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for elucidation of drug resistance mechanisms 
 

 

Johan Winquist 
 

 

 

 

Populärvetenskaplig sammanfattning 

 

Dagens sjukvård har stora problem med att cancerceller utvecklar resistens mot 

cytostatika; upp till 90 % av alla misslyckade behandlingar av cancerpatienter med 

metastaser tros bottna i läkemedelsresistens. I grund och botten kan resistensen bero på 

ett förändrat antal kopior av vissa gener i en cell; om gener vars produkter är ansvariga 

för transporten av giftiga ämnen ut ur cellen ökar i antal kan cellgifterna i en 

cancerbehandling aldrig nå verksamma intercellulära halter. 

 

Om man kunde identifiera de resistensgivande generna och motverkade 

kopietalsförändringar av dessa skulle fler cancerpatienter kunna behandlas framgångsrikt. 

Det är till detta projektet syftar. Utgångsmaterialet var data för 9 cancercellinjer 

innehållande kopietal och aktivitet för drygt 12000 gener (bestämda med hjälp av 

microarrays) samt resistensgrad mot 39 läkemedel. Genom att studera hur 

kopietal/genuttryck/resistensgrad samvarierar (parvisa Pearson korrelationer) har gener 

som redan är kända att vara inblandade i resistensmekanismer hittats, men också nya 

intressanta gener. Värdet av dessa resultat skall nu undersökas vidare i laboratoriet. 

Projektet har resulterat i en storskalig, hypotesgenererande metod som integrerar olika 

typer av information och möjliggör en simultan analys av människans samtliga gener. 
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1. Abbreviations 
b  base(s) 

CN  Copy number 

CNAG Copy Number Analyzer for GeneChip (Software tool) 

CNAT  Chromosome Copy Number Analysis Tool (Software tool) 

FMCA  Fluorometric microculture cytotoxicity assay 

HMM  Hidden Markov model 

IC  Inhibitory concentration  

SNP  Single nucleotide polymorphism 
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2. Aim of the project 
Drug resistance is a grave concern in modern cancer treatment. The cytostatics at hand 

often have a narrow therapeutic window and are limited in numbers. If more information 

on the mechanisms of resistance is learned, new pharmaceutical approaches to cancer 

treatment may be formulated. One goal is to identify genes responsible for resistance to 

be able to resensitize the cell to drugs.  

 

DNA lesions are common in cancer cells and closely linked to the expression of genes. 

Thereby, the lesions can ultimately affect the cells‟ degree of resistance to various 

compounds; genes in affected regions often display highly altered expression levels and 

thus can be expected to contribute to drug resistance.  

 

To study this we used four cancer cell lines previously made resistant to various drugs 

through continuously increased exposure levels. These pairs (parental cell lines and their 

sub-strains) form a so called cell panel. Theoretically, genomic variation within a pair is 

associated with the mechanism of resistance. Thus, amplified or deleted genes in altered 

regions may be directly linked to cancer drug resistance. We hypothesized that high pair-

wise correlation between cell line profiles of drug resistance, expression levels and copy 

numbers for genes, could identify genes responsible for drug resistance in a high 

throughput fashion. It is possible to compare the correlations for all genes one by one, but 

that is rather time consuming. 

 

Thus, the aim was to develop a high throughput technique for identification of genes 

responsible for resistance to cytostatics in cancer cells. This was undertaken by 

correlation studies of drug resistance, gene expression and copy number data already 

available in the lab of Dr Anders Isaksson (Department of Medical sciences, Uppsala 

University).  

 

The project has aimed to be hypothesis generating rather than a thorough investigation of 

each single gene. 
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3. Introduction 
We are all aware that drug resistance of bacteria is a challenging problem for the health-

care. However, drug resistance is not an issue isolated to the realm of prokaryotes, but is 

also a demanding problem for modern cancer treatment. Resistance to anticancer drugs is 

a major dilemma in chemotherapy, although the mechanisms of resistance are not 

conferred as for prokaryotes where the sharing of plasmids is a common cause of 

resistance. Over 90 % of the failed treatments of patients with metastatic cancers are 

estimated to be caused by drug resistance [1]. 

 

Bacterial cells in selective growth conditions can sometimes develop resistance to the 

selective agent; an event called “adaptive mutation”. Often, a copy number (CN) 

amplification can be observed in these cells. New findings explain this as a way to “add 

mutational targets”, i.e., the chance to obtain an advantageous mutation increases with the 

number of gene copies. This is preferred instead of an increase of the mutational rate, 

which is more likely to damage the cell severely.[2] There is, of course, an initial 

expression elevation effect upon gene amplification. This initial effect has proven to be 

essential for resistance to the drug doxorubicin in the cancer cell line RPMI 8226/Dox40, 

as expounded in the next section.  

