det här arbetet bara skrapar på ytan till problemet,
har de här resultaten antydit att kvantmekaniken kan avslöja hittills okända
mekanismer bakom DNA-molekylens struktur.

Examensarbete 20 p i Molekylär bioteknikprogrammet

Uppsala Universitet, Februari 2007
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1 Introduction

It has hardly escaped anyone’s notice that the bearer of genetical information
in all living beings, the DNA molecule, is helical. However, what has eluded
severe scientific scrutiny, essentially since its revelation in 1953 by Rosalind
Franklin [22], James Watson and Francis Crick [63], are consistent probable
causes behind this preferred helicity.

The reason for this may lie in the fundamental quantum mechanical nature
of DNA, which has been, and still is, intractable to probe in its entirety.

Although the grand question is currently beyond the cababilities of our finest
computer systems, and indeed the scope of a master’s thesis, the helicity of
DNA will be studied here on a dimeric nucleobase level using quantum me-
chanical methods.

Also, the methodology is developed in such a way that the problem can be
scaled up for future studies, where we have in mind that since the processing
capabilities of computers effectively doubles every second year [40], even the
grand problem may become solvable within a not too distant future.

1.1 Purpose

The purpose of this thesis is to verify what conformations stacked dimers of
the nucleobases guanine and cytosine will prefer when subjected to a rotation
about the B-DNA helical axis, using a purely quantum mechanical treatment.

1.2 Outline

The strategy that will be followed to fulfill this purpose can be subdivided into
the following four steps.

i. Obtain quantitatively accurate quantum mechanical descriptions of the
DNA bases adenine, guanine, cytosine and thymine as compared with ex-
perimental results.

ii. Subject dimers of the guanine and cytosine bases from these descriptions
to a rotation about the helical axis.

iii. Calculate the quantum mechanical potential curves along the path of these
transformations.

iv. Compare these potential curves with X-ray crystallographic data on B-
DNA.

5



6 Introduction

In this report, the realization of this strategy is described within the following
main subjects.

Background. Since the model only encompasses the bases themselves, this
implies a rather drastic simplification of the grand problem. To remedy this,
the expected impact of the factors that are not dealt with in this model system
is briefly described in the background.

In addition, to be able to rotate about the helical axis, it is required that
this axis is defined. For this purpose the Standard Reference Frame of helical
coordinates [41] will be followed, and is consequently also reviewed.

Theory. In this chapter, the underlying equations behind the most important
quantum mechanical methods are derived, along with a few interpretations and
notes. For swift examination, a non-technical abridgement is also available at
the end of the chapter.

Methods and Results. The methods and results have been separated into
two chapters, the first describing the implementation of the Standard Reference
Frame, with the modest statistical analysis of X-ray crystal structures that
ensues, and the second describing the actual computations.

At the beginning of the computational chapter, the results on the model
system Ne2 is presented, which is subsequently used to evaluate to what extent
the quantum mechanical electron correlation describes the chemical van der
Waals interaction for second row atoms. Here, we remember that rare gases
are by definition non-interacting, save for dispersion attraction, which is the
actual motivation for this choice of model system together with the abundance
of available experimental data from cluster experiments, as introduced in [32].

The remainder of the chapter is devoted to the computations on the indi-
vidual bases, which are compared with experimental results from photoelectron
spectroscopy recently obtained by this group [60], followed by the dimer calcu-
lations and their resulting potential curves.

Discussion. In the discussion, the potential curves are interpreted vis-à-vis
electrostatics, electron correlation and finally the direct orbital interaction as
given by the stationary non-correlating state.

While having in mind that this particular model system is expected to
describe single stranded DNA, a comparison with the dinucleotide data from
double stranded B-DNA, as given by the modest statistical analysis, is also
made.

At the end of the discussion, the conclusions that are drawn from these con-
siderations are summarized, followed by suggestions on future improvements.



2 Background

Wir müssen wissen,
wir werden wissen.

David Hilbert

Deoxyribonucleic acid (DNA) is made up of a sugar-phosphate backbone onto
which nucleic acids are affixed. There are four kinds of DNA bases, namely
adenine, guanine, cytosine and thymine, where adenine and guanine are purine
derivatives, whereas cytosine and thymine are substituted pyrimidines.
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The chemical structures of the DNA bases are shown below, where their
connection to the backbone deoxyribose is marked by a bullet (•).
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8 Background

The atomic numbering of these bases will here follow the ordinary IUPAC
nomenclature [20] as given below1,
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By convention, the orientation of the DNA polymer is in the direction of
the 5′ to the 3′ carbon of the sugar, usually written 5′ → 3′.

Chemical formulae describing the Watson-Crick base pairing [63, 22] are
shown below. We notice that whereas the G–C base pair has three hydrogen
bonds, the A–T only harbors two2.
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1Note that the subscripts and superscripts are merely for clarity in the chemical formulae.
The atoms are referred to by the chemical symbol followed by a number, e.g. N6 for the
sixth nitrogen.

2Interestingly, Watson and Crick themselves originally only envisaged two hydrogen
bonds between guanine and cytosine [62].
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By using the molecular quantum mechanical techniques that will be out-
lined later on, the result of a rather modest calculation will already confirm this
hydrogen bonding scheme. Specifically, figures 2.1(a) and 2.1(b) show the total
electron density at the Hartree-Fock level of the two Watson-Crick basepairs.

(a) Adenine-Thymine basepair (b) Cytosine-Guanine basepair

Figure 2.1: Electron probability surfaces for the Watson-Crick basepairs cal-
culated with modest ab inito methods (HF/6-31G). The calculations confirm
the predicted hydrogen bonds between the molecules, two for the A-T and
three for the G-C basepair. The near transparent surfaces represent the loca-
tions where the probability of finding electrons is p = 0.01.

There are three major families of DNA, namely A- , B- [23] and Z-DNA [61]
that will, at least in some cases, reversibly transform into each other given
certain circumstances.

Actually, the first two single crystal X-ray structures of DNA at atomic res-
olution were Z-DNA [61, 15], whereas the first full turn B-DNA was announced
in 1980 by Richard Dickerson and his group [14]. It held the twelve-nucleotide
sequence 5′−CGCGAATTCGCG−3′ and was hence termed the Dickerson do-
decamer. This article was followed by a comprehensive study on that structure
[17], the specific influence of the base sequence on the helix conformation [12]
and the details of the water geometry[13].

Many single crystal structures of DNA have been resolved since then, and
in much the same way that the Brookhaven Protein Data Bank (PDB) [6] is the
central repository for protein structures, the Nucleic Acids Database (NDB) [5]
currently contains over 3000 nucleic acids structures.
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2.1 DNA Conformation

We can outline at least five major contributing factors to the conformation of
the double helix.

i. The base sequence and vertical base interactions.

ii. The sugar-phosphate backbone.

iii. Hydration and counter-ions.

iv. Temperature.

v. Crystal packing effects and lattice interactions.

Crystal packing Beginning with the least significant factor, the dilemma of
whether we are seeing the overall optimal conformation in a crystal structure
or simply an artificial local minimum due to intermolecular interaction within
the crystal lattice is termed the tyranny of the lattice, or the effect of crystal
packing.

A way of gauging such effects is by crystallizing the same sequence in dif-
ferent space groups, and by such methods it has been shown that the crystal
environment will indeed have a significant impact on the DNA conformation,
but more so on a global rather than local scale, primarily affecting DNA bend-
ing [10], although this view has been challenged [31].

Temperature The resolution of identical nucleic acids structures in tem-
peratures ranging from 16K to room temperature reveals a slight impact of
thermal motion on DNA conformation but much less so than from structures
in solution [16].

Hydration and Counter-ions Cations are mostly seen to interact with the
negatively charged sugar-phosphate backbone or to coordinate water molecules
[56] perhaps even in the minor groove [52], and probably alleviate the charge
repulsion between the two strands, hence bringing them closer together and
permitting conformational states that otherwise would have been energetically
unfavourable. The most prominent example is perhaps the previously men-
tioned Z-DNA conformation that arises in high salt solutions of (CG)n sequence
motifs in vitro [61] and presumably by negative torsional strain in vivo [64].

Water molecules are often seen coordinated in the spine of hydration that
runs within the minor groove of B-DNA [13]. It is composed of four layers
shaped in an hexagonal pattern [52, 53], which in its lowest layer interacts
directly with the bases, specifically the N2 or H2 atoms of guanine, the O2
atom of cytosine and thymine and the N3 atom of adenine, as reported already
in the Dickerson dodecamer [17].

Hypothetically, water bridges — that reach between the strands and con-
sequently interconnect them — may be an appropriate metaphor to describe
the role of water in the minor groove [13], but recent neutron diffraction exper-
iments reveal a much more complicated picture [2], which may be the subject
of future ab initio investigations.
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The Sugar-phosphate Backbone Relatively wide ranges of backbone con-
formations are accessible in DNA [50] but the internal sugar-phosphate coordi-
nates were early known to show statistical bivariate correlation [18, 24]. More
recently, a number of multivariate statistical analyses have shown significant
clustering of DNA subclasses [4, 54] and are often accompanied with molecular
dynamics or Monte Carlo calculations [19, 44].

Although a few important degrees of freedom of the sugar-phosphate back-
bone are consistently revealed in such analyses, the precise causal relations
remain somewhat elusive. Nevertheless, one of these studies provides us with
a counter-hypothesis, which is that

Twist is insensitive to the base stacking interactions and is deter-
mined solely by the constraints of a relatively rigid fixed length
backbone.

as quoted from Packer et al. [44], a point of view which is further elaborated
in [42] and [43].

The Base Sequence and Vertical Base Interactions Vertical sequence
specific base interactions, or base stacking, is the focus of this report, and al-
though plentifully reported elsewhere, e.g. [26], a modest statistical analysis
of a dinucleotide dataset derived from NDB will be performed. This will sub-
sequently serve as a starting point for a base stacking energy calculation of a
few bases with ab initio methods.

2.2 Energies and Conformations

At this point, it may be worthwile to mention that if a certain conformation
is energetically favourable, it is by the Boltzmann statistics also more likely to
occur. In that sense, the calculation of energies can provide an explanation as
to why certain structures are preferred over others.

There are two main ways to do this, and those are either by classical or
quantum mechanics.

Classical Mechanics At the center of molecular energetics calculations by
classical mechanics lies the ergodic postulate, which simply states that the en-
semble average equals the time average at the limit where time goes towards
infinity. Hence,

[A] = lim
t→∞

1
t

∫ t

0

dt′A(t′) , (2.1)

where by the Boltzmann statistics

[A] =
∑

iAi exp(−βEi)∑
i exp(−βEi)

or [A] =
∫
dΓq,pA(q, p) exp(−βH(q, p))∫

dΓq,p exp(−βH(q, p))
, (2.2)

where dΓq,p is a volume element in phase space. Generally speaking, evaluation
of the right hand side of Eq. (2.1) leads to molecular dynamics and the left
side to Monte Carlo simulations.
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In molecular dynamics, the time evolution of the ith atom in the system is
given by Newton’s second law

ẍi = − 1
mi
∇Φ

where xi is the position of the atom, m its mass and Φ is the force field
potential.

Monte Carlo simulations, however, try to find the most probable conforma-
tions by evaluating the canonical distribution, i.e. exp(−βH(q, p))/Z, where Z
is the denominator of the continuous ensemble average in Eq. (2.2).

Quantum Mechanics In quantum mechanical treatments, on the other
hand, the time evolution of the system is given by the Schrödinger equation

i~
∂

∂t
|α, t 〉 = H|α, t 〉 ,

where the Hamiltonian operator H is the sum of the potential and kinetic
energy of the state, and the ket, represented by | 〉, is the generalised rep-
resentation of its solutions. As in classical mechanics, the time evolution is
generated by the Hamiltonian, and for a stationary state, which is necessarily
prepared in eigenstates to the Hamiltonian, the time dependence of the state
can be factored out.

| a′, to → t 〉 = exp
(
− i

~
Ea′(t− to)

)
| a′ 〉.

Inserting this into the Schrödinger equation gives the time independent formu-
lation

H| a′ 〉 = Ea′ | a′ 〉 ,

provided that the Hamiltonian is time independent.

The obvious drawback of the classical approach is that molecules are not clas-
sical objects3 and that important quantum mechanical effects will be neglected
in such treatments.

This is partly remedied by approximating such effects by terms in the po-
tential Φ, either based on experimental results or quantum mechanical calcu-
lations. However, there can never be any certainty as to whether a potential
derived specifically for one system is applicable to another, unless this has been
shown either experimentally or by quantum mechanical ab initio calculations.

On the other hand, since ab initio calculations are much more computation-
ally demanding than the classical treatments, they have been mostly confined
to smaller single molecular systems until very recently.

3Whereas this statement is easy to motivate for molecules, it is harder to justify for
macromolecular borderline classical – quantum mechanical cases, such as proteins. For an
enlightening measurement of the transition from quantum to classical mechanics in fullerenes,
by the renowned physicist Anton Zeilinger, please consult reference [27], and for a theoretical
treatment of decoherence and open systems, the impressive Ph. D. thesis of Johan Åberg is
recommended [1].
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There is an abundance of studies on the base stacking interactions using molec-
ular mechanics, where the work of Cristopher Hunter may be of special interest4

[29, 30].
Whereas semi-empirical treatment of base-pair hydrogen bonding can be

traced back to the late sixties [37], ab initio calculations on base stacking has
been extensively studied fairly recently by Jǐŕı Šponer, in the group of Pavel
Hobza [57, 34, 58], but others have also begun to realize the potential in this
field [38, 55], with new quantum mechanically related experimental data on
DNA being published with increasing frequency.

2.3 The Standard Reference Frame

There is a unified reference frame for internal helical coordinates, referred to
in the literature as the Cambridge Accord [11]. These coordinates are subdi-
vided into local base-pair parameters, local step parameters and global helical
parameters respectively.

Local base-pair parameters describe deviations from the ideal Watson-Crick
base-pairing geometry between complementary bases, local step parameters
define the transformations between adjacent base-pairs when going from one
base-pair to another, and global helical parameters characterize base-pair ori-
entation with respect to a globally defined coordinate system.

In the base-pair coordinate frame, the y-axis is taken to be parallel to either
the line connecting the C1′ of the first strand to the corresponding C1′ on the
complementary strand, or the line between the C6 atom of the pyrimidine with
the C8 on the purine, as shown in figure 2.2. Whatever the choice, the y-axis
needs to intersect the C6 atom of the pyrimidine.

C6 C8

C1’C1’

y

x

z

d(C6, C8)

1/2 d(C6, C8)

Figure 2.2: The base-pair oriented coordinate frame as given by the Cam-
bridge Accord.