3.1 Mechanisms of drug resistance 

There are various mechanisms behind resistance to cancer drugs, e.g. an acquired 

insensitivity to apoptosis signals [3] and/or inhibition of topoisomerase II [4], and can be 

ordered in function-based groups: alterations in influx/efflux systems of cells, 

modification of drug target and cellular damage repair systems, etc [1]. Studies of human 

cell lines have revealed that an acquired resistance to one cytotoxic compound often 

implies multidrug resistance. Given the vast number of different cancers, and that the 

total number of cytotoxic drugs approved in Sweden by the year 2000 was only 44, this is 

gravely concerning [5]. The degree of resistance can be measured with the fluorometric 

microculture cytotoxicity assay (FMCA) method (see section 3.2) [6]. 

 

The most common reason for multidrug resistance is overexpression of certain 

transporter proteins. These are usually energy-dependent channel proteins that detect and 

eject cytostatic drugs from the cell (i.e. influx/efflux system modification). One example 

is the ATP-binding cassette protein family, abbreviated ABC proteins [3]. The myeloma 

cell line RPMI 8226/Dox40, resistant to doxorubicin and used in this project, has 

previously been proven to overexpress the integral membrane P-glycoprotein due to gene 

amplification [7]. All cell lines used, along with their respective selective agents, can be 

found in table 1, section 4.1. 

 

With a better understanding of the underlying mechanisms of resistance, new and more 

potent cancer drugs can hopefully be found. One approach is to induce resensitization of 

already existing treatments by affecting the mechanisms of resistance. One of the cell 

lines used in this project is, as previously mentioned, the RPMI 8226/Dox40 strain. The 

cell line has its origin in human myeloma cells normally associated with an incurable 

disease due to frequent development of drug resistance [7]. An example of an attempt to 
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overcome the resistance, in this case to radiation and the drug doxorubicin, is the 

treatment with fludarabine. It has proven to resensitize cells by affecting the STAT1 

signalling; a lowered STAT1 expression is linked to an increased sensitivity to radiation 

[8].  

3.2 Fluorometric microculture cytotoxicity assay – in vitro drug 
resistance evaluation 

The fluorometric microculture cytotoxicity assay (FMCA) was developed at the 

University Hospital of Uppsala in the early 1990s by Larsson et al. (described in detail in 

ref  [9]). This method is designed to evaluate the cytotoxicity of compounds through 

IC50 measurements under certain conditions, i.e. the concentration at which half of the 

cells die. The method is a 72 h assay based on fluorescein diacetate (FDA), which is 

hydrolyzed to the strongly fluorescent fluorescein. The hydrolysis is only performed by 

living cells and in the article of Larsson et al., it is stated that “the FDA fluorescence was 

linearly related to viable cell number within a wide range of cell densities (3-4 logs) as 

well as in the presence of different added proportions of dead cells”. This makes the 

method robust and it is widely used. 

3.3 Single Nucleotide Polymorphisms and copy numbers 

A single nucleotide polymorphism (SNP) is defined as a DNA sequence variation of one 

nucleotide found in at least 1% of the allele pool. The variation can be found in any type 

of sequence: exons, introns, enhancers etc. Although fairly recently discovered, SNP is 

the most common type of genetic sequence variation, estimated to be present, on average, 

every 0.3-1 kb within the genome. Today, SNPs are, among other fields of application, 

used with microarrays for genotyping purposes, as genetic markers for diseases, and for 

linkage disequilibrium studies. [10] In addition, SNPs can also be used to determine the 

number of copies of a certain DNA fragment by interpretation of the signal intensities 

from different loci. Since the most common copy number is 2 (i.e. one loci at each of the 

two chromosomes in a pair) a normalization and subsequent comparisons between 

different loci are possible. This way copy numbers can be determined. 

3.4 The microarray technique 

In 1995, modern microarray technique saw daylight in a laboratory at the Stanford 

University [11]. The new approach of gene expression quantification made high 

throughput analysis possible and was thereby an important methodological breakthrough. 

The microarray itself usually consists of a matrix of spots (so called features) of single 

stranded RNA or DNA on, for instance, a slide of glass. Examples of other types are 

protein- and immuno-arrays. 

 

A microarray slide of today for genotyping purposes assesses up to 250.000 genomic 

positions
1
. To interpret data, hidden Markov model (HMM) based computer software can 

be used. A gene expression array assesses 47.000 transcripts through 1.3 million features 

[12]. This large number of independent loci prevents the use of standard t-tests for 

                                                 
1
 For reasons explained in section 3.4.2, the number of features on the array is greater than 250.000. 
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comparison of signal intensities during clustering due to the „multiple testing‟ problem
2
. 

The number of replicates is usually too few to tackle this issue. In 2002, Lönnstedt and 

Speed (ref [13]) addressed this by the introduction of the so called b-test, which uses the 

empirical Bayes approach. It is, however, possible to compare the signal intensities of 

two separate genes from a single microarray. Algorithms for genotype calling and similar 

methods for interpretation of microarray data are constantly refined (see e.g. Rabbee et 

al., ref [14]). 

3.4.1 The manufacturing of microarrays 

One of the leading companies of microarray manufacturing is Affymetrix. This company 

uses photolithography to produce their oligonucleotide arrays (so called GeneChips): 

First, a photo-labile blocking compound is linked to a slide of quartz. Chosen features are 

then activated by an exposure to radiation through a mask, which directs the light where 

to shine. Nucleotides with photo-labile protection groups, which prevent polymerization, 

are added and let to bind covalently to the growing oligonucleotide of the activated 

features. The array is then ready for a new activation procedure. Notably, only one type 

of nucleotide can be attached in each round, which results in the need of many masks to 

produce 25-mers (schematic picture is found in figure 1).  

 

 
Figure 1. The manufacturing of an oligonucleotide microarray through photolithography. Nucleotides 

are immobilized to an array-slide (called a wafer). Photo-labile groups preventing polymerization are 

removed through light exposure at certain locations of the array. A mask directs the light where to shine. 

Nucleotides with new protection groups are let to bind, elongating the oligonucleotides. The procedure is 

repeated until single stranded 25-mers have been created. (Courtesy of Affymetrix, www.Affymetrix.com)  
 

However, the photolithography technique has an important limitation due to the use of 

masks; besides the high manufacturing cost, light diffraction phenomena limit the lower 

boundary of miniaturization. Recently, Affymetrix introduced a microarray chip with 

250.000 spots. With the use of two different restriction enzymes, which are used to 

fragment the genome before analysis, 500.000 SNPs can be genotyped by the same array. 

The next generation of GeneChips has been announced to contain 500.000 features on a 

                                                 
2
 The total significance, α, increases with n as 

n

comp11  where αcomp is the significance level 

for each comparison and n the number of comparisons. Thus, the risk of false positives is higher with a 

large number of comparisons. 
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single slide.  However, this goal has already proven hard to achieve due to the problem 

mentioned [15]. 

3.4.2 Genotyping and gene expression analysis with microarrays  

Classically, sample and reference mRNA were labelled and let to competitively hybridize 

on expression arrays. Nowadays, commercial microarrays usually analyse samples and 

reference in separate runs. To compare arrays, normalization and reference features are 

necessary. 

 

A microarray for genotyping, a so called mapping array, is an oligonucleotide array with 

25-base probes. They have probes for perfect match (PM) and mismatch (MM) for all 

alleles that are screened for. A PM probe is 100% complementary to its target, whereas a 

MM probe has an intentional mismatch in the central, 13
th

, position. The latter probe 

helps to estimate the degree of cross-hybridization. To further improve the 

trustworthiness of the results, six offset positions are analysed (at 1, 2 and 4 bases from 

the SNP in both directions), resulting in 14 probe quartets tested for each SNP (see figure 

2). This causes a demand for at least 14 times more features than the number of SNPs 

analysed. Likelihood ratios are calculated for all combinations of model and probe 

quartet, to finally let Wilcoxon‟s signed-rank test make the gene call. [16] 

 

 
Figure 2. Offset interrogation positions of PM probes. The interrogation position is underlined and the 

SNP site is marked red. In a mismatch probe, the red base would in this case be a „T‟. (Modified from 

Matsuzaki et al., ref [16]) 

 

As an alternative, bacterial artificial chromosome (BAC) can be used for comparative 

gene hybridization in a microarray format to assess DNA copy number [17]. However, 

the use of SNP mapping microarrays might be a less cumbersome and more time efficient 

approach. 

 

Microarrays for gene expression measurements are technically identical to mapping 

arrays. The only difference is the hybridization targets of the oligonucleotides; sequences 

on mapping arrays are complementary to DNA segments in the vicinity of SNPs whereas 

the on expression arrays are to mRNAs.  
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4. Materials and Methods 
To identify genes putatively involved in cellular resistance to cancer drugs, a number of 

cancer cell lines were assayed with viability tests (FMCA) and microarrays to determine 

degrees of drug resistance, gene expression levels and CN; the latter ascribed through an 

in-house developed procedure based on SNP CN values. The identification was 

performed through correlation studies, univariate as well as quasi-bivariate. The results 

were finally evaluated visually by comparisons of resistant and their parental cell lines. 

This validated any genomic alterations. The whole process is summarized in figure 3. 