The x-axis must also lie in the plane of the base-pair, perpendicular to the
y-axis, so that it intersects the bisector of C6-C8. Consequently, the point of
intersection will lie at half the length between C6 and C8. Finally, the z-axis

4 Actually, the latter citation has inspired much of the work presented here.
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completes the coordinate system and will, by the right hand rule, point out-
wards and be orthogonal to the plane of the paper.

With such a choice of coordinate frame, two consecutive base-pairs in ideal
B-DNA conformation are displayed in figure 2.3.

y’

y

x’
x

Figure 2.3: A graphical representation of two consecutive base-pairs in ideal
B-DNA, together with the local base-pair coordinate systems given by the
Cambridge Accord. The coordinate system of the first base-pair is given by
the xy-axes, the second base-pair by the x′y′-axes and the two z-axes are
parallell. By this definition, the base-pairs in B-DNA are rotated with respect
to the z-axis by 36o.

Indeed, this choice of coordinate system provides, to a good approxima-
tion, a description of the helical turn in B-DNA, where translations in the
xy-directions can be considered negligible. Actually, the rotation shown above
is the primary rotational degree of freedom in the Cambridge Accord, termed
helical twist (ω).

By representing the base-pairs with slabs, as shown in figure 2.4, the six
local base-pair parameters are schematically depicted in figure 2.5 and the local
step parameters are shown in figure 2.6.

In 2001, the joint committee of IUPAC-IUBMB approved the parameters
in the Cambridge Accord, and the resulting work is termed the Standard Ref-
erence Frame for the Description of Nucleic Acid Base-pair Geometry and also
contained cartesian coordinates of the atoms in the bases given in this refer-
ence frame [41]. These coordinates will be explicitly used in this work and are
presented in table A.1, located in the appendix section A.1 on page 71.

2.4 The Mid-Step Triad

Having defined the helical coordinates, we require that the coordinates in this
frame should be invariant under the two-fold symmetry of the double helix,
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3’

3’

5’

x
z

y
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3’
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3’

Figure 2.4: A full atomic representation of the bases, to the left, can be
simplified using slabs to denote the planar bases, on the right.
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z

(e) Propeller twist (π)

x

y

z

(f) Opening (σ)

Figure 2.5: Local base-pair parameters as given by the Cambridge accord.
Each column represents translations and rotations about the x-, y-, and z-axis
respectively. (Constructed and visualized with 3DNA [36] and XFig.)

or at least up to a sign change. In other words, the helical coordinates in an
arbitrary sequence

5′−ACGT−3′

||||
3′−TGCA−5′

should be identical when calculated from the left to right as from the right to
left in the corresponding helix.

In order for this to hold, the rotation-translation operator taking the first
base to the second should commute with the operator that brings it back. It
can be shown5 that this holds in the plane if the translation is taken to be
along the bisector of the rotational angle.

In practice, a virtual intermediate step is defined to lie between the base-
pairs at half the translation vector lengths from base-pair i to i+1. As long as

5This will not be shown here, since it is slightly beyond the scope of this background.
However, an outline of a proof using rotation-translation commutators can be given upon
request.
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Figure 2.6: Base-pair step parameters as given by the Cambridge accord.
Each column represents translations and rotations about the x-, y-, and z-axis
respectively. (Constructed and visualized with 3DNA [36] and Xfig.)

the base-step parameters are evaluated with respect to that theoretical inter-
mediate coordinate frame, the rotation-commutation operators will commute.

This concept of defining helical parameters is refered to as the mid-step
triad (MST) procedure in the literature, originating from [65], and is sketched
in 2.7.

Two-fold Symmetry Invariance

However, the prefered invariance under the two-fold symmetry operation is not
altogether retained in the MST procedure, which can be seen in the following
schematical transformations.

5’ 3’

5’3’ 5’ 3’

5’3’ 5’ 3’

5’3’

xx x
y

y y

z z z

From this representation we see that whereas the y- and z-axes follow the sym-
metry operation, the x-axis remains unchanged. Thus, every helical parameter
that is symmetric with respect to the x-axis, namely tilt τ and shift Dx, will
retain their magnitude but suffer a sign-change.

Finally, moving beyond the planar description, we are forced to accept the
general non-commutativity of rotation matrices and resign to either stating the
precise order by which the operations have been performed or making small
angle approximations. Hence, to get further insight into helix geometry, we
need to turn to the specifics of the calculation scheme at hand, which for the
3DNA software [36] used in this report can be found in [35, 28].
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Rotation, θ = 50o Translation,  t || x

Translation,  t || y Rotation and translation, θ = 90o,  t || x + y

 x  x 

 x 
 x 

 y  y 

 y  y 

H−

H−

H−

H−

H+

H+

H+

H+

Figure 2.7: A graphical representation of the commuting rotation-translation
operators in the mid-step triad choice of reference frame. Here, basepair i and
i + 1 are represented by a blue and red rectangle, respectively, whereas the
mid-step triad intermediate is given with thin black lines. Notice the equiva-
lency with the helical step parameter representations in figure 2.6. (Created in
Matlab)

Also note that under the two-fold symmetry there are ten unique base-pair
steps, and by considering the following array

A G C T
T TA TG TC TT
C CA CG CC CT
G GA GG GC GT
A AA AG AC AT

we realize that the sequences found below the diagonal are symmetrical with
respect to those above the diagonal. Whether we choose the upper diagonal or
the lower diagonal sequences as our reference is arbitrary, but any parameter
evaluated from a lower diagonal sequence will be equivalent by definition with
one from the upper diagonal, save for a sign change.
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It is by logic that we prove,
but by intuition that we discover.

Henri Poincaré

In this section, the theoretical background of the most important quantum
chemical methods used in this work will be outlined, namely the Self Consis-
tent Field method, Møller-Plesset perturbation and the Counterpoise correction,
along with a brief description of gaussian basis sets and the basis set superpo-
sition error.

To this end, the original articles of Roothan [47], Boys [7] and Møller [39]
have been reviewed and rewritten in terms of the Dirac formalism1, along with
a few notes and comments.

For a brief and non-technical survey, please consult the summary on page 29.

3.1 Hartree-Fock Theory

The Hartree-Fock hamiltonian operator

In the unrestricted treatment, where each electron is associated with its own
spinorbital | i ↑ 〉, the state of an atom or a molecule consisting of N electrons
is given by the Slater determinant

|Ψ 〉 = (N !)−
1
2 εijk...l | i ↑ 〉 ⊗ | j ↓ 〉 ⊗ | k ↑ 〉 ⊗ . . .⊗ | l ↑ 〉 , (3.1)

which guarantees that the overall state is antisymmetric upon permutation of
any electron, in agreement with the Fermi-Dirac statistics of fermions.

For ground states, the restricted treatment, where two electrons of paired
spins occupy the same orbital, is a common simplification, and is given by the
similar Slater determinant2

|Ψ 〉 = (N !)−
1
2 εijk...l | i ↑↓ 〉 ⊗ | j ↑↓ 〉 ⊗ | k ↑↓ 〉 ⊗ . . .⊗ | l ↑↓ 〉 . (3.2)

The electronic hamiltonian operator in the adiabatic approximation is given
by

Ĥ =
∑

i

ĥi +
1
2
e2

∑
i 6=j

1
|x̂i − x̂j |

(3.3)

1For an introduction to the Dirac formalism, the excellent book by J.J. Sakurai is warmly
recommended [49].

2Where it is understood that | i ↑↓ 〉 = | i ↑ 〉 ⊗ | i ↓ 〉, such that | i ↑ 〉 ⊗ | i ↓ 〉 =
−| i ↓ 〉 ⊗ | i ↑ 〉, and that the summation is also carried out over the spin states.
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where ĥi is the hamiltonian operator for the ith electron moving in the field of
the naked nuclei and x̂i is its position. In terms of the antisymmetrized product
in the restricted treatment of Eq. (3.2), it can be shown that the expectation
value of the total Hamiltonian simplifies to

E = 〈Ψ |Ĥ|Ψ 〉 = 2
∑

i

hi +
∑
ij

(2Jij −Kij) , (3.4)

where Jij and Kij are the matrix elements of the Coulomb and the exchange
operator respectively. Defining the two-electron product basis {| i 〉 ⊗ | j 〉}, of
orbital i and j, these elements may be succintly written

Jij = e2 〈 ij | 1
|x̂1 − x̂2|

| ij 〉 and Kij = e2 〈 ij | 1
|x̂1 − x̂2|

| ji 〉 . (3.5)

We may also define the corresponding one-electron operators Ĵi and K̂i through
the properties

Jij = 〈 i |Ĵj | i 〉 = 〈 j |Ĵi| j 〉 and Kij = 〈 i |K̂j | i 〉 = 〈 j |K̂i| j 〉 ,

by which the closed shell Fock operator F̂ is written

F̂ ≡ ĥ+
∑

i

(2Ĵi − K̂i) . (3.6)

From these representation independent definitions, we can expand the coulomb
and exchange operators in terms of the position eigenbasis, and convince our-
selves that the Coulomb operator represents the repulsion energy between the
electrons in the orbitals | i 〉 and | j 〉, whereas the exchange operator has no
obvious classical interpretation.

The Independent Particle Model. Furthermore, by summing over the j
occupied states in the position eigenbasis expansion of the Coulomb and ex-
change operator, the interaction of the electrons in the ith orbital is seen to be
given with respect to the mean-field of all the other orbitals. This approxima-
tion is known as the independent particle model.

The Exchange Interaction. Finally, by associating the positions with spins,
we can also see that the Coulumb operator accounts for the electrostatic in-
teraction between all orbitals, whereas the exchange operator removes charge
repulsion energy due to parallell spin, whose coexistence in the same position
is forbidden by the Pauli principle.

The Roothaan Equations

In order to find the orbitals and their associated energies in the independent
particle model, we may begin by assuming that they can be formed from the
set of normalized atomic orbitals of the constituent atoms. Given the set
of normalized atomic orbitals {| aj 〉}, the corresponding transform of the ith
molecular orbital by such a linear combination of atomic orbitals (LCAO) is
given by

| i 〉 ∼
∑

k

| ak 〉〈 ak | i 〉 =
∑

k

ck| ak 〉 . (3.7)
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Equipped with the solutions of each atom, our only remaining concern lies in
finding the set of coefficients {ck} for which the Schrödinger equation is solved.

The Matrix Representation. To simplify the notation, we may associate
the expanded molecular orbital with the column vector ci, where

| i 〉 .= ci =
(
c1 c2 . . . ck

)T
.

In this manner, an integral involving two molecular orbitals with respect to
an arbitrary one-electron operator Â may then be associated with the matrix
product

〈 i |Â| j 〉 ∼
∑
kl

〈 i | ak 〉︸ ︷︷ ︸
c†i

〈 ak |Â| al 〉︸ ︷︷ ︸
A

〈 al | j 〉︸ ︷︷ ︸
cj

.= c†iA cj ,

where A is the matrix whose elements are given by the integrals 〈 ak |Â| al 〉.
For instance, the Coulomb operator Jij in Eq. (3.5) can be written as the

matrix product

Jij =

{
〈 i |Ĵj | i 〉

.= c†iJjci

〈 j |Ĵi| j 〉
.= c†jJicj

,

and by the general non-orthogonality of {| ak 〉}

〈 i | j 〉 ∼
∑
kl

〈 i | ak 〉︸ ︷︷ ︸
c†i

〈 ak | al 〉︸ ︷︷ ︸
S

〈 al | j 〉︸ ︷︷ ︸
cj

.= c†iS cj = δij ,

where S is appropriately termed the overlap matrix, since its elements are given
by the overlap between the kth and lth atomic orbital. We see that the overlap
matrix serves as a connection between the non-orthogonality of the atomic
orbitals and the orthonormality of the molecular orbitals.

The Variational Procedure. In order to find these coefficients we can use
the positive semidefinitness of the expectation value of the Hamiltonian to
convince ourselves that there can be no arbitrary choice of state which has a
lower energy than the true eigenstate.

Hence, by the variational principle, a necessary, but not sufficient, require-
ment for our best guess of the ground state ket is

δ E = δ 〈Ψ |Ĥ|Ψ 〉 = 〈 δΨ |Ĥ|Ψ 〉+ 〈Ψ |Ĥ| δΨ 〉 = 0 ,

where, by Eq. (3.4),

δE = 2
∑

i

δhi +
∑
ij

(2δJij − δKij)
.= 2

∑
i

(δc†i )(h−
∑

j

(2Jj −Kj)) ci

+ 2
∑

i

(δcT
i )(h∗ −

∑
j

(2J∗j −K∗
j )) c∗i = 0 . (3.8)

We also require that the molecular orbitals remain orthonormal during the
variation,

δ 〈 i | j 〉 = 〈 δ i | j 〉+ 〈 i | δ j 〉 .= (δc†i )Scj + c†iS(δcj) = 0 . (3.9)
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where by the method of lagrangian multipliers we may choose the set of mul-
tipliers −2εij , and combine Eq. (3.8) with Eq. (3.9) to obtain

δE′ = 2
∑

i

(δc†i )(Fci −
∑

j

Scjεji) + 2
∑

i

(δcT
i )(F ∗c∗i −

∑
j

S∗c∗jεji) = 0 ,

(3.10)
where the Fock matrix3 F is given by the sum of matrices

F = h−
∑

j

(2Jj −Kj) ,

whose entries are given by the integrals

Fkl = 〈 ak |ĥ| al 〉+
∑

j

∑
mn

cjmcjn

(
2〈 am ak |

e2

x̂1 − x̂2
| an al 〉 − 〈 am ak |

e2

x̂1 − x̂2
| al an 〉

)
.

(3.11)
Finally, the conditions in Eq. (3.10) are fulfilled when{

Fci =
∑

j Scjεji

F ∗c∗i =
∑

j S
∗c∗jεij

,

where εij can actually be interpreted as being elements in the hermitian ma-
trix ε. Hence, these two equations become equivalent with the single matrix
equation

FC = SCε , (3.12)

where the matrix C is given by the coefficient column vectors

C =

 | | |
c1 c2 · · · ck

| | |

 .

The set of equations in (3.12) is known as the Roothaan equations [47], and
will provide us with the coefficients we seek. In addition, there exists a unitary
tranformation so that the matrix εij is diagonalized, and then the diagonal
entries equals the molecular orbital energies.

The Self-Consistent Field Method

Unfortunately, to find a solution to these equations it is required that we are
able to form the Fock matrix, whose elements are in turn dependent on the
coefficients that we seek (cf. Eq.s (3.11) and (3.12)). In other words, the
Roothaan equations are inherently recursive.

Now, the only consistent feature we can require from a solution to a recur-
sive relation is that it converges. In practice, one usually begins by guessing
an initial set of coefficients, then form the Fock matrix, by Eq. (3.11), from
which new coefficients are calculated, through Eq. (3.12), and are subsequently
inserted back into Eq. (3.11), and so on.