 

 
Figure 3. Overview of project (univariate approach). (a) A CN was ascribed each gene based on the SNP 

data from microarrays and knowledge about the transcriptional frames of genes. (b) Profiles for each gene 

were put together from CN values for all strains in the cell line panel (the figure shows the CN-profile for a 

gene γ from a cell panel of 6 strains). Gene expression profiles were created analogously and profiles of 

drug resistance were created from FMCA data. The pairwise correlations between the three characters were 

calculated and stored in matrices where each cell represents a correlation coefficient and each row a gene 

(„X‟ for gene expression). The correlation of CN and gene expression between different genes is not 

interesting why the coefficients could be summarized in a vector instead. In (c), the matrices are visualized 

as heatmaps where bright colours signifies strong positive (red) or negative (green) correlations. These 

matrices were transformed into indicator matrices through the use of cut-off values. A logic AND-operator 

applied on these matrices, cell by cell, resulted in a final indicator matrix where each row corresponded to a 

gene, and each column to a drug. Thus, genes putatively involved in cellular resistance of cytotoxic drugs 

were identified as rows with positive (black) signals, along with the compounds resistant to (in figure: one 

gene‟s involvement in resistance to two drugs is considered interesting). More extensive explanations can 

be found in following sections. 
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4.1 Strains 

CN and gene expression data used in this project were collected from a cell panel 

summarized in table 1 below. All resistant strains were developed from each respective 

parental by continuously increased concentration of selective agent [7, 18].  

 

Table 1. Parental and resistant strains in cell panel used in analysis. 

Parental Resistant Origin Selection agent 
RPMI 8226/S 8226/Dox40 Myeloma Doxorubicin 

RPMI 8226/S 8226/LR5 Myeloma Melphalan 

CCRF-CEM CEM/VM1 T-cell leukemia Tenposide 

NCI-H69 H69/AR Small cell lung cancer Doxorubicin 

U-937-GTB GTB/VCR10 Histolytic lymphoma Vincristine 

4.2 Software 

Analysis of microarray data was performed in CNAT viewer (a module of the GTYPE 

software package from Affymetrix. For version see table 2 below) with its Integrated 

Genome Browser [19], and with CNAG [20, 21]. The latter uses HMM to identify 

putative CN alterations.  

 

Table 2. Software versions. 

Software Version 

GTYPE 4.0.0.22 

CNAG 2.0 

 

Sorting-procedures and linkage of different data types were performed with help of 

MatLab, whereas Microsoft Office Excel was used for analysis and visualization of CN 

and gene expression data. 

4.3 Microarray data 

CodeLink arrays from GE Healthcare were used for the analysis of gene expression. To 

assess the CN of the strains, oligonucleotide mapping arrays from Affymetrix were used 

and analysed with the CNAT Viewer software (also from Affymetrix). The actual SNP 

CN values were obtained through a comparison of data from the cell lines to the 50K 

mapping-reference file supplied by Affymetrix. The reference represents a “normal” 

human population, which in this case is made up by 100 healthy persons from diverse 

ethnic groups [22]. This approach is used to be able to compare the cell lines. In contrast, 

the use of a drug sensitive parental cell line as reference, where the genomic cause of 

resistance theoretically easily could be identified, hinders this comparison. Thus, the 

parental cell lines were used as a reference in validation of single amplifications in their 

sub-strains. Since all cell lines have cancer origin, vast differences in genomic structure 

could be expected when compared to the normal population reference. 

 

A gaussian smoothing factor of 0.5 Mb was used for the calculation of SNP CN values to 

reduce noise from single markers [22].  
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4.4 Preparation of input data – Ascribing copy numbers to genes 

A list of genes with GenBank Accession Numbers
3
 was extracted from previous gene 

expression analysis of the cell panel. With help of these tags, the web based service 

Match Miner [23] could provide the location of transcription start/stop and the 

chromosome number for each gene. Through the combination of the genomic positions of 

the SNPs, their CN signal and the transcriptional interval of the genes, each gene could 

be ascribed an average CN. For genes lacking SNPs in their interval of transcription, the 

value of the nearest SNP was used (see figure 4). This is considered appropriate since 

92% of the genome is within 0.1 Mb of an SNP marker with an average intermarker 

distance of 23.6 kb. [16] 

 

 

 
Figure 4. A method to ascribe copy numbers to genes. The figure exemplifies an amplified gene. CNs are 

in arbitrary signal intensity units. With knowledge of the transcriptional frames of genes, SNP CN data and 

their genomic position, a pseudo-CN can be ascribed to a gene (fat bar in figure). This CN is the arithmetic 

mean of SNP values (top) and if none is situated within the frame of the gene, the CN value of the nearest 

SNP is used (bottom). Length of vertical lines represent SNP CN signal. However, the signal intensity/CN 

ratio is not linear but rather a natural logarithmic function with an offset due to noise and a declining 

tendency for high intensities due to signal saturation [22].   

4.5 Correlation analysis 

To investigate potential correlation between gene expression levels, gene CN and drug 

effects, two measurements were used: First, the Pearson‟s coefficient [24], r:  

 

(Eqn. 1) 1,1,
,

2

2

2

2

r
YVarXVar

YXCov

n

Y
Y

n

X
X

n

YX
XY

r , 

 

where X and Y are stochastical variables and n the number of data points. 

                                                 
3
 a unique identity tag for genes 
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As stated in (eqn. 1), r may take any value between -1 and +1 (see note in section 4.7) 

and assesses the linear nature of the correlation between the two variables; a value near 1 

implies a very strong positive linear relationship. The use of Pearson‟s correlation 

measurement assumes continuous variables with a linear relationship. By a zero-mean 

statistical normalization of the vector X, the data obtains a unit variance and an average 

of zero. The normalization can be thought of as a vertical shift of a graph so that the 

function average is zero and can be performed by subtracting the mean (µ) from a vector 

(X), divided by the standard deviation (σ):  

 

(Eqn. 2) 
X

X
~

 

 

This simplifies the expression of the correlation coefficient to: 

 

(Eqn. 3) YXCovr
~

,
~

 

 

The assumption of linear relationships in Pearson‟s correlation measurement contributes 

to a risk of missing non-linear relations. Therefore, secondly, a Spearman‟s rank 

correlation test was performed, since it better can detect non-linear relationships. [25] 

The two tests are executed in a very similar way. The Spearman technique has an extra 

step which ranks both data sets from the highest to the lowest values before the 

calculation; the lowest value is given a rank of 1, the second lowest the rank 2 and so on. 

These rank-values are then used in the calculation of Spearman correlation as if measured 

values. Thus, this method makes it possible to use ordinal data. Often, the Spearman 

coefficient of correlation is denoted with the Greek letter ρ (rho) and can be calculated: 

 

(Eqn. 4) 1,1,
1

61
2

2

n nn

d
, 

 

where d is the arithmetic difference in rank of corresponding variables and n is the 

number of data points. 

 

Correlation coefficients were pair-wise calculated between gene expression levels, gene 

CN and drug effects. To identify the interesting genes a binary matrix was created for 

each correlation matrix through the use of a cut-off value (see figure 5). These indicator 

matrices were added and subsequently screened for genes with all three correlation 

coefficient values above the threshold, i.e. for rows with the value „3‟. Since the 

correlation values between gene expression and CN are summarized in a vector
4
, the 

vector was added to each column of the final indicator matrix. 

 

                                                 
4
 Secondary downstream effects of gene regulation are far too complex and poorly understood to be 

considered here, why only the correlation between the expression and the CN of each individual gene is 

interesting. 
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Figure 5. The creation of an indicator matrix. In this example, the cut-off for correlation was 0,75, 

resulting in one interesting gene to be studied further (Gene 4, resistant to drug #3). 

 

Finally, the identified genes could be linked to one or several cell lines with help of the 

original gene expression and CN data, resulting in a list with the gene names and ID 

numbers, which cell lines they affect resistance in and to which drugs (partially displayed 

in Appendix II). 

4.6 Quasi-bivariate correlation analysis 

Scatter plots of genes expected to have higher correlation scores than observed in the 

univariate analysis, presented a, to some degree, expected problem; if resistance to one 

specific drug in two different cell lines depends on two different genes, there is a risk of 

observing low correlation scores (see figure 6, section 5.2). Ultimately, this would result 

in failure to detect either one of these interesting genes. To avoid this, a bivariate 

correlation study was preformed in the same manner as the previously described 

univariate. This time genes were paired and their expression and CN data summed before 

the analysis. However, all permutations were not analysed due to the vast number of pairs 

(more than 4.9 · 10
9
 combinations). Instead, an initial filtering based on CN / gene 

expression correlation was performed (as described in section 4.5), with a subsequent 

bivariate analysis of all significant pairs. 

 

Although two genes are analysed at the time, this is really a quasi-bivariate method. In a 

real bivariate analysis, a correlation-plane would be determined, not as in our case a 2D 

curve to a pseudogene. We deemed the description of a 3D plane with 9 values too 

inexact since the density of data-points decrease quickly when the number of dimensions 

is increased. Our method, i.e. the description of a linear slope with 9 coordinates in two 

dimensions, appears, however, to be robust.  

4.7 A mathematical note to covariance matrices 

In this project the correlation of three characters were analyzed: drug resistance, gene 

expression and CN. If these characters are denoted by the variables X, Y, Z, the 

correlation coefficients can be expressed through a correlation matrix: 
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(Eqn. 5) 

1

1

1

ZYZX

YZYX

XZXY

rr

rr

rr

R  

 

A covariance matrix is always positively definite and XYr  is equal to YXr . From this 

follows:  

 

(Eqn. 6) 021

1

1

1

0 222

YZXZXYZXYZXY

ZYZX

YZYX

XZXY

rrrrrr

rr

rr

rr

R  

 

It is easily realized that if X and Y correlate perfectly
5
 when Y and Z do, all pairwise 

correlations are perfect. However, if, for instance, rXY and rYZ has a correlation of 0.9, rXZ 

can vary between 0.62 and 1. Thus, two stringent thresholds guarantee the final 

correlation value to be above a certain level. To enable rXZ to vary in its full range, i.e. 

from 0 to 1, the other pairwise correlations must not be higher than 2
-1/2

. 