The solution is given by a convergence criterion for the total energy

lim
i→k

Ei−1 − Ei 6 δ , (3.13)

3cf. the Fock operator in Eq. (3.6) on page 20.
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where δ is a small positive value4 and Ei is the ith Hartree-Fock energy, given
by Eq. (3.4) on page 20. The procedure is repeated until δ has been reached,
within a certain k number of steps. This procedure is called the self consistent
field (SCF) method, and is the starting point for many orbital calculations.

3.2 Møller-Plesset Perturbation Theory

So far we have found a means of obtaining orbital energies and expansion
coefficients in terms of atomic orbitals for a ground state molecule. Whereas
Hartree-Fock theory incorporates the Pauli principle we realize that we are
still somewhat limited by the lack of pair interactions between the electrons by
the independent particle model. This neglected interaction is termed electron
correlation.

However, through the SCF procedure we have a complete description of
the static states which the electrons may occupy, and that completeness also
blesses us with the total conformal space that is available to them.

Assuming that the inclusion of the electron correlation is a small correction
to the HF treatment, the correlation energy can be found by a perturbative
expansion of the exact hamiltonian, which is known as Møller-Plesset pertur-
bation theory, introduced in 1934 [39].

At this point, it should be pointed out that there are also many other quantum
chemical methods that take electron correlation into account5, and the moti-
vation behind the choice of Møller-Plesset perturbation theory for this work
is that it is relatively cheap and known to give a satisfactory description of
non-bonding interactions [51].

Now, assume that the exact hamiltonian H in Eq. (3.3) harbors such solu-
tions that are not captured by the Hartree-Fock hamiltonian HHF , and define
the difference Γ to be

Γ ≡ H −HHF =
1
2

n∑
i 6=k

Vik −
n∑
i

(Js
i −Ks

i ) +
1
2
Tr (ρs (Js

i −Ks
i )) ,

with respect to the density operator, where a superscript s denotes the station-
ary operators. If Γ is sufficiently small, we can regard it as a correction to the
Hartree-Fock hamiltonian

(HHF + λΓ)|Ψ 〉 = E|Ψ 〉 (3.14)

and express the exact solution |Ψ 〉 in orders of λ through the perturbative
expansion

|Ψ 〉 = |Ψ(0) 〉+ λ|Ψ(1) 〉+ λ2|Ψ(2) 〉+ . . .+ λn|Ψ(n) 〉 (3.15)

4Hypothetically, it is concievable that the limit limi→∞ Ei−1 − Ei = 0 exists, since the
variational procedure guarantees at least one local minimum somewhere in the conformation
space of the coefficients, provided that the basis set is complete. However, in reality this is
rarely, if ever, seen.

5Usually, coupled cluster theory is the method of choice.
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with the associated energies

E = E(0) + λE(1) + λ2E(2) + . . .+ λnE(n) . (3.16)

Substituting the expressions in Eq.s (3.15) and (3.16) into (3.14), and com-
paring the result to the order of λ then gives the following equations for the
perturbed energies and states.

O(λ0) : HHF |Ψ(0) 〉 = E(0)|Ψ(0) 〉
O(λ1) :

(
HHF − E(0)

)
|Ψ(1) 〉 =

(
E(1) − Γ

)
|Ψ(0) 〉

O(λ2) :
(
HHF − E(0)

)
|Ψ(2) 〉 = E(2)|Ψ(0) 〉

(
E(1) − Γ

)
|Ψ(1) 〉

...
...

...

(3.17)

On the other hand, let {|ψi 〉} be a basis of antisymmetrized product eigenstates
to the Hartree-Fock hamiltonian, such as in Eq. (3.1). By the completeness of
this basis, we are free to expand |Ψ 〉 in terms of such determinants,

|Ψ 〉 =
∑

i

|ψi 〉〈ψi |Ψ 〉 =
∑

i

ci|ψi 〉 . (3.18)

The perturbed states could then also be expanded to the nth order in λ.

|Ψ(1) 〉 =
∑

i

a
(1)
i |ψi 〉 (3.19)

|Ψ(2) 〉 =
∑

i

a
(2)
i |ψi 〉 (3.20)

...
|Ψ(n) 〉 =

∑
i

a
(n)
i |ψi 〉 (3.21)

Inserting the expansions from Eq.s (3.19) and (3.20) into (3.17) gives the first
and second order states and energies. It will not be shown here, but by ex-
panding the resulting integrals the first order energy is

E(1) =
1
2
Tr(ρs(Js −Ks))− Tr(ρ(Js −Ks)) +

1
2
Tr(ρs(Js −Ks)) = 0 ,

which means that the Hartree-Fock solution is correct to the first order in the
perturbative expansion.

In the second order correction it is interesing to note that triple and higher
order substitutions vanish6, along with the single substitutions, leaving the
only contribution to the doubly substituted antisymmetrized products.

Finally, the expression for the second order energy is given by

E(2) =
∑

i

〈Ψ(0) |Γ|ψi 〉〈ψi |Γ|Ψ(0) 〉
E(0) − Ei

,

6Which can be seen by considering the condition on the pair interaction of the µth and
νth electron, 〈 · · · iµ · · · jν · · · k · · · |Γµν | · · · kµ · · · lν · · ·m · · · 〉δkm. Hence, orbital | i 〉 and
| j 〉 can be substituted, but not | k 〉, due to the ON of the MOs.
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where we note that the largest contributions come from the substituted states
closest to the ground state. Since the SCF procedure only produces a finite set
of Rydberg states, this is very fortunate.

As an aside, we may notice that Møller and Plesset consciously make the choice
of expressing their theory with respect to the Hartree-Fock density operator
ρs, and start out by stating the equation of motion for ρs as given in the
Schrödinger picture,

i~ρ̇s = −[ρs,HHF ] .

Whereas both the HF density and the exact density operators are stationary
with respect to their hamiltonians, it may be noted as a matter of curiosity the
time evolution of the HF ground state, which is a pure ensemble, with respect
to the exact hamiltonian is

i~ρ̇s = −[ρs,H] = Ecorr ,

with the possible interpretation that the exact solution corresponds to a mixed
ensemble of all stationary HF states, hence

ρ =
∑

i

wi |ψi 〉〈ψi | ,

such that the density has reached an equilibrium with respect to the exact
hamiltonian. In other words, as t→∞.

If this would be physically true, which it need not be7, it would be analogous
to the ergodic postulate and classical ensemble averages in Eq.s (2.1) and (2.2),
which were introduced on page 11, but here with respect to the motion of the
electrons.

3.3 Basis sets

In the methods outlined above, the molecular orbitals are given in terms of
expansion coefficients for the linear combination of atomic orbitals, as stated
in Eq. (3.7).

Although it was assumed that this basis set is complete, and thus infinite,
this cannot be achieved in practice where we are always restriced to finite
treatments. The choice of this finite basis set is therefore always a significant
constraint to the accuracy of the given method.

With this in mind, there are two different types of atomic orbital sets at hand,
namely

i. Slater type orbitals (STO) and

ii. Gaussian type orbitals (GTO).

7Remember that we are still under the blessing of the completeness relation, and that
the mathematical truth may not have a physical interpretation at all.
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Slater Type Orbitals. Slater type orbitals are similar to the common so-
lutions of the hydrogenic atom, as presented in most introductory courses in
quantum mechanics, and are generally given by

〈 r θ φ |n lm 〉 = Nnlm Y m
l (θ, φ) ζ rn−1 exp(−ζr) ,

where N is a normalization constant, Y m
l is a spherical harmonic and ζ is a

coefficient which can be adjusted to accurately describe the radial behaviour
or, loosely speaking, the size of the atomic orbital at hand.

Although the Slater type orbitals provide a relatively precise description of
the atomic orbitals, their implementation in these methods results in integrals
that are too computationally expensive to solve (cf. Eq.s (3.4) and (3.5)) since
complicated integrands centered on different nuclei in the polyatomic molecules
are involved. This is historically known as the nightmare of the integrals and
was resolved by the introduction of the Gaussian-type orbitals by S.F. Boys in
1950 [7].

Gaussian Type Orbitals. By defining the atomic orbitals in terms of the
cartesian Gaussian type orbitals centered at r′,

〈x y z r′ |µ ν κ; ζ 〉 = Nµνκ; ζ x
µyνzκ exp

(
−ζ[r− r′]2

)
, µ, ν, κ ∈ N, ζ ∈ R

the product of orbitals situated at different atomic centers in the integrands
can be described by a gaussian centered at a single point8.

Gaussian contractions

The drawback with the GTOs is that they do not describe the atomic orbitals
as accurately as the STOs do, so it is customary to expand the atomic or-
bitals in terms of several GTOs. For an orbital belonging to the atom a, this
approximate transform reads

| a; n lm 〉 ∼
k∑
i

〈µ ν κ; ζi | a; n lm 〉|µ ν κ; ζi 〉 =
k∑
i

ci | ζi 〉 ,

where k is the number, ci are the coefficients and ζi the exponents of the
primitive gaussians | ζi 〉.

In the last equality, the |µ ν κ 〉 part was dropped since there is a simple
correspondence between the polynomial exponents |µ ν κ 〉 and the atomic lm
orbital quantum numbers that is given by symmetry9.

It is important to note that the sets of coefficients {ci} and {ζi} in the
general expansion given above are not affected by the calculation. By conven-
tion, such a sum of gaussian primitives is refered to as a contraction, and the

8Actually, this is rather easily shown for two gaussians 〈 r′ | ζ′ 〉〈 r′′ | ζ′′ 〉 by completing
the square in the exponential functions.

9To give a few examples, the combination | 2 0 0 〉+| 0 2 0 〉+| 0 0 2 〉 ∼ x2+y2+z2 describes
an s orbital since it is clearly spherically symmetric. By mere inspection, we also find that
| 1 0 0 〉 ∼ x ↔ px, | 0 1 0 〉 ∼ y ↔ py and | 0 0 1 〉 ∼ z ↔ pz , whereas | 1 1 0 〉 ∼ xy ↔ dxy ,
| 1 0 1 〉 ∼ xz ↔ dxz , and so on, including higher order angular momenta with increasing µνκ.
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conventional way of describing contractions in terms of the primitives is to put
the number of primitives of a given type withing parentheses, in the above case
(k), and the number of contractions within square brackets, hence [1].

Furthermore, several different contractions can indeed be combined to de-
scribe one and the same atomic orbital, but then they are treated as distinct
orbitals in the calculation. To give an example, in an arbitrary basis set of
GTOs the carbon 2s-orbital could hypothetically be given by the following two
contractions

|C; 2s 〉 ∼ d

9∑
i

ci| s; ζi 〉+ d′
4∑
j

c′j | s; ζ ′ 〉 ↔ (13s)/[2s] ,

where {c1, c2, . . .}, {c′1, c′2, . . .}, {ζ1, ζ2, . . .} and {ζ ′1, ζ ′2, . . .} are the contraction
coefficients and exponents. Then the coefficients d and d′ are available for vari-
ation in the calculation.

Two important conclusions can be drawn from this, namely that the accu-
racy of the calculation is both dependent on the number of primitives in a
contraction and the number of contractions available to the method. Since the
integrals are evaluated at the level of primitives and the variation at the level
of contractions, the most computationally efficient basis set must consist of the
right composition of contractions and primitives given for the system under
consideration.

Fortunately, there are many standard basis sets to choose from and esta-
blished rules of thumb as to how they relate to most model systems.

Standard Basis sets

The available standard basis sets can be subdivided into the following classes

i. Minimal basis sets

ii. Split-Valence and Multiple zeta (ζ) basis sets

iii. Polarized basis sets

iv. Diffuse function augmented basis sets

Minimal basis sets. In minimal basis sets, each atomic orbital is only re-
presented by one contraction, and are typically only used as last resort in very
large qualitative calculations.

Split-Valence and Multiple zeta basis sets. In these basis sets, the inner
shell atomic orbitals are typically represented by one contraction, whereas the
valence orbitals are given by two or more contractions. Consequently, if two
contractions are used the basis set is termed double zeta, if three are used triple
zeta, and so on.
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Polarized basis set. In most basis sets it is possible to add basis functions
of higher order angular momenta to accurately describe the polarization of
orbitals, which are typically added uncontracted10.

Diffuse function augmented basis sets. Diffuse functions are uncon-
tracted gaussians where the exponents are taken to be significantly smaller
than those already present in the basis set, allowing the molecular orbitals to
allocate farther out from the atoms, as the name implies.

To give a few examples, the primitives and contractions for first row atoms11,
Li − Ne, using Dunning’s correlation consistent basis sets, which will be ex-
tensively used in this work, are presented in the standard notation in table
3.1. Note that this is a multiple zeta basis set where d, f and g polarization
functions are included in the definition, and that diffuse functions are added
with the aug- prefix.

Table 3.1: The contraction schemes for Dunnings correlation consistent basis
sets for first row atoms from double zeta (DZ) to quintet zeta (5Z), with and
without diffuse functions.

X cc-pVXZ aug-cc-pVXZ

D (9s 4p 1d)→ [3s 2p 1d] (10s 5p 2d)→ [4s 3p 2d]
T (10s 5p 2d 1f)→ [4s 3p 2d 1f ] (11s 6p 3d 2f)→ [5s 4p 3d 2f ]
Q (12s 6p 3d 2f 1g)→ [5s 4p 3d 2f 1g] (13s 7p 4d 3f 2g)→ [6s 5p 4d 3f 2g]
5 (14s 8p 4d 3f 2g1h)→ [6s 5p 4d 3f 2g 1h] (15s 9p 5d 4f 3g 2h)→ [7s 6p 5d 4f 3g 2h]

Generally speaking, the more contractions and primitives that are present
in the basis set, the better the resulting description. Hence, triple ζ basis
sets are expected to produce better results than double ζ, but to a higher
computational cost.

Polarization functions are important when describing correlation and chem-
ical bonds in general, since they allow a slight reshaping of the molecular or-
bitals, whereas diffuse functions are used when long range interaction is mod-
elled, for obvious reasons.

The only danger in including too many functions in the basis set, especially
diffuse functions, is that the convergence, as defined in Eq. (3.13), can become
harder to achieve.

3.4 The Basis Set Superpostion Error — BSSE

We have so far noted that the conformational freedom of the electrons in the
practical realization of the theory is limited by the choice of basis sets. This
limitation is a direct consequence of the incompleteness of the basis, which also
causes other artefacts in the calculations.

10Just as with the multiple contractions described above, they will appear as distinct
atomic orbitals in the output of the calculation.

11In quantum chemistry, the second row of the periodic system of elements is refered to
as the first row.
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One of these deficiencies is the Basis Set Superposition Error (BSSE), which
arises when comparing otherwise size consistent calculations on a molecular
complex with those of its fully separated constituents.

Since the basis sets are usually taken to be the same in the complex as in
the monomers, the complex will experience a lowering in the energy simply be-
cause there are more basis functions — and hence a larger conformal space for
the electrons — available in the complex than in the fully separated monomers.
This difference in energy is the basis set superposition error12.

The Counterpoise Correction

To remedy this, we realize that we have to find a way of evaluating the energy
of fragment A when provided with the basis set centered on fragment B. If
we let this energy be EA{B}, and the corresponding energy of fragment B be
E{A}B, the BSSE energy is given by

EBSSE = EA{B} + E{A}B − EA − EB .

With this definition of the BSSE energy, the counterpoise correction to the
energy of the complex is

Ecp = EAB −
(
EA{B} + E{A}B − EA − EB

)
. (3.22)

This may naturally be generalized to any number of fragments A,B,C, . . . by
taking

EBSSE = EA{BC... }+E{A}B{C... }+E{AB}C{... }+· · ·−EA−EB−EC−· · · .

Intuitively we may also realize that the BSSE vanishes per definition as the
inter-fragmental distance goes towards infinity or the basis set is expanded to
completeness. Admittedly, at that limit other inconsistencies emerge which are
too slight to make a difference here, so their description will be left for future
theoretical treatments.

3.5 Summary

a. Hartree-Fock (HF) theory is the starting point of many molecular orbital
calculations, including those given here.

b. In the Hartree-Fock hamiltonian the electronic interaction is approximated
to occur in an average fashion, by the Coulomb and the exchange operators.

c. Whereas the Coulomb operator describes the electrostatic interaction, the
purely quantum mechanical exchange operator accounts for the Pauli prin-
ciple by removing the interaction energy from electrons which coincide in
space with parallell spin.

12However, it should be noted that the BSSE is not an error per se, since the inclusion of
more basis functions in the complex provides a better decription of its orbitals. The actual
error arises in the comparison between the total energy of the complex and its constituents.
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d. The orbitals and energies of an atom or molecule within the Hartree-Fock
theory are formed by the Self Consistent Field method (SCF) which is a
variational procedure that relies on recursion.

e. The average treatment of the electron interaction in HF theory is corrected
by Møller-Plesset Perturbation theory, where the motion of the electrons is
explicitly taken into account — an effect known as electron correlation —
by using the solutions from the SCF method.

f. The molecular orbitals are formed by linear combinations of atomic orbitals
(LCAO), but since the explicit usage of atomic orbitals, to the extent that
they are known, is too computationally demanding, they are approximated
with an expansion of Gaussian-Type Orbitals (GTO), in mathematically
incomplete but numerically consistent basis sets.

g. The incompleteness of the basis sets introduces the basis set superposition er-
ror (BSSE) in treatments where interaction energies in complex of molecules
are studied.

h. The BSSE can be corrected by the Counterpoise procedure.



4 The Base-Pair Coordinate
Frame

They are joined together in pairs.

James Watson
& Francis Crick

There are two main strategies to perform coordinate transformations in terms
of the helical parameters given in section 2.3. These are either by explicitly
producing cartesian coordinates for the bases by some external software, which
is compliant with the Cambridge Accord, and subsequently inputing the result
into the computation software, or to directly write them so that the quantum
mechanical software itself can perform the transformations.

In this study, the latter strategy has been implemented by rewriting the
Cambridge Accord coordinate frame in a version that is compatible with the
quantum mechanical Gaussian software.

In addition, the resulting Gaussian compliant coordinate frame has been
implemented in two Perl scripts, named ssDNA and dsDNA, which take a DNA
sequence as argument and outputs a ready-to-run input file of single or double
stranded DNA, where the backbone has been omitted.

4.1 Z-Matrix Formulation of the Standard Reference
Frame

The Z-Matrix

There are two ways of specifying the coordinates of the atoms in a molecule
when performing a quantum mechanical calculation, namely in terms of carte-
sian or internal coordinates.

A cartesian coordinate input file simply consists of the atom symbol followed
by the x, y and z coordinate. For water this would look something like

0 1
O -0.464 0.177 0.0
H -0.464 1.137 0.0
H 0.441 -0.143 0.0

Here the first line specifies the charge, 0, and the multiplicity, 1, of the molecule.
In the subsequent lines, the atom type and its xyz-coordinate is given.

31
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On the other hand, in an internal coordinate input file the coordinates are
given in terms of bond lengths, bond angles and dihedral angles. One such
construction is the Z-matrix, which for the same water molecule would read

0 1
O
H 1 1.0
H 1 1.0 2 104.5

Charge and multiplicity is the same, of course, but the second line contains
only the oxygen atom type specification. In the third line, the hydrogen atom
is given with respect to atom 1, which is the oxygen atom, with the bond length
1.0 Å. Finally, in the fourth line, a hydrogen atom is defined lying at a bond
length of 1.0 Å from atom 1, the oxygen, making an angle 104.5o with respect
to atom 2, the other hydrogen.

We realize that the Z-matrix is the correct setting for the helical coordinate
frame, since it is also given with respect to internal coordinates. Therefore,
we would like to produce a Z-matrix in which the translations are given as
bond lengths and the rotations as angles, in a way that is compliant with the
Cambridge Accord and the CEHS scheme.

The Helical Scaffold

Since we are anticipating that the helical calculations will be demanding, we
would prefer to write the helical Z-matrix in such a way that the bases can be
treated separately and subsequently be merged into a helix.

Specifically, this would make it possible to do costly geometry optimizations
in the appropriate theory on the bases, which is a small problem, then assemble
those optimized structures into the helix and subsequently freeze all internal
coordinates, save for the helical parameters, or perform a partial optimization.

The problem of writing Z-matrices for the DNA-bases is handled by the graph-
ical user interface GaussView , which is an extension of the Gaussian package,
and will not be described here. Henceforth, we may assume that we have
Z-matrices for adenine, guanine, thymine and cytosine.

This reduces to finding a helical scaffold Z-matrix onto which we may attach
the individual bases. Indeed, by the considerations outlined in section 2.3, and
by the use of dummy atoms, the following choice of Z-matrix is tentatively
compliant with shift, slide, rise and twist.

X
X, 1, E1
X, 2, hDz, 1, A
X, 3, Dx, 2, A, 1, hOm, 0
X, 4, Dy, 3, A, 2, -90.0, 0
X, 5, hDz, 4, A, 3, -90.0, 0
X, 6, E2, 5, A, 4, hOm, 0

In this Z-matrix E1 = E2 = 1.0 Å and A = 90.0o, whereas the remaining
parameters are the helical coordinates. The X atom type is a dummy atom,
meaning that it does not take part in the calculation and is interpreted by
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Gaussian simply as a geometrical point in the Z-matrix. Note that rise (Dz)
is given by half of it’s value, and that twist (ω) is given by

hOm = −90.0 +
1
2
ω .

A graphical representation of the scaffold is given in figure 4.1.

The attachment points in this scaffold are given by dummy atoms 2 and 6
in this Z-matrix, and is defined to lie in the origin of the local base pair re-
ference frame. Consequently, the location of the base with respect to these
dummy atoms can be calculated from the reference frame cartesian coordi-
nates presented in table A.1 on page 71.

2

Rθ

2

γ

3

4
Dy

R δ

7

Dx

5

θ

y

z

x

6

1

1

1 Dz

Dz

2

2
1

ω

ω

1
2

Figure 4.1: The Z-Matrix scaffold onto which the individual bases will be
attached is given by the thick lines, and its dummy atoms are shown by filled
black circles, along with their respective atomic numbering. The helical pa-
rameters are defined by the the bond lengths and angles between these dummy
atoms. The attachment point for the base atoms, here shown in white circles,
are dummy atom number 2 and 6, which are positioned at the origin of the
bases’ local reference frame, as described in section 2.3. The mid-step reference
triad coordinate frame is shown by the xyz-axes.

The corresponding attachment points on the bases are the N9 atoms of
purines and N1 atoms of pyrimidines. As implied in figure 4.1, we need to
calculate one bond distance R and three angles θ, γ and δ given by

R = ||ra||, cos θ =
ra · (rb − ra)
||ra|| ||rb − ra||

, cos δ =
ra · x̂
||ra||

and cos γ =
ra · ŷ
||ra||

,

(4.1)
where ra is the position vector of the N9 atom of purines and N1 atom of
pyridines, and rb is the position vector of the C8 atoms of purines and C6
atoms of pyrimidines. In addition, let us define the angle ε to be

ε = 180o − γ .

These values were calculated in Matlab and the results are given in table 4.1.
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Table 4.1: The scaffold attachment parameters as given by equations 4.1 to
the precision by which they were calculated. R is given in [Å], γ, θ and δ in
[o].

R γ θ δ

Adenine 4.6796 16.0143 90.8646 106.0143
Guanine 4.7300 15.8139 91.5779 105.8139
Thymine 4.6796 15.9252 97.9233 105.9252
Cytosine 4.7203 15.7970 96.8293 105.7970

There are four different scenarios by which attachments can be made.

i. Connection between scaffold and residue on 5′-end.

ii. Connection between scaffold and residue on 3′-end.

iii. Connection between scaffold and complementary residue on 5′-end.

iv. Connection between scaffold and complementary residue on 3′-end.

The generalized Z-matrix entries for these cases are given by

i. 5′-end

N 2 R 1 g 3 90.0 0
C i B1 2 t 3 90.0 0
H i+1 B2 i A1 2 180.0 0

ii. 3′-end

N 6 R 7 d 5 -90.0 0
C i B1 6 t 7 0.0 0
H i+1 B2 i A1 6 180.0 0

iii. Complementary 5′-end

N 2 R 1 e 3 90.0 0
C i B1 2 t 3 -90.0 0
H i+1 B2 i A1 2 180.0 0

iv. Complementary 3′-end

N 6 R 7 d 5 90.0 0
C i B1 6 t 7 0.0 0
H i+1 B2 i A1 6 180.0 0

where g = γ, d = δ, e = ε, t = θ and i is the relative atomic number of the N
atom in the first row.
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The first row of these matrices is the first row in the base Z-matrix, so we
need to add a reference to either dummy atom number 2 or 6 in the scaffold,
a bond angle and a dihedral. We append a bond angle and dihedral to the
second row, and only the dihedral angle 180o to the third row. Hence, the B1,
B2 and A1 are internal coordinates of the bases, and the fourth row or higher
belongs to the base entirely and is not affected by the scaffold.

Finally, this can be extended by attaching another scaffold to dummy atom
6 with the following Z-matrix.

X 6 E1 7 90.0 5 -90.0 0
X 6 hDz 8 90.0 7 90.0 0
X 9 Dx 6 A 8 hOm 0
X 10 Dy 9 A 6 -90.0 0
X 11 hDz 10 A 9 -90.0 0
X 12 E2 11 A 10 hOm 0

Yet another base pair can then be attached to the 12th dummy atom of this
Z-matrix.

4.2 dsDNA

The considerations in the preceeding section could very well be generalized to
include any number of scaffolds and base pairs. This was done in the script-
ing language Perl, chosen because of its extensive text processing capabilities
through regular expressions, and the resulting scripts are termed ssDNA and
dsDNA.

When supplemented with the Gaussian output files from a geometry opti-
mization in the current directory, both dsDNA and ssDNA will write the scaffolds,
record and connect the Z-matrices and optimized variables from ouput files and
provide a Gaussian input file. Wheras ssDNA creates a single stranded DNA
molecule devoid of backbone structure, dsDNA also makes the complementary
strand.

To give an example, the command

>> dsDNA AT

produces a Gaussian input file which is named according to the submitted
sequence, with the extension .com, and reads

%chk=AT.chk
...
#p MP2/aug-cc-pVDZ SCF=tight

AT Twist Dx Dy Dz

0 1
X
X 1 E1_S1
X 2 hDz_S1 1 A_S1
X 3 Dx_S1 2 A_S1 1 hOm_S1 0
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X 4 Dy_S1 3 A_S1 2 -90.0 0
X 5 hDz_S1 4 A_S1 3 -90.0 0
X 6 E2_S1 5 A_S1 4 hOm_S1 0
N 2 R_A1 1 g_A1 3 90.0 0
C 8 B1_A1 2 t_A1 3 90.0 0
H 9 B2_A1 8 A1_A1 2 180.0 0
N 9 B3_A1 8 A2_A1 10 D1_A1 0
...
H 8 B14_A1 21 A13_A1 20 D12_A1 0
N 6 R_T2 7 d_T2 5 -90.0 0
C 23 B1_T2 6 t_T2 7 0.0 0
H 24 B2_T2 23 A1_T2 6 180.0 0
C 24 B3_T2 23 A2_T2 25 D1_T2 0
...
H 53 B14_A4 66 A13_A4 65 D12_A4 0

B1_A1 1.374
...
D12_A4 0.00256312
R_A4 4.6796
d_A4 106.0143
t_A4 90.8646
E1_S1 1.00000000
hDz_S1 2.14496520
Dx_S1 0.001
Dy_S1 0.001
E2_S1 1.00000000
hOm_S1 -75.00000000
A_S1 90.00000000

Note that parts of the link 0 section, the detailed Z-matrix and variables of
adenine and thymine have been omitted for clarity.

In the output Z-matrix each variable will have a suffix consisting of the residue
number and base type to avoid ambiguities. In this example, the variable D12
in the fourth adenine residue has aquired the suffix A4, and is now given as
D12 A4.

The header is set in a special subroutine in the program named header{}
and can be modified according to the current needs. Please also note that it is
required that the structure optimization files are named A.log, G.log, C.log
and T.log in order for dsDNA and ssDNA to recognize them.

Any structure optimization procedure in Gaussian is tolerated. The only
thing that is absolutely required is that the optimized structure be given in
terms of the original Z-matrix at the end of the output file.

In addition, both dsDNA and ssDNA takes the option -c which includes the
fragment specification for a counterpoise correction in Gaussian.

In that case, the counterpoise keyword is added to the route section, what-
ever it may be, along with the number of fragments. The scripts will interpret
each base residue as one fragment and add the appropriate fragment number
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at the end of each Z-matrix row.

For instance, the command

>> dsDNA -c GCAATGCGTC

writes the input file GCAATGCGTC.com, where the route section now reads

#p MP2/aug-cc-pVDZ SCF=tight Counterpoise=20

and the Z-matrix row of the N1 atom from the last cytosine residue is

N 54 R_C10 55 d_C10 53 -90.0 0 10

showing that it will indeed be interpreted as belonging to the tenth residue in
the counterpoise procedure.

The ssDNA and dsDNA scripts are available to anyone upon request.

4.3 Evaluation of the Z-Matrix Formulation

The dsDNA script, and the scaffold formulation upon which it relies, was evalu-
ated first on a base-pair level, and then on a dinucleotide level by the following
procedures.

i. The standard reference base structures given in table A.1 on page 71 were
rewritten in terms of Z-matrices.

ii. The Z-matrices were supplemented to the dsDNA procedure.

iii. The two ideal base-pairs G:C and A:T were created by the following com-
mands

>> dsDNA G
>> dsDNA A .

iv. The resulting Gaussian input files, G.com and A.com, were read by the
Molden software and converted to a format supported1 by Molekel [46, 21].

v. The two ideal base-pairs were also created with the Standard Reference
Frame compliant 3DNA software bundle [36].

vi. Six inter-base distances and angles were measured in the A:T structure,
and five in the G:C structure, as given by dsDNA and 3DNA.

vii. The deviation in the values from the structures of dsDNA and 3DNA were
calculated.