4.8 Visualization of chromosomes to verify results 

To evaluate our results visually, graphs with gene CN signals as a function of genomic 

position were created for all chromosomes of all cell lines. Each resistant cell line was 

this time analyzed with its respective parental cell line as a reference since the genomic 

differences, in theory, are responsible for the drug resistance. As seen in figure 7, section 

5.3, the cell line pairs (parental and resistant sub-strain) were evaluated in non-random 

groups. The motive was to support the results through a comparison of cell line pairs with 

the same parental strain (to minimize the risk of misinterpretations due to strain 

variations) and pairs exposed to the same selective agent (to identify any common 

characters of genomic alterations). 

  

With the bare eye, putatively altered regions were noted and compared to previous 

results. As a complement, the software CNAG [21] was used to identify abnormal 

genomic sections by a hidden Markov model (HMM)-approach.  

 
 

                                                 
5
 has a correlation coefficient of 1 or -1 
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5. Results 

5.1 Univariate analysis – correlation between copy number 
values, gene expression and drug effects 

Pearson‟s and Spearman‟s correlation coefficients were pair-wise calculated for gene 

expression, CN and drug resistance data. Coefficients with values above certain 

thresholds (0.7; 0.8; 0.9 and 0.95) were noted, along with the number of corresponding 

unique genes (see table 3 and 4 for Pearson and Spearman analysis, respectively).  

 

Table 3. The number of Pearson’s correlation coefficients (r) whose absolute value was above given 

thresholds and the number of corresponding genes. „X‟ for gene expression, „CN‟ for copy number and 

„Drug‟ for drug resistance. The number of sets with all three correlation coefficients above given threshold 

can be found in the „Triple‟ column, and corresponding number of genes are found in the rightmost 

column. 11246 genes and 39 drugs were analyzed.  

abs(r) X vs. Drug CN vs. Drug CN vs. X Triple Genes 

> 0,7 28074 33742 1328 2017 608 

> 0,8 12931 13085 555 498 165  

> 0,9 4768 2544 122 100 24 

> 0,95 2032 505 25 46 11 

Out of: 438594 438594 11246 438594 11246 

 

Table 4. The number of Spearman’s correlation coefficients (ρ) whose absolute value was above given 

thresholds and the number of corresponding genes. „X‟ for gene expression, „CN‟ for copy number and 

„Drug‟ for drug resistance. The number of sets with all three correlation coefficients above given threshold 

can be found in the „Triple‟ column, and corresponding genes are found in the rightmost column. 11246 

genes and 39 drugs were analyzed. 

abs(ρ) X vs. Drug CN vs. Drug CN vs. X Triple Genes 

> 0,7 31200 32394 1194 1661 774 

> 0,8 10584 10698 471 197 129 

> 0,9 1618 1497 83 6 7 

> 0,95 400 350 18 1 1 

Out of: 438594 438594 11246 438594 11246 

 

Table 5. The number of genes found with both Pearson and Spearman-correlation studies.  

Cut-Off Pearson Spearman Shared 

> 0,7 608 774 275 

> 0,8 165  129 26 

> 0,9 24 7 0 

> 0,95 11 1 0 

 

5.2 Bivariate analysis – correlation between copy number 
values, gene expression and drug effects 

To evaluate and enhance our method, a bivariate version of the analysis was performed 

for genes with a high CN / gene expression correlation. Only the Pearson‟s coefficient of 
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correlation was used due to the poor outcome of the Spearman approach in the univariate 

analysis. Figure 6 below exemplifies how two genes that would be overlooked with 

stringent cut-off values when studied individually can be detected by our method when 

looked upon together.  

 

 
Figure 6. Scatter plots of correlation coefficients (R

2
) between resistance to the drug doxorubicin and 

gene copy number for the MDR (figure a) and MRP genes (figure b), and their sum (figure c). From a and 

b, one can conclude that MDR (ATP-binding cassette, sub-family B member 4) is amplified in the 

8226/Dox40 cell line as MRP (ATP-binding cassette, sub-family C, member 1) is in H69AR. This suggests 

them to be involved in drug resistance mechanisms. Note the significant increase in correlation when 

pairwise comparisons are made.  
 

Results from the different correlation measurements used in this project are summarized 

in table 6 for the most stringent thresholds.  