The results of these measurements and the calculated differences are given in
table 4.2.

1In the current version, Molekel only seems to support reading of Gaussian output files.
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Table 4.2: These are the results from the evaluation of dsDNA on the level of
a single base pair. The atoms are labelled according to the IUPAC convention,
shown on page 8, where the subscripts I and II denotes whether the atoms are
found on the first or second strand, respectively.

C:G
Distance [Å] 3DNA dsDNA |∆| Angle [o] 3DNA dsDNA |∆|
N3I :N1II 3.001 3.000 0.001 N1I :C6I :C8II 67.636 67.639 0.003
C4I :C6II 4.348 4.347 0.001 C2I :O2I :N2II 117.657 117.662 0.005
C2I :C2II 4.278 4.277 0.001 N3I :C2I :C2II 60.097 60.099 0.002
O2I :N2II 2.866 2.865 0.001 C4I :N3I :N1II 119.019 119.025 0.006
C6I :C8II 10.030 10.030 0.000 N4I :C4I :C6II 56.436 56.435 0.001

T:A
Distance [Å] 3DNA dsDNA |∆| Angle [o] 3DNA dsDNA |∆|
O4I :N6II 3.046 3.046 0.000 C2I :O2I :N3II 112.770 112.764 0.006
C4I :C6II 4.340 4.341 0.001 N3I :C2I :C2II 64.154 64.185 0.031
N3I :N1II 2.962 2.965 0.003 C4I :N3I :N1II 117.945 117.944 0.001
C2I :C2II 4.182 4.185 0.003 O4I :C4I :C6II 58.964 58.966 0.002
C6I :C8II 9.954 9.954 0.000 C4I :O4I :N6II 123.040 123.039 0.001
O2I :N3II 4.904 4.907 0.003 N1I :C6I :C8II 66.428 66.425 0.003

Furthermore, to assess whether dsDNA is capable of representing shift, slide and
twist correctly, the following procedure was adopted.

1. The standard reference base structure Z-matrixes created above were sup-
plemented to dsDNA and four structures were created with the commands

>> dsDNA CC
>> dsDNA TT .

2. In the resulting Gaussian input files, the helical parameters were set to
two different sets of values.

3. Four identical structures were created with 3DNA.

4. The structures were RMS fitted in Molekel.

5. The root mean squared deviation was calculated along with the length
of the vector representing the largest deviation.

Immediately it was realized that Dy in the dsDNA and ssDNA scaffold Z-
matrix is actually −Dy, as given in the Standard Reference Frame. This can
also be realized from figure 4.1. The impact of this unfortunate sign error on
the calculations will be elaborated in the discussion. Correcting for this error,
the values are given in table 4.3.

4.4 Dinucleotide Base-Pair Geometry

Now that we are equipped with a Z-matrix formulation which is consistent with
the Standard Reference Frame parameters shift, slide, rise and twist, we would
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Table 4.3: The results from the evaluation of dsDNA with respect to shift,
slide, rise and twist, given by the two doublestranded dinucleotides 5′−CC−3′

and 5′−TT−3′. The translations and deviations are given in [Å] and twist in
[o].

Dz Dx Dy ω max(||∆i||) σrms

C:G→C:G 3 3 -4 30 0.011 0.005
3 6 -3 70 0.003 0.001

T:A→T:A 3 3 -4 30 0.007 0.002
3 6 -3 70 0.007 0.002

also need to know if some of these values could be fixed while we examine
the effect of twist on the base orbital energies in single stranded dinucleotide
B-DNA.

This was done by collecting a data set of helical parameters from 46 B-
DNA crystal structures in the Nucleic Acid Database [5], with a resolution
better than 2.0 Å, and subsequently performing a modest statistical analysis.

The NDB identification numbers of these structures are given in table A.2
in the appendix, section A.2 on page 72.

To begin with, the total distributions of the helical step parameters were plot-
ted in Matlab and are shown in figure 4.2. The mean and standard deviations
from these distributions are given in table 4.4.

Subdividing this data by the ten unique base pair steps given in section
2.4 on page 16, the calculated means, standard deviations and standard errors
are given in table 4.5. Note that to compensate for the sign change in the
important slide coordinate, the mean and standard deviation of the absolute
value of shift is also given, where the two-fold symmetry argument is applicable.

The spread in this data, as given by the standard deviation is quite low for the
translational parameters and seem the largest for twist. Nevertheless, there
do seem to be statistically significant differences between certain dinucleotide
sequences even with respect to this parameter.

Since GC will be of particular interest to us, we may also notice the differ-
ence in mean and spread for the twist parameter between the 5′−GC−3′ and
the 5′−CG−3′ dinucleotide, being 38.0o (4.4) in the former and 33.2o (11.8) in
the latter. This difference is not reflected in any of the other parameters for
these two dinucleotides.

However, before drawing any conclusions based on the mean and standard
deviation, the distributions themselves should be examined. Since the role of
twist is the primary focus in this report, the distributions of this parameter for
the ten unique sequences were calculated in Matlab, and are plotted in figure
4.3.

To qualitatively examine whether the distributions may be considered sym-
metrical, the median was calculated and compared to the mean, and the results
are given in table 4.6.
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Figure 4.2: Total distributions of the helical step parameters in the B-DNA
dataset as calculated and plotted in Matlab. The dash-dotted lines show the
arithmetic mean and the dashed lines the standard deviations, whose values
are given in table 4.4.

Table 4.4: The mean and standard deviations of the helical step parameters
as calculated from the dataset. The translations are given in [Å] and the angles
in [o].

Dx Dy Dz τ ρ ω

x̄ 0.01 0.30 3.32 -0.04 1.43 34.84
σ 0.55 0.79 0.30 3.31 5.62 7.91
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Table 4.5: Means and standard deviations for the helical step parameters
in the data set considered here, along with the number of observations n.
The values are presented with their respective two-fold symmetry equivalent
sequence, for which also the absolute value of the sign sensitive shift parameter
has been given. All translational parameters are given in [Å] and angles in [o].

Dx |Dx| Dy Dz τ ρ ω n

AT x 0.03 — -0.46 3.21 0.1 -0.6 32.3 35
σ 0.50 — 0.27 0.17 2.2 3.0 3.9

AC x -0.21 0.45 -0.25 3.27 -0.6 -0.1 33.0 18
σ -0.20 0.44 0.56 0.16 2.8 4.1 4.6

GC x -0.13 — 0.21 3.36 -0.2 -3.6 38.0 48
σ 0.83 — 0.48 0.25 2.8 5.1 4.4

AG x 0.35 0.40 -0.02 3.28 -1.2 4.2 29.8 20
σ 0.33 0.27 0.55 0.24 4.0 4.3 5.9

GG x 0.06 0.52 0.39 3.29 0.4 4.9 31.2 54
σ 0.60 0.31 0.48 0.22 4.0 4.0 4.7

AA x 0.02 0.28 -0.12 3.26 -0.1 0.1 35.4 73
σ 0.36 0.23 0.31 0.15 2.6 4.0 3.9

CG x 0.04 — 0.59 3.38 0.2 5.0 33.2 81
σ 0.58 — 0.56 0.51 4.4 5.4 11.8

GA x 0.07 0.32 0.14 3.45 0.5 0.8 40.3 6
σ 0.50 0.36 0.67 0.08 1.2 2.1 1.0

CA x 0.05 0.24 1.75 3.30 0.2 -1.6 43.6 33
σ 0.31 0.20 1.14 0.20 2.0 6.5 8.2

TA x -0.24 — 0.53 3.39 -0.9 2.6 39.1 11
σ 0.28 — 0.68 0.25 1.9 6.1 7.0

Avoiding the complication of assuming a normal distribution for the twist pa-
rameter, the above mentioned GC and CG distributions were tested for signifi-
cant difference using Wilcoxon’s rank sum test. Indeed, they are sampled from
different distributions to a confidence degree of α < 0.001.
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Figure 4.3: Distribution plots of the twist parameter as calculated from the
data set. The dashed lines show the standard deviation, the dash-dotted lines
the mean and the dotted lines the median of the parameter with respect to the
dinucleotide step, based on the values in table 4.5 and 4.6. All values are given
in [o], and the ranges are fixed to [20, 50]o to simplify comparison.

Table 4.6: The median of the twist distributions compared with the mean
values.

AT AC GC AG GG AA CG GA CA TA

ω̄ 32.3 33.0 38.0 29.8 31.2 35.4 33.2 40.3 43.6 39.1
ω̃ 32.5 31.8 38.6 30.5 30.0 36.0 32.7 40.1 48.6 40.1

|∆| 0.2 2.2 0.6 0.7 1.2 0.6 0.5 0.2 5.0 1.0



5 Computations

In this section, all quantum mechanical calculations that have been performed
during this project will be described, beginning with the correlation calcula-
tions on the Ne2 model system, followed by the DNA single base and dimer
calculations.

The Gaussian 03 software bundle [25] has been used throughout this project
and most of the minor computations were performed on a desktop 64-bit dual
core computer system running under Red Hat Fedora Linux Core 4, specifically
built and set up for this purpose1.

The heavier nucleobase dimer correlation computations were performed at
the Ra opteron cluster, which is — with its 280 64-bit processors and peak
capacity of 1.34 Tflops — among the most powerful computer systems in Swe-
den2.

5.1 Model Systems

The Neon Dimer

A potential energy scan (PES) was performed with respect to the inter-atomic
distance, r, in the neon dimer, Ne2, using Møller-Plesset perturbation theory,
as outlined in section 3.2. From a previous undisclosed calculation3, a minimum
in the potential energy curve was obtained near r = 3.25 Å, which served as a
starting point for this PES, consequently taken in the range of r = [2.8, 6.4] Å.

This scan was performed to the fourth order in the perturbation theory in
the frozen core approximation, including singles, doubles, triples and quarters
substitutions in the Slater determinants, thus also automatically providing us
with the second and third order corrections to the energies. The basis sets used
were Dunning’s correlation consistent double, triple, quadruple and quintuple
zeta (ζ), both with and without diffuse functions, as described in table 3.1 on
page 28.

To account for the basis set superposition error, counterpoise corrections
were performed at every point. Although Gaussian will explicitly provide this
correction for the highest order energy considered, the corrections need to be
calculated by hand for remaining lower order energies. This was done using
Eq. (3.22) on page 29.

1This had not been possible without the generous help from Martin Agback, at the
Quantum Chemistry institution at Uppsala University (see the acknowledgements on page 3).

2See the Ra homepage at http://www.uppmax.uu.se/systems/ra/ra-cluster.
3Then using second order perturbation theory and Dunning’s correlation consistent dou-

ble zeta basis set, augmented with diffuse functions (aug-cc-pVDZ).
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Since Gaussian fully supports C shell scripting, the entire procedure can be
succintly stated by using the Scan keyword and two array loops in the following
way.

#! /bin/csh
foreach basisset (cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z

aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ aug-cc-pV5Z)
echo "Calculating potential curve of Ne:Ne with basisset $basisset"
mkdir $basisset
set steps=(9 2 4)
set point=("2.8" "3.8" "4.4")
foreach delta ("0.1" "0.2" "0.5")
g03 <<EOF> $basisset/Ne2_$point[1]_$basisset:r.log

%chk=$basisset/Ne2_$point[1]_$basisset.chk
%mem=600MB
%nproc=2
# MP4/$basisset gfoldprint SCF=tight pop=reg Scan Counterpoise=2

MP4 Ne2 potential with $basisset point $point[1]

0 1
Ne 0.0 0.0 0.0 1
Ne 1 B1 2

B1 $point[1] $steps[1] $delta

EOF
shift steps
shift point

end
echo "Done!"

end

Notice that the step length delta is set to be smaller in the vicinity of the
minimum, and is progressively increased to save computing time. After exe-
cution, the results may conveniently be gathered by harvesting scripts, hence
reducing the effort to a minimum.

Since the MP4FC/aug-cc-pV5Z level of theory proved to be challenging even
for this limited diatomic system, the calculation was truncated after reaching
3.4 Å, where it was deemed that enough information on the cusp had been
obtained.

The resulting counterpoise corrected single point energies are plotted in
figures 5.1 and 5.2, compared with experimental results from UV adsorption
spectroscopy in [59] as interpreted by [48].

The calculated points have also been compared to the often used empirical
Lennard-Jones pair potential, which is known to give a good description of
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binding energies in rare gas dimers and clusters [32], and is given by

ULJ
ij = De

[(
re
rij

)12

− 2
(
re
rij

)6
]

,

where re is the equilibrium distance and De the well depth.
The chemical interpretation of the first term in this potential is the electro-

static repulsion energy excerted between the atoms, which steeply increases at
small distances, whereas the second term is usually identified with the van der
Waals interaction which is a comparatively long distanced interaction.

Adopting the well depth and equilibrium distance derived from the adsorption
spectra mentioned above, i.e. re = 2.9 Å and De = 3.55 meV, the correspond-
ing Lennard-Jones potential is drawn in figure 5.3.

Also plotted in this figure is the Lennard-Jones potential based on the
presently calculated values of re and De to the highest order, along with the
zeroth order SCF energy and the fourth order Møller-Plesset correction.

By henceforth defining the electron correlation energy to be the difference
between the zeroth and nth order energy as obtained by Møller-Plesset theory,
it is seen to follow the van der Waals term in the corresponding Lennard-Jones
potential.

2.5 3 3.5 4 4.5 5 5.5 6 6.5
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E 
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Ne2 Empirical Potential

HFcp/aug−cc−pVQZ
HFcp/aug−cc−pV5Z
ECorrel. aug−cc−pVQZ
ECorrel. aug−cc−pV5Z
ULJ MP4
ULJ Exp.

Figure 5.3: Plots of the Lennard-Jones potential with respect to the exper-
imental equilibrium distances and well depth, and those estimated from the
present MP4FC/aug-cc-pV(Q,5)Z calculations.
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5.2 The DNA Bases

Geometries

The single base geometries were optimized both with DFT, using the Becke
three parameter Lee-Yang-Parr hybrid functional B3LYP, and Møller-Plesset
second order perturbation theory, MP2.

For adenine, thymine and guanine, the DFT optimizations were performed
with Pople’s split valence 6-31G(d,p) basis set, with the contraction scheme

(10s, 4p, 1d / 4s, 1p) → [3s, 4p, 1d / 2s, 1p] .

To verify the effect of diffuse functions for the geometry calculations, the DFT
optimization for cytosine was performed both with the 6-31G(d,p) and the
heavier 6-31+G(3df,p) basis set, thus including the contractions

(11s, 5p, 3d, 1f / 5s, 1p) → [4s, 5p, 3d, 1f / 3s, 1p] .

The MP2 optimizations were performed with Dunning’s correlation consistent
double zeta basis set with diffuse functions (aug-cc-pVDZ) as described in table
3.1 on page 28.

The detailed results of the optimizations with respect to bondlengths and an-
gles are given in the appendix, section A.3 on page 72. From those tables a
condensed presentation of the root mean square deviations is shown here in
table 5.1.

Table 5.1: Root mean square deviations of the bond lengths (B) in [mÅ] and
angles (A) [o] as compared between calculations and experimental results [41].
For comparison, the RMSD between the methods are also shown, which for
cytosine implies the DFT calculation with the heavier basis set vis-à-vis MP2.

σCalc−Exp
rms

B3LYP MP2

6-31G(d,p) 6-31+G(3df,p) aug-cc-pVDZ σDFT−MP2
rms

B A B A B A B A

Adenine 7.8 0.8 — — 15.9 0.8 9.8 0.3
Thymine 14.1 1.2 — — 17.0 1.2 7.3 0.3
Guanine 20.0 1.4 — — 22.5 1.4 9.3 0.4
Cytosine 18.4 1.4 17.9 2.0 21.7 1.9 9.0 0.4

The methods show roughly equal accuracy, and the bond lengths all range
within the precision of the experimental results, here being given by averaged
geometries from high-resolution X-ray crystallographic structures as described
in [41] and [9].

The largest dissemblance in bond lengths for MP2 are found in aromatic
C–C and C–N bonds which are typically underestimated by 20-30 mÅ. The
largest overall dissimilarity is in the guanine C6-N1 bond, which differs by
40-50 mÅ by both methods.
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The bond angles, however, are not as well described, neither by DFT nor
perturbation theory, and the deficiencies seem not to be remedied by the in-
clusion of diffuse functions. On the other hand, the methods show consistent
results with low RMSDs when compared with each other.

Total Energies and Densities

The MP2 geometries obtained in the previous section were subsequently used to
calculate the SCF orbital energies and the MP2 correction to the total energy,
using the same aug-cc-pVDZ basis set.

Classical molecular electrostatic maps, derived from the Mulliken atomic
charges, are mapped onto the MP2 density and presented along with scaled
dipole vectors in figure 5.4.

(a) Thymine (0.18,−0.13) (b) Adenine (0.27,−0.14)

(c) Cytosine (0.20,−0.15) (d) Guanine (0.20,−0.13)

Figure 5.4: The molecular electrostatic potential as given by the Mulliken
atomic charges mapped onto the total MP2 density isosurfaces for the four
bases. The values beneath each picture are the charge ranges represented by
the colors, red being negative and blue positive. Also shown in these pictures
are the calculated dipole moment vectors, scaled by 0.5.

In addition, the total energies and dipole moments of the bases, from the
SCF and MP2 methods, are given in table 5.2.
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Table 5.2: The total energies at the SCF E(0) and MP2 E(2) level are shown
together with the second order correction and the dipole moments of the bases,
as given by the SCF and MP2 densities. Here, the energies are given in atomic
units, or Hartrees [H], and the dipole moments in Debye [D].

Adenine Guanine Thymine Cytosine

Total Energies E(0) -464.58 -539.47 -451.57 -392.67
E(2) -466.10 -541.17 -452.97 -393.91

∆(2) -1.51 -1.71 -1.41 -1.24

Dipole Moments µ(0) 2.51 7.39 5.00 7.42
µ(2) 2.56 6.63 4.34 6.55

Orbital Energies and Ionization Potentials

The SCF densities and orbital energies obtained in the previous section were
subjected to a one body Green’s function correction, termed the Outer Valence
Green’s Function method (OVGF), which corresponds to one electron — one
hole rearrangments in the outer valence region during ionization [8]. The orbital
energies are presented in table 5.3 along with the resulting ionization potentials
and pole strengths.

Whereas one body corrections will accurately account for the relaxation
effects in the outer valence region, many body Green’s function methods are
required to describe ionization processes from the inner valence shells. Since
such methods are not bundled with the Gaussian 03 package used here, the
results from the three-body Green’s function method ADC(3) as calculated by
Trofimov et al.[60] are also included in table 5.3 for comparison.

Finally, having accounted for at least some of the relaxation effects, the
ionization potentials arising from these SCF densities can be compared to ex-
perimental energies of adenine, cytosine and thymine, which have been obtained
fairly recently by photoelectron spectroscopy [60].

These spectra are included here4 and are plotted together with the ioniza-
tion energies and pole strengths from the present OVGF calculation5, in figure
5.5. In addition, the relaxation effects and concominant orbital energy changes
are shown for all four bases in figures 5.6 and 5.7.

Interestingly, extensive relaxation effects can be seen in the nitrogen and
oxygen lone pair orbitals of the bases, which are also plotted in figures 5.8 and
5.9.

5.3 Stacked Dimers

Continuing with the MP2 optimized structures from previously, stacked dimers
corresponding to singly stranded 5′−CC−3′, 5′−GG−3′ and 5′−GC−3′ B-
DNA were produced with the ssDNA script, as described previously.

4Courtesy of D.M.P. Holland.
5However, since the spectrum of cytosine is dominated by another tautomer, no peak to

orbital energy comparison is made in this case.
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Table 5.3: SCF orbital energies and types presented with one body outer
valence Green’s functions calculations (OVGF), as compared with higher order
three body ADC(3) calculations and photoelectron spectra from Trofimov et
al. [60]. Here, all energies are given in [eV ].

aug-cc-pVDZ Trofimov et al.[60]

SCF OVGF ADC(3) Exp.

MO Type E No E P E P E

Adenine 25a π6 8.33 1 8.29 0.90 7.93 0.89 8.47
24a π5 10.11 2 9.42 0.88 9.36 0.88 9.54
23a σN LP 11.17 3 9.55 0.89 9.20 0.89 9.45
22a π4 11.50 4 10.53 0.88 10.26 0.87 10.45
21a σN LP 12.32 5 10.64 0.89 10.23 0.89 10.51
20a π3 13.45 6 12.26 0.85 12.09 0.71 12.09
19a σN LP 13.55 7 11.73 0.88 11.20 0.87 11.35
18a π2 15.10 8 13.61 0.84 13.54 0.65 13.20
17a σ 16.05 9 14.35 0.88 14.47 0.81 14.58
13a σ 18.36 10 16.97 0.43 16.80 0.64 16.35

Thymine 24a π6 9.60 1 8.91 0.90 8.59 0.90 9.19
23a π5 11.79 2 10.56 0.88 10.00 0.87 10.45
22a σO LP 12.18 3 10.60 0.89 10.12 0.88 10.14
21a σO LP 13.03 4 11.47 0.89 10.95 0.88 10.89
20a π4 13.86 5 12.55 0.88 12.31 0.84 12.27
18a π3 15.15 6 13.77 0.87 13.31 0.55 13.31
15a σ 16.76 7 15.13 0.89 14.89 0.80 14.90
14a σ 17.42 8 15.72 0.89 15.16 0.47 15.75
11a σ 19.26 9 17.37 0.89 17.50 0.84 16.86

Cytosine 21a π 9.33 1 8.70 0.89 8.17 0.88 8.89
20a π5 10.43 2 9.41 0.89 8.93 0.89 9.89
19a σN LP 11.41 3 10.00 0.90 9.46 0.89 9.55
18a σO LP 12.07 4 10.49 0.89 9.91 0.88 11.20
17a π4 13.27 5 12.19 0.87 11.90 0.78 11.64
16a π3 14.58 6 13.16 0.87 12.92 0.80 12.93
15a σ 16.09 7 14.60 0.89 14.11 0.83 13.86
14a σ 16.57 8 14.80 0.89 14.81 0.81 14.94
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Figure 5.5: The photoelectron spectra of adenine, thymine and cytosine as
reported by Trofimov et al. [60] together with the energies and pole strengths
of the present calculations, with the pole numbering as given in table 5.3.

They were all subjected to a rigid potential energy scan (PES) at the coun-
terpoise corrected MP2/aug-cc-pVDZ level, varying the twist parameter in the
range ω = [0, 80]o, in steps6 of 5o. All other parameters of the bases, including
bond lengths, angles and dihedrals, were kept fixed, under the assumption that
the stacking energies are too slight to significantly affect them.

The settings of the frosen helical parameters were chosen to essentially
comply with those given in table 4.5 on page 41, and are presented in table 5.4.
The reasons behind the differences between these values and table 4.5, the most
prominent being the sign change of slide, are elaborated in the discussions.

An attempt was made to do a relaxed7 PES of the cytosine dimer, but it
was eventually abandoned due to convergence problems.

6With the exception of the ω = 75o point which was not calculated for the GG and CC
dimers.

7Meaning that the structures of the bases are subjected to optimization for each value of
the scanned parameter
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(a) A — 23a σLP N (b) A — 21a σLP N (c) A — 19a σLP N

(d) T — 22a σLP O (e) T — 21a σLP O

Figure 5.8: The nitrogen and oxygen lone pair orbitals of adenine, in (a), (b)
and (c), along with those of thymine, in (d) and (e).

(a) G — 24a σLP O (b) G — 25a σLP O (c) G — 22a σLP N

(d) C — 19a σLP O (e) C — 18a σLP O

Figure 5.9: The oxygen and nitrogen lone pair orbitals of guanine, in (a), (b)
and (c), together with those of cytosine, in (d) and (e).

Table 5.4: Frozen helical parameters in the dimer calculations, in [o] and [Å].

Dx Dy Dz τ ρ

CC 0.06 -0.38 3.28 0 0
GG 0.06 -0.38 3.28 0 0
GC 0.00 -0.45 3.37 0 0
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Dimer Energies

The single point energies from the potential scans are plotted with respect
to the minimum energies in the left column of figure 5.10. Also, to obtain
estimates of the relative contributions from the electron correlation energy
given at this level of theory, the counterpoise corrected MP2cp and SCFcp

monomer energies were subtracted from the corresponding dimer total energies.
The resulting potential curves are plotted in the rightmost column of figure
5.10.

The total and relative MP2cp and SCFcp energies for ω = 0o and the min-
ima, i.e. where we estimate that ∂ωE → 0, are also given in table 5.5.

Table 5.5: The total energies at the SCFcp (E(0)) and MP2cp (E(2)) levels
of theory for the dimers, taken at ω = 0o, are presented with their respective
approximate minima and corresponding E(2) total energy difference.

Min

E(0) [H] E(2) [H] ω [o] E(0) [H] E(2) [H] ω [o] ∆min
0o [meV]

CC -785.321 -787.818 0 -785.338 -787.826 40 -221
GG -1078.906 -1082.352 0 -1078.923 -1082.360 45 -208
GC -932.142 -935.100 0 -932.137 -935.104 20 -119
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Figure 5.10: The calculated energies of the GG, CC, and GC dimers given
with respect to the minimum value, along with the value of kT 25o

, in (a), (c)
and (e), and the monomer energies in (b), (d) and (f). In the right hand side
diagrams, the relative contributions from the SCF and the electron correlation
to the second order are shown.





6 Discussion

Seek simplicity — and distrust it!

Alfred North Whitehead

In this chapter, the calculated potential curves will be discussed, interpreted
and compared with the statistical data of double stranded DNA. The conclu-
sions from these sections are summarized in section 6.3.

6.1 The Dimer Interactions

There are at least three different kinds of interaction that are expected to take
place in the dimers, namely electrostatic interaction, electron correlation and
direct orbital interaction.

To determine the effects of these interactions, and their ability to give an
account for the observed potential curves, they will be briefly examined in this
section.

Electrostatic interaction

To estimate the electrostatic multipole interaction energy, we may begin by
noting from table 5.2 on page 50 that both guanine and cytosine have strong
dipole moments.

Since higher order multipoles are generally not expected to make a sig-
nificant contribution to the expansion of the charge density if the leading
dipole term is non-vanishing, this estimation is reduced to merely evaluating
the dipole-dipole interaction energy.

The dipole-dipole interaction energy can be explicitly calculated by the
following simple formula1,

UDD =
1
r3

[
(p1 · p2)− 3 (p1 · r̂) (p2 · r̂)

]
, (6.1)

in this case given that

r = Dzẑ +Rẑ(ω)t− t , (6.2)

where t is the vector from the origin of the Standard Reference Frame to the
Gaussian standard orientation, in terms of which the dipole vectors p1 and p2

are provided from the calculations.

1Conveniently given in atomic units, where 4πεo = 1.
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Furthermore, approximating shift and slide to zero, the dipole vectors will
merely transform by a rotation about the rise vector. Thus, keeping p1 fixed,

p′2 = Rẑ(ω)p2 ,

where R is an SO(3) rotation matrix.
In this approximation, the dipole-dipole interaction energy for GG and CC

at ω = 0o reduces to

EDD =
µ2

r3
,

due to symmetry, where µ is the dipole moment of guanine and cytosine re-
spectively, and r ≡ Dz for the corresponding dimer, whose values are given
in table 5.4 on page 55. Evaluating this expression for the CC and GG dimer
gives 0.76 eV and 0.78 eV, which compares to the calculated HFcp energies of
0.73 eV and 0.83 eV .

Since these interaction energies are in fair agreement at ω = 0o, the higher
order multipole contributions are expected to be small. In addition, the dipole-
dipole potential is expected to remain similar throughout the transformation
of the dipole vectors, if the electrostatic model is indeed valid.

However, evaluating the full expression of the dipole-dipole potential gives
the potential curve plotted in figure 6.1 where it can be seen that this model is
only valid in the vicinity of ω = 0o, for GG and CC, and gives a quite incorrect
picture for the GC dimer.

Actually, whereas it is tempting to believe that the large deviation seen
in the GC dimer dipole-dipole curve in 6.1(c) is due to a miscalculation, this
result also follows from intuition. In figure 5.4 on page 49, the dipole vectors
of guanine and cytosine are seen to run in almost opposite directions, which
consequenlty also holds true at ω = 0o where the bases are stacked in an
approximately parallel fashion. As ω increases, the vectors are expected to
reach a point where they are oppositely directed, where the negative attractive
energy is at its maximum, and then diminish as the dipole interaction declines
with increasing r. This is exactly what is seen in the dipole-dipole curve.

On the contrary, the HFcp GC energy starts out at its maximum and then
quickly declines towards zero, where it stays for the remainder of the transfor-
mation, leaving the electron correlation as the major contributor to the total
potential energy at this level of theory.

From these considerations, we draw the conclusion that the ab initio calculated
potential curves cannot be adequately explained by simple electrostatic dipole
interaction, and that higher order multipoles are probably not able to account
for the observed differences, although this remains to be shown explicitly.