 

Table 6. The number of genes whose correlation coefficients were above given thresholds. „Pearson‟ for 

standard and „Pairwise‟ for bivariate analysis. 11246 genes and 39 drugs were analyzed.  

abs(r) Pearson Pairwise Shared  

> 0,9 24 121 22 

> 0,95 11 24 11 
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5.3 Multiple copy number variations – multiple mechanisms? 

As can be expected from microarray data, the CN data was noisy and frequently drifting 

from the presupposed baseline of 2. However, some distinct regions with genomic 

variations could be observed when SNP signals from comparisons of resistant and 

parental cell lines were visualized (see figure 7).  

 

 
Figure 7. Example of copy number analysis in Microsoft Excel. Copy numbers for chromosome 7 in 

three cell lines resistant to doxorubicin (Dox40), CHS and melphalan (LR5), respectively, are plotted 

against genomic position. The cell lines are compared to their parental cell line (i.e. RPMI-8226), from 

which they are originally derived. The theoretical CN signal for an unaltered region is 2. Three interesting 

regions for the 8226/Dox40 strain can be discerned: at 47, 85 and 130 Mb. If these regions indeed are the 

cause of resistance, the other cell lines shown in the diagram must have other mechanisms of resistance. 

 

Clustering of putatively interesting genes to amplified genomic regions were observed. 

This was expected since the approach used demanded a variation in CN to correlate well 

with, for instance, a for the cell panel altered drug resistance; gene expressions can vary 

despite constant CN. Interestingly, more than one altered region often contained genes 

detected by the correlation studies in the same cell line pair. This could be a sign of 

multiple mechanisms of resistance. 

 

The approach to visualize the comparison of pairs of strains could be performed on all 

genes, one by one. This would however be very cumbersome. As a visualization tool to 

evaluate the high throughput method presented in this article, it is, however, valuable. 
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6. Discussion 
Data mining has become somewhat of a prerequisite for many fields of 21

st
 century 

science. New techniques constantly demand increasingly efficient methods of data 

analysis. This project has handled vast amounts of data in a fairly straightforward and 

basic fashion, but has still been able to deliver interesting results. This exemplifies that 

interesting results can be obtained by fairly basic data mining techniques. 

6.1 Reliability of data and results 

Optimally, technical as well as biological replicates would be run for all experiments to 

strengthen the reliability of the data, and thereby the results. However, the analysis is 

based on trends of profiles and should not be greatly disturbed by cell lines with 

abnormal values. Furthermore, the data has been collected under controlled conditions 

and has shown small variation when replicated. Nonetheless, since a handful of different 

mechanisms of drug resistance are represented in the data used, interesting genes risk to 

be masked by signals from others in the univariate analysis.  

 

The gene expression data suffered from some missing entries. Instead of excluding these 

genes from the analysis, missing values could be approximated with a Nearest Neighbour 

(NN) approach for each gene profile: The most similar expression profiles could be found 

by least square measurements of zero-mean normalized data. Each missing entry is then 

substituted by the conditional mean of these profiles. [26] There is a small, but obvious, 

risk to leave out possibly interesting genes from the analysis. The small fraction of genes 

excluded (about 1.8 %) strengthens our belief that nothing has been overlooked.  

In this project, all genes with multiple genomic locations have also been excluded. 

6.2 The different approaches and their results 

Although a fairly basic approach, the use of Microsoft Excel spreadsheets to visualize CN 

data and manually identify interesting genes was successful. With support from gene 

expression data, lists with interesting genes for a number of chromosomes for each cell 

line were matched with the results from the correlation studies. For instance, in an 

obvious CN alteration at chromosome 7 of RPMI-8226/Dox40 (peak at 85 Mb in figure 

7, section 5.3), 19 genes were observed. With the most stringent cut-off level (0.95) of 

the Pearson approach, 4 of these were picked out again. 2 of these are ATP-binding 

cassettes of the B-subfamily (abbreviated ABCB), known to confer resistance when 

overexpressed [27].However, the manual/visual approach is cumbersome and subjective, 

and thereby highlights the needs of a high-throughput method like ours. The manual 

approach is best used as a complement to the correlation studies. 

 

A model of perfect linear correlation between the expression and the CN of a gene 

assumes a far too simplistic view of gene regulation. Downstream effects such as those of 

genes, whose transcription factors are overexpressed, are not at all considered.  

Nevertheless, the primary link between drug resistance and gene expression can be 

expected to be strong, since a mere alteration of CN cannot be expected to convey 

resistance in any higher degree. This speaks for the use of different cut-off thresholds in 

the correlation studies. Another issue is whether all three correlation pairs should be 
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ascribed equal importance or not. Weight-coefficients could balance the importance of 

the characters with respect to one another, but their values are hard to choose. Therefore 

weight coefficients have not been used in this study. 

 

The considerable difference in the results between the Pearson and Spearman correlation 

measurements is somewhat surprising. One explanation is the power of large values in 

linear relations: In the search of linear correlations with help of the Pearson approach, 

single extreme values in one or a couple of cell lines breaks through to the results. In the 

Spearman analysis, the numerical value is replaced with a rank, thereby removing the 

dimension of size. The ranking enables the technique to detect non-linear correlations. 

Thus, the approach as a whole used in this project is somewhat based on its innate 

inability to detect small variations in noisy data, i.e. it uses outliers for analytical 

purposes.  

 

The pseudo-bivariate analysis can be seen as a simplified unit-weight regression analysis, 

i.e. with equal weight for both genes. A more advanced analysis is in that sense 

somewhat uncalled for, since we hypothesize e.g. found protein pumps to, to some 

degree, be interchangeable.  

 

Univariate trials where strains were systematically left out of the correlation analysis 

(data not shown) had similar results as the quasi-bivariate approach. This suggests that 

outliers are overrepresented in mainly two of the cell lines of our panel. The positive 

effect of quasi-multivariate analysis seen in this project raises the question of how many 

variables that are fruitful, and feasible, to study simultaneously. This seems to depend on 

the samples at hand. 

 

Pearson correlation studies of gene expression, copy number and drug resistance has been 

performed in the past (e.g. ref [17]), but have never been integrated in a high throughput 

manner. Our analysis is, as explained, based on the behaviour of linear correlations in the 

presence of data outliers. This approach is shared by several other research groups (i.e. 

the COPA -Cancer Outlier Profile Analysis tool introduced in 2005, ref [28]), indicating 

the usefulness of outlier analysis. Analysis with profiles of, e.g., gene expression and 

drug resistance, is popular and has proven fruitful during the last couple of years [29]. 

6.3 Future prospects 

In this project, many interesting genes possibly drowned in the noise of others since a 

couple of different resistance mechanisms are analysed at the same time. This might to 

some extent have been avoided through the bivariate analysis. A higher form of 

multivariate analysis or the use of a more uniform cell line panel, i.e. with a single type of 

resistance, might improve the discovery rate further. However, a natural first step of 

further investigations would be to study the possible use of different cut-off threshold 

values for the correlation coefficients and the weight between themselves.  

 

The multivariate approach might benefit from the analysis of non-linear relations rather 

than linear ones since this is, most likely, closer to the biological truth. The importance of 
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the data outliers will be compensated by the support of the increased number of 

dimensions. 

 

In a longer perspective, verification of the results in the lab, by the means of e.g. siRNA 

experiments, is needed. Despite all positive sides of data mining, the final step of the 

process (i.e. verification of results) must still take place in the laboratory. 
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Appendix 

Appendix I – Cancer drugs used in analysis 

4-HC 

5-Aza-2-cytidine 

5-Azacytidine 

6-Mercaptopurine 

6-Thioguanine  

Acivicin 

Aclarubicin 

Amsacrine 

Anguidine 

Bisantrene  

Bortezomib 

Camptothecin 

Chlorambucil 

Cisplatin 

Cyclohexamide 

Daunorubicin 

Doxorubicin 

Epirubicin 

Etoposide  

Hoechst 33342 

Idarubicin  

J1  

Lactacystin 

Mechlorethamine 

Melphalan  

MG132 

MG262 

MIBG 

Mitomycin C 

Mitoxantrone 

Paclitaxel 

P2 

Sarcolysin  

SN-38 

Spirogermanium 

Teniposide  

Topotecan 

Vinblastine 

Vinorelbine

Appendix II – Genes from univariate Pearson analysis 
(correlation threshold 0,95) 

Full gene name Chrom Approx 

pos. [Mb] 

Pair of 

strains 

ATP-binding cassette, sub-family B 

(MDR/TAP), member 4 

7 86 8226/Dox 

ATP-binding cassette, sub-family B 

(MDR/TAP), member 1 

7 86 8226/Dox 

Cyclin D binding myb-like transcription factor 1 7 86 8226/Dox 

Chromosome 7 open reading frame 23 7 86 8226/Dox 

Calumenin 7 128 8226/Dox 

ATP-binding cassette, sub-family C 

(CFTR/MRP), member 1 

16 16 NCI-H69/AR 

Dystrobrevin, alpha 18 30 NCI-H69/AR 

Solute carrier family 39 (zinc transporter), 

member 6 

18 31 NCI-H69/AR 

Microtubule-associated protein, RP/EB family, 

member 2 

18 31 NCI-H69/AR 

Hypothetical protein FLJ10656 18 31 NCI-H69/AR 

Signal transducer and activator of transcription 3 

interacting protein 1 

18 31 NCI-H69/AR 

Chromosome 18 open reading frame 21 18 31 NCI-H69/AR 

 