Electron correlation

In the potential plots of the neon dimer, it seems that the electron correlation
energy, as given by the Møller-Plesset perturbation theory, is fairly well de-
cribed by the van der Waals term in the Lennard-Jones potential, as shown in
figure 5.3 on page 47, at least at the fourth order correction with the augmented
quintuple zeta basis set.

To substantiate this, we may perform a coordinate change by simply taking
the natural logarithm of r and Ecorr, which for some levels of theory are plotted
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Figure 6.1: The quantum mechanical potential curves, provided with the
dipole-dipole potential energy as given by UDD in equation 6.1, and the least-
squares fitted logaritmic curves of the electron correlation in dashed lines, after
the removal of the angular dependencies for GG and CC.

in figure 6.2(a). From this plot, it can be seen that the correlation energy is
increasingly well described by the simple first order polynomial,

logEcorr = log(k)− a log(r) ⇐⇒ Ecorr = k
1
ra

where the corresponding exponents a can estimated by a linear least-squares
fit.

The resulting exponents of the linear fit as shown in figure 6.2(a) are given
in table 6.1, and are seen to converge towards r−6, which is one of the charac-
teristic properties of the van der Waals interaction.

The remaining differences at the high level MP4FC/aug-cc-pV5Z calcula-
tion between the experimental and calculated spectroscopic constants of Ne2,
may be due to the omittance of core-core and core-valence correlation in the
frozen core approximation. Judging from the core correlation effects on the
spectroscopic constants of the X 1Σ+ state in the CH+ molecule as calculated
by Taylor et al. [3], the differences are seen to be in the same order of magni-
tude with respect to De.
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Figure 6.2: Logarithmic plots of the neon dimer correlation energies, in (a),
and the base dimers, GG and CC in (b), after the removal of the angular
dependencies .

Table 6.1: The exponents of the least-squares fit to the correlation energy in
the neon dimer, as shown in figure 6.2(a).

MP2 MP4

r−a cc-pVTZ aug-cc-pVDZ aug-cc-pVQZ aug-cc-pVQZ

a 5.47 5.59 6.07 6.14

Before attempting to interpret the decline in the electron correlation energy
for the GG, CC and GC dimer, it would be beneficial to remove the angular
dependencies in these curves, and instead try to relate them to some distance
parameter2 r′.

Actually, suitable coordinate transformations for the GG and CC dimers
are easily found due to symmetry, for instance by choosing the distance between
the centers of the aromatic rings. The corresponding coordinate transformation
is given by

r′ =
√

4 sin2
(ω

2

)
||v||2 + ||Dz ẑ||2 ,

where v is a vector pointing from one monomer to the other. A linear least
squares fit in the logaritmic plot of r′ and Ecorr is shown in figure 6.2(b).

Performing an inverse coordinate transformation on the least-squares fitted
lines back to the angular representation gives the dashed curves shown in figures
6.1(a) and 6.1(b). However, no suitable choice of coordinates was found for the
asymmetric GC dimer.

In addition, it can also be seen directly from figures 5.10(b), 5.10(d) and
5.10(f) on page 57 that the correlation energy is monotonously declining for all
dimers, and that the specific features of the calculated ab initio potentials are

2It is expected that the correlation energy will depend on the spatial proximity of electron
densities, even if the choice of parameter here is only approximative.
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inherited from the HF energy rather than the correlation energy.

From these considerations, we draw the conclusion that whereas the corre-
lation energy seems manifestly isotropic, the details of the potential curves are
determined by the zeroth order Hartree-Fock energy.

Since we, by the previous paragraph, are unable to draw any conclusion
about the HF energy by considering the dipole-dipole interaction, the orbitals
themselves need to be examined.

Orbital interaction

The dimer orbitals can in most cases be regarded as linear combinations of
the molecular orbitals found in the monomers, and their corresponding orbital
energies are subjected to energy splittings. As such, it is expected that the π
orbital energies of the dimer experience a larger splitting than the σ orbitals,
as a direct consequence of the π interaction.

To give an example of this, the energy splittings and orbital renderings of
the HOMO π, HOMO-1 π, 35a σ and 36a σ orbitals of the GG dimer, which
are made up of combinations from the 22a” π7 HOMO and 7a’ σ7 orbitals of
the guanine monomers, are shown in figure 6.3.
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Figure 6.3: The π and σ orbital splitting as observed in the guanine dimer, in
(a) and (b) respectively, together with renderings of the corresponding orbitals
at ω = 0o with isosurface probabilites p = 0.01, in (c) and (d).

In these diagrams, the scale is taken to be the same, and the considerable
difference in the energy splitting between the π and σ orbitals at ω = 0o is
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apparent.

The GG dimer. Plotting the energies of all the valence orbitals in the gua-
nine dimer, given the range of ω = [0, 80]o, reveals that the σ splitting consis-
tently increases as the total energy is lowered, shown in figure 6.4.

At the same time, the two highest π orbitals undergo a decrease in energy
splitting, which eventually leads to a rearrangement of the orbitals, estimated
to occur somewhere between 20o and 30o. Judging from this plot, it seems
likely that all of the π orbitals undergo a similar transformation.
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Figure 6.4: The orbital energies of the guanine monomer is given left of the
dotted line, whereas the orbital energies of the guanine dimer in the range of
ω = [0, 80]o is shown to the right. In this plot, the whole of the valence region
is encompassed.

At this point it should be stressed that as the energies are split up and
approach neighbouring single molecular orbital energies, they will in turn start
to make significant contributions to the dimer orbitals and consequently often
give rise to a blend which share little likeness with the 0o state. In fact, some
of the orbitals in the dense regions seen in figure 6.4 can hardly be considered
to be made up of well determined single molecular orbitals at all, save for in
the 0o conformation.

With this in mind, the general behaviour of the orbitals in the guanine dimer
during this transformation seems to be to move away from the near degeneracy
of the σ orbitals at 0o, which at the same time decreases the energy splitting
of the π orbitals. Whereas the energy contributions from the π orbitals are
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estimated to be very slightly increased, the σ orbital energies are significantly
lowered, which, as such, is reminiscent of the pseudo Jahn-Teller effect.

The CC dimer. Adopting such a reasoning, we would expect that the pic-
ture is similar in the CC dimer, since it is also symmetric at 0o. Indeed, by
regarding the energies plotted for 0o and the minimum point at 40o in figure
6.5(a), this seems also to be true.

The σ orbitals are very slightly split, and hence nearly degenerate, in the
0o confromation, whereas the splitting increases when moving away from the
symmetrical state, which results in a significant overall energy lowering of the
orbital energies.
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Figure 6.5: The orbital energies of the cytosine and guanine-cytosine dimer
in the valence region for ω = 0o and the minima are shown along with the
monomer energies separated by dotted lines.

Finally, seeing that this effect is not present in the manifestly asymmet-
ric GC-dimer, whose energies are shown in figure 6.5(b), reinforces the idea
that symmetry and orbital degeneracies may play a role in determining the
energetics of the vertical base stacking.

The GC dimer. In the GC dimer, where the total HF energy lowering is
modest and the potential curve is mostly determined by the electron correlation
energy, the orbitals are seen to have stronger monomer character, either derived
from the guanine or the cytosine, which is natural when taking the energy
differences between the different monomer orbitals into account.

Nonetheless, in the cases where guanine and cytosine orbitals are found in
energetical proximity, splitting does occur, as is seen in figure 6.5(b).

Here, the energy lowering is given by factors which have not been elucidated
here. However, among the orbitals that lower their energy the most, interesting
features such as lone pair–lone pair interaction, as shown in figure 6.6(a), are
observed.

Although lone pair–lone pair interaction would be an oxymoron in the va-
lence bond description, it is frequently spotted also in the symmetrical dimers
and actually appears in the π orbital example of figure 6.3(c).
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(a) GC 59a (b) GC 46a

Figure 6.6: Interesting features of the dimer orbitals for the guanine-cytosine
dimer, given at ω = 20o. (a) Lone pair-lone pair interaction is seen in orbital
59a. (b) An example of the observed direct π-interaction.

6.2 Comparison with double stranded DNA

Although we have only considered base dimers of single stranded DNA, it may
be of some interest to compare the potential curves with the statistical distri-
butions that were calculated in section 4.4. Remembering that the GG and CC
dimers are complementary, they will both be compared with the dsGG twist
distribution as given in figure 4.3(e) on page 42, whereas the GC dimer will be
rendered with the dsGC distribution in figure 4.3(f).

Before doing so, there are a number of weaknesses in the dimer description
that need to be discussed.

To begin with, the slide parameters in the dimers are about ∼ 0.8 Å off
from the intended mean value, due to the sign error in dsDNA. This will have
an impact on the energy but it will probably be slight, as judged from previous
undisclosed calculations on the cytosine dimer at Dx = Dy = 0 Å. Further-
more, the overall slide distribution for the dinucleotides is seen to be almost
symmetrical about Dy = 0 in figure 4.2 on page 40, with a peak near −0.5 Å,
which may also justify a qualitative comparison with the B-DNA data set.

Secondly, since we have suggested in the previous section that the energies
in this system may very well rely on σ orbital conformation and energies, which
are subsequently affected by the hydrogen bonds in double stranded DNA, it
is important to remember that these hydrogen bonds have not been taken into
account in the dimer description, thus possibly leaving out important additional
quantum mechanical effects.

Thirdly, comparing with the neon dimer model system, e.g. figure 5.1(b)
on page 45, the theoretical level to which the dimer potential curves have been
calculated is too modest to warrant any claim of quantitative agreement.

Finally, since the sugar-phosphate backbone is also absent from the dimer
description, there is no way of telling whether or not the ω angles that differ
greatly from those in ideal B-DNA are permissible, or if the reported energy
lowerings of ∼ 0.1 − 0.2 eV per dimer are enough to make a difference when
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compared to the corresponding energies of the complete system, i.e. where the
backbone is included.

Nevertheless, the potential curves that are plotted along with the distribu-
tions in figure 6.7 show some degree of qualitative similarity, suggesting that
the energies that have been calculated here may indeed have implications in
the biologically active B-DNA double helix.

6.3 Conclusions

From the deliberations outlined above, the following conclusions can be drawn.

i. The nucleobases guanine and cytosine prefer not to be stacked symmetri-
cally on top of each other.

ii. When given the opportunity to rotate about a vector corresponding to the
B-DNA helix axis, they will do so and take on a conformation which is
similar to that found in biologically active DNA.

iii. The cause behind this preferred conformation cannot be explained by
means of classical electrostatics — at least not at the level of molecular
dipole interaction — but is seen to be mainly quantum mechanical.

iv. Among the quantum mechanical effects, the electron correlation — which
is shown to correspond to the chemical van der Waals interaction — is very
important but is also seen to be chiefly isotropical.

v. The specific and anisotropic quantum mechanical effects are attributed to
the zeroth order Hartree-Fock solutions.

vi. There is clear evidence of both π and σ orbital interaction that confers the
energy lowering in the Hartree-Fock solutions of the stacked nucleobases.

In addition to this, the energy lowering in the Hartree-Fock solution is suggested
to be caused by a pseudo Jahn-Teller -like destabilization of the σ orbitals in
the symmetric dimers, whereas the cause remains somewhat elusive for the
assymetric guanine-cytosine dimer. Presumably, the latter is due to specific
orbital interactions, such as the observed lone pair-lone pair interactions.

6.4 Future Improvements

dsDNA

The most important improvements of dsDNA for future versions are

i. The inclusion of both signs for the translational helical parameters,

ii. a correct account of the important intra-base-pair propeller twist parameter
and

iii. a description of the remaining local base step coordinates.

The first point stems from the fact that bond lengths in a Z-matrix cannot be
negative, so sign-changes at this level must be given indirectly in terms of bond
angles and dihedrals in the scaffold. It is concievable that future specifications
will be by input files rather than by prompt arguments.
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Base interaction energies

The next step in solving the grand problem is to perform calculations on base-
pairs, rather than base dimers, to the same level of theory or higher, using the
same tranformations.

Perhaps the greatest weakness in the approach used in this study is that it
is questionable whether the settings at ω = 0o have any biological relevance at
all. Thus, whereas we already know that such a conformation is not favourable,
since we do not observe it, we would also need to verify whether it is at all
permissible.

To remedy this, it would be interesting to verify whether there are experi-
mental structures where base-pairs are found in the energetically unfavourable
0o conformation and, if so, what the other helical parameters are in those cases.

In a study relying on such conformations, the removal of the sugar-phosphate
backbone is easier to motivate since it has already had its say in determining
the helical structure.

In fact, quickly skimming 1800 X-ray single crystal structures of double stranded
DNA from the NDB, returns 65 base-pair steps, among a total of ∼ 24 000,
having twist in the range ω = [1, 10]o.

One of these base-pair steps is found within a structure of the TATA box
binding protein [33], when bound to the sequence

3′−GCATATATATGC−5′

||||||||||||
5′−CGTATATATACG−3′

where the underlined base-pair step has a twist of ω ∼ 1o.
When the other parameters of that base-pair step are compared to the B-

DNA averages from table 4.4 on page 40, they are seen to essentially comply,
save for the roll parameter, as is shown in table 6.2. The bound protein-DNA
complex is also shown in figure 6.8.

On the other hand, since this single observation could prove to be spurious,
a future comprehensive study is suggested.

Table 6.2: Comparison between the low twist base-pair step in the bound
protein TATA-box complex with the average values of free B-DNA as given in
table 4.4 on page 40. The translations are given in [Å] and the angles in [o].

Dx Dy Dz τ ρ ω

B-DNA x̄ 0.01 0.30 3.32 -0.04 1.43 34.84
σ 0.55 0.79 0.30 3.31 5.62 7.91

TATA-box x 0.80 0.95 3.14 -0.16 21.26 1.46

On a quantum chemical level, partial optimizations for a few points along
the potential curves would be valuable to ascertain that the energy is not con-
strained by the rigidity of the intra-base geometries. The convergence problems
that were encountered here could presumably be solved by reducing the size
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(a) Side view (b) Front view

Figure 6.8: Rendering from the X-ray crystal structure 1TGH, as reported in
[33], with the Chimera software [45]. The bases in the base-pair step seen in
the middle bear a similar geometry to those computed at ω = 0o in this work,
save for a larger roll.

of the basis set until convergence is met, and then gradually increasing it until
the geometry at the proper level is found.

On the other hand, this is easier said than done since the basis set used
here, Dunning’s aug-cc-pVDZ, is the lowest level correlation consistent basis
set with associated diffuse functions. By considering the most important first
row contractions, Pople’s split valence 6-31+G(d) basis set is a likely candidate.
Comparing (11s 5p 1d) → [4s 5p 1d], with that of aug-cc-pVDZ, (10s 5p 2d) →
[4s 3p 2d], we see that Pople’s basis set has four d functions less3 per first row
atom than Dunning’s, but one 1 s-function more. Whether this is enough to
make a difference remains to be seen.

3Here, it must be taken into account that Pople’s basis set provide 6 cartesian d-functions,
whereas Dunning’s include 5 pure d-functions per contraction as stated above.
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Appendix

A.1 The Standard Reference Frame

Here, the cartesian coordinates of the IUPAC-IUBMB joint commission doc-
ument A Standard Reference Frame of for the Description of Nucleic Acid
Base-pair Geometry [41] are presented in table A.1.

Table A.1: Cartesian coordinates, given in Å, of the base atoms in ideal
Watson-Crick base-pairs as described by the Standard Reference Frame [41],
using the nomenclature on page 8. Note that these coordinates are based on
average geometries as observed in high-resolution crystal structures.

Adenine x0 y0 z0 Guanine x0 y0 z0
C1′ -2.479 5.346 0.000 C1′ -2.477 5.399 0.000
N9 -1.291 4.498 0.000 N9 -1.289 4.551 0.000
C8 0.024 4.897 0.000 C8 0.023 4.962 0.000
N7 0.877 3.902 0.000 N7 0.870 3.969 0.000
C5 0.071 2.771 0.000 C5 0.071 2.833 0.000
C6 0.369 1.398 0.000 C6 0.424 1.460 0.000
N6 1.611 0.909 0.000 O6 1.554 0.955 0.000
N1 -0.668 0.532 0.000 N1 -0.700 0.641 0.000
C2 -1.912 1.023 0.000 C2 -1.999 1.087 0.000
N3 -2.320 2.290 0.000 N2 -2.949 0.139 -0.001
C4 -1.267 3.124 0.000 N3 -2.342 2.364 0.001

C4 -1.265 3.177 0.000

Cytosine x0 y0 z0 Thymine x0 y0 z0
C1′ -2.477 5.402 0.000 C1′ -2.481 5.354 0.000
N1 -1.285 4.542 0.000 N1 -1.284 4.500 0.000
C2 -1.472 3.158 0.000 C2 -1.462 3.135 0.000
O2 -2.628 2.709 0.000 O2 -2.562 2.608 0.000
N3 -0.391 2.344 0.000 N3 -0.298 2.407 0.000
C4 0.837 2.868 0.000 C4 0.994 2.897 0.000
N4 1.875 2.027 0.001 O4 1.944 2.119 0.000
C5 1.056 4.275 0.000 C5 1.106 4.338 0.000
C6 -0.023 5.068 0.000 C5M 2.466 4.961 0.001

C6 -0.024 5.057 0.000
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A.2 Dinucleotide Base-Pair Geometry

Table A.2: The double stranded DNA X-ray crystal structures used in this
thesis, given by the Nucleic Acid Database identification numbers.

UDJ049 UD0029 BDL084 BDL020 BDL005 BDL001
BDJ081 BDJ069 BDJ061 BDJ060 BDJ052 BDJ051
BDJ037 BDJ036 BDJ031 BDJ025 BDJ019 BDJ017
BD0087 BD0084 BD0082 BD0081 BD0080 BD0079
BD0077 BD0073 BD0070 BD0067 BD0066 BD0054
BD0051 BD0041 BD0040 BD0037 BD0036 BD0035
BD0034 BD0033 BD0032 BD0029 BD0023 BD0019
BD0018 BD0006 BD0005 BD0001

A.3 Base Geometry Optimization

The detailed results from the geometry optimization described in section 5.2,
are given for adenine in tables A.3 and A.4, thymine in tables A.5 and A.6,
guanine in tables A.7 and A.8, and cytosine in tables A.9 and A.10.

Table A.3: Adenine bond lengths given by experimental results and geometry
optimization using DFT and MP2, as described in section 5.2. All atoms are
denoted by the IUPAC convention on page 8, the bond lengths are given in
[Å], with the deviations and RMSDs in [mÅ].

DFT MP2 Exp. ∆DFT
Exp ∆MP2

Exp ∆MP2
DFT

N9:C8 1.381 1.379 1.374 -6.8 -4.8 -2.0
C8:H8 1.082 1.088 — — — 6.3
C8:N7 1.311 1.336 1.311 0.2 -25.0 25.1
N7:C5 1.385 1.387 1.389 3.8 2.4 14
C5:C6 1.412 1.418 1.405 -6.8 -12.6 5.8
C6:N6 1.353 1.361 1.335 -17.6 -25.5 8.0
N6:H6a 1.006 1.011 — — — 4.1
N6:H6b 1.006 1.010 — — — 4.5
C6:N1 1.345 1.348 1.351 6.0 2.8 3.2
N1:C2 1.344 1.360 1.337 -6.7 -23.3 16.7
C2:H2 1.088 1.093 — — — 4.8
C2:N3 1.337 1.346 1.331 -5.7 -14.6 8.9
N3:C4 1.339 1.349 1.343 4.0 -6.4 10.4
N9:H9 1.009 1.014 — — — 5.6

σrms 7.8 15.9 9.8
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Table A.4: Adenine angles given by experimental results and geometry op-
timization using DFT and MP2, as described in section 5.2. All atoms are
denoted by the IUPAC convention on page 8, angles and deviations are given
in [o].

DFT MP2 Exp. ∆DFT
Exp ∆MP2

Exp ∆MP2
DFT

N9:C8:H8 121.3 121.7 — — — 0.4
N9:C8:N7 113.5 113.4 113.7 0.3 0.4 -0.1
C8:N7:C5 103.9 103.4 103.9 0.1 0.5 -0.5
N7:C5:C6 132.6 132.1 132.3 -0.4 0.2 -0.5
C5:C6:N6 122.2 121.9 123.7 1.5 1.8 -0.3
C6:N6:H6a 119.0 119.2 — — — 0.2
C6:N6:H6b 120.2 120.0 — — — -0.2
C5:C6:N1 118.9 118.8 117.6 -1.3 -1.2 0.0
N1:C2:N3 118.3 118.4 118.6 0.3 0.2 0.1
N1:C2:H2 115.2 115.1 — — — -0.1
N1:C2:N3 129.0 128.9 129.4 0.4 0.5 -0.1
C2:N3:C4 111.1 110.8 110.5 -0.6 -0.3 -0.3
C4:N9:H9 126.7 125.9 — — — -0.8

σrms 0.8 0.8 0.3

Table A.5: Thymine bond lengths given by experimental results and geome-
try optimization using DFT and MP2, as described in section 5.2. All atoms
are denoted by the IUPAC convention on page 8, the bond lengths are given
in [Å], with the deviations and RMSDs in [mÅ].

DFT MP2 Exp. ∆DFT
Exp ∆MP2

Exp ∆MP2
DFT

N1:C6 1.380 1.385 1.378 -2.1 -7.1 5.1
C6:H6 1.085 1.092 — — — 7.6
C6:C5 1.352 1.366 1.339 -13.0 -26.7 13.7
C5:C7 1.500 1.504 1.496 -4.3 -7.6 3.3
C7:H7a 1.095 1.101 — — — 6.2
C7:H7b 1.095 1.101 — — — 6.3
C7:H7c 1.093 1.100 — — — 7.0
C5:C4 1.469 1.468 1.445 -23.5 -22.8 -0.7
C7:O4 1.222 1.234 1.228 6.3 -5.8 12.1
C4:N3 1.407 1.408 1.382 -25.2 -26.4 1.2
N3:H3 1.013 1.018 — — — 5.5
N3:C2 1.390 1.389 1.377 -12.6 -12.5 -1.0
N3:O2 1.218 1.229 1.220 2.3 -9.2 11.5
N1:H1 1.009 1.014 — — — 4.7

σrms 14.1 17.0 7.3
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Table A.6: Thymine angles given by experimental results and geometry op-
timization using DFT and MP2, as described in section 5.2. All atoms are
denoted by the IUPAC convention on page 8, angles and deviations are given
in [o].

DFT MP2 Exp. ∆DFT
Exp ∆MP2

Exp ∆MP2
DFT

N1:C6:H6 115.1 115.4 — — — 0.3
N1:C6:C5 122.7 122.4 123.7 1.0 1.3 -0.2
C6:C5:C7 124.1 123.7 122.9 -1.2 -0.8 -0.4
C5:C7:H7a 110.8 110.4 — — — -0.4
C5:C7:H7b 110.8 110.4 — — — -0.4
C5:C7:H7c 111.3 110.8 — — — -0.6
C6:C5:C4 118.2 118.1 118.0 -0.2 -0.1 0.0
C5:C7:O4 125.0 124.9 124.9 -0.2 -0.1 -0.1
C5:C4:N3 114.6 114.7 115.2 0.7 0.6 0.1
C4:N3:H3 116.2 116.3 — — — 0.2
C4:N3:C2 123.9 123.8 121.3 -2.6 -2.6 -0.1
N3:C2:O2 123.2 123.4 123.0 -0.2 -0.3 0.2
C2:N1:H1 121.1 121.0 — — — -0.1

σrms 1.2 1.2 0.3

Table A.7: Guanine bond lengths given by experimental results and geometry
optimization using DFT and MP2, as described in section 5.2. All atoms are
denoted by the IUPAC convention on page 8, the bond lengths are given in
[Å], with the deviations and RMSDs in [mÅ].

DFT MP2 Exp. ∆DFT
Exp ∆MP2

Exp ∆MP2
DFT

N9:C8 1.386 1.383 1.375 -10.8 -8.4 -2.3
C8:H8 1.081 1.088 — — — 6.3
C8:N7 1.307 1.332 1.305 -1.9 -27.4 25.5
N7:C5 1.383 1.385 1.389 6.4 4.0 2.3
C5:C6 1.439 1.447 1.418 -21.5 -29.4 8.0
C6:O6 1.219 1.229 1.238 19.5 9.1 10.4
C6:N1 1.441 1.435 1.391 -49.7 -44.4 -5.3
N1:H1 1.013 1.018 — — — 5.5
N1:C2 1.373 1.379 1.373 0.1 -5.7 5.8
C2:N2 1.362 1.371 1.342 -20.0 -29.0 9.0
N2:H2a 1.004 1.008 — — — 3.7
N2:H2b 1.006 1.010 — — — 3.7
C2:N3 1.315 1.319 1.322 7.2 2.6 4.7
N3:C4 1.357 1.370 1.349 -8.2 -20.9 12.7
N9:H9 1.009 1.014 — — — 5.5

σrms 20.0 22.5 9.3
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Table A.8: Guanine angles given by experimental results and geometry op-
timization using DFT and MP2, as described in section 5.2. All atoms are
denoted by the IUPAC convention on page 8, angles and deviations are given
in [o].

DFT MP2 Exp. ∆DFT
Exp ∆MP2

Exp ∆MP2
DFT

N9:C8:H8 121.5 121.9 — — —
N9:C8:N7 112.8 112.8 113.1 0.2 0.3 -0.1
C8:N7:C5 104.5 104.0 104.4 -0.1 0.5 -0.6
N7:C5:C6 130.3 130.1 130.5 0.2 0.4 -0.2
C5:C6:O6 131.5 131.1 128.5 -3.0 -2.6 -0.5
C5:C6:N1 109.4 109.3 111.7 2.2 2.4 -0.1
C6:N1:H1 112.9 113.3 — — — 0.3
C6:N1:C2 126.5 127.0 125.0 -1.6 -2.0 0.4
N1:C2:N2 117.4 116.8 116.1 -1.3 -0.7 -0.6
C2:N2:H2a 123.0 122.6 — — — -0.4
C2:N2:H2b 117.5 117.7 — — — 0.3
N1:C2:N3 123.5 124.0 124.0 0.5 0.0 0.5
C2:N3:C4 112.4 111.5 112.0 -0.4 0.5 -0.9
C4:N9:H9 125.5 125.5 — — — 0.0

σrms 1.5 1.4 0.4

Table A.9: Cytosine bond lengths given by experimental results and geom-
etry optimization using DFT and MP2, as described in section 5.2. Here the
B3LYP/6-31+G(3df, p) calculation is denoted by DFT+. All atoms are de-
noted by the IUPAC convention on page 8, the bond lengths are given in [Å],
with the deviations and RMSDs in [mÅ].

DFT DFT+ MP2 Exp. ∆DFT
Exp ∆DFT+

Exp ∆MP2
Exp ∆DFT+

MP2

N1:C6 1.350 1.353 1.362 1.367 16.9 14.3 5.0 9.3
C6:H6 1.085 1.085 1.092 — — — — 7.5
C6:C5 1.354 1.358 1.371 1.339 -15.0 -19.3 -31.6 12.3
C5:H5 1.085 1.082 1.090 — — — — 8.5
C5:C4 1.452 1.439 1.444 1.424 -28.3 -14.8 -20.0 5.2
C4:N4 1.353 1.358 1.365 1.336 -17.1 -21.9 -29.2 7.3
N4:H4a 1.008 1.008 1.012 — — — — 4.1
N4:H4b 1.005 1.005 1.009 — — — — 4.1
C4:N3 1.315 1.319 1.328 1.335 19.6 16.0 6.8 9.2
N3:C2 1.356 1.369 1.383 1.353 -2.6 -15.7 -30.0 14.3
C2:O2 1.221 1.218 1.232 1.240 19.4 21.8 8.3 13.5
N1:H1 1.009 1.010 1.015 — — — — 5.4

σrms 18.4 17.9 21.7 9.0



76 Appendix

Table A.10: Cytosine angles given by experimental results and geometry opti-
mization using DFT and MP2, as described in section 5.2. Here the B3LYP/6-
31+G(3df, p) calculation is denoted by DFT+. All atoms are denoted by the
IUPAC convention on page 8, angles and deviations are given in [o].

DFT DFT+ MP2 Exp. ∆DFT
Exp ∆DFT+

Exp ∆MP2
Exp ∆DFT+

MP2

N1:C6:H6 117.7 116.9 117.1 — — — — 0.2
N1:C6:C5 119.8 120.0 119.6 121.1 1.2 1.0 1.4 -0.4
C6:C5:H5 119.5 121.5 121.3 — — — — -0.2
C6:C5:C4 119.9 116.0 116.0 117.5 -2.5 1.4 1.5 -0.1
C5:C4:N4 119.7 119.1 118.9 120.2 0.5 1.1 1.2 -0.2
C4:N4:H4a 118.3 118.3 118.2 — — — — -0.1
C4:N4:H4b 121.9 122.0 121.8 — — — — -0.2
C5:C4:N3 120.6 124.0 124.4 122.0 1.3 -2.0 -2.5 0.4
C4:N3:C2 120.8 120.4 119.8 119.9 -0.9 -0.5 0.1 -0.7
N3:C2:O2 120.4 125.6 124.9 121.8 1.4 -3.8 -3.1 -0.7
C2:N1:H1 120.2 121.5 121.2 — — — — 0.2

σrms 1.4 2.0 2.0 0.4
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