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Alignment of protein sequences/structures and its 
application to predicting protein complex 

compositions 

 

Sammanfattning 

Proteiner är de mest mångsidiga makromolekylerna i biologiska system och deltar i 
alla cellulära processer. Ett proteins funktionella egenskaper bestäms av dess tre-
dimensionella struktur, vilken i sin tur dikteras av sekvensen av aminosyror som utgör 
proteinet. Härav följer att noggranna metoder för proteinstrukturbestämning är av 
yttersta vikt. Homologimodellering är en metod som effektivt predikterar okända 
proteinstrukturer genom att huvudsakligen förlita sig på deras “alignments”1 till 
liknande proteiner med kända strukturer. Sekvens/struktur “alignments” är även 
viktiga i flera andra avseenden. SALIGN är en sekvens/struktur “alignment” modul 
som tillhanda-håller en stor mängd funktioner. Det första delprojektet i examens-
arbetet bestod av att skapa ett web-baserat användargränssnitt till SALIGN, vilket 
torde underlätta kategoriseringen och studierna av proteinfamiljer. 

Proteiner fungerar genom interaktioner med andra molekyler. Av detta inses att 
nätverket av fysiska interaktioner, proteiner emellan, är av stort intresse för biologer. I 
det andra delprojektet konstruerades en metod för att prediktera proteinkomplex-
sammansättningar genom att generera homologimodeller av kandidatkomplex, baserat 
på sekvenslikhet till strukturellt kända komplex, följt av modellutvärdering. Metoden 
applicerades på Saccharomyces cerevisiae proteomet, vilket resulterade i struktur-
baserade prediktioner av 3213 binära proteinkomplex och 1234 proteinkomplex av 
högre ordning, involverande 750 och 195 proteiner, respektive. Metodens applicering 
på mindre välkarakteriserade proteom kommer att bidra till expansionen av den 
strukturella och funktionella kartläggningen av proteininteraktioner. 

 
1. En sekvens/struktur alignment är en beskrivning av vilka aminosyror som motsvarar 
varandra i två eller flera proteiner (eller delar därav), baserat på sekvens, struktur, eller en 
kombination av de två. 
 
 
 

Hannes Bråberg 

Examensarbete, Molekylär Bioteknik, 2006 

Uppsala Universitet 

 

 
 

 
 
 
 



 4

1 General background .............................................................................................. 5 

1.1 Protein structure .................................................................................................................5 

1.2 Protein structure modeling................................................................................................6 
1.2.1 Introduction ..................................................................................................................................6 
1.2.2 Comparative modeling ................................................................................................................7 

2 Designing a web interface to the MODELLER sequence/structure alignment 

module SALIGN..................................................................................................... 10 

2.1 Introduction ...................................................................................................................... 10 
2.1.1 Protein sequence/structure alignments .....................................................................................10 
2.1.2 Sequence-sequence alignments.................................................................................................11 
2.1.3 Sequence-structure alignments .................................................................................................12 
2.1.4 Structure-structure alignments ..................................................................................................12 
2.1.5 SALIGN .....................................................................................................................................13 

2.2 Methodology ..................................................................................................................... 14 

2.3 Technical details............................................................................................................... 15 
2.3.1 Implementation ..........................................................................................................................15 
2.3.2 Decision process ........................................................................................................................15 

3 Protein complex compositions predicted by structural similarity......................... 18 

3.1 Introduction ...................................................................................................................... 18 

3.2 Methods ............................................................................................................................. 19 
3.2.1 Prediction algorithm ..................................................................................................................19 

3.2.1.1 Candidate complex generation..........................................................................................19 
3.2.1.2 Assessment of candidate complexes.................................................................................19 
3.2.1.3 Orthogonal biological information ...................................................................................21 

3.2.2 Construction of statistical potentials.........................................................................................21 
3.2.3 Benchmarking of statistical potentials......................................................................................22 
3.2.4 Validation of complex prediction .............................................................................................22 
3.2.5 Binding mode selection .............................................................................................................22 
3.2.6 Data sources ...............................................................................................................................22 

3.2.6.1 Target proteins ...................................................................................................................23 
3.2.6.2 Structural domain annotation ............................................................................................23 
3.2.6.3 Template complexes ..........................................................................................................23 

3.2.7 Technology.................................................................................................................................24 

3.3 Results................................................................................................................................ 24 
3.3.1 Benchmark .................................................................................................................................24 
3.3.2 Predictions ..................................................................................................................................24 
3.3.3 Validation ...................................................................................................................................25 
3.3.4 Comparison to other computational methods ..........................................................................26 
3.3.5 Alternate binding modes ...........................................................................................................28 
3.3.6 Co-complexed domains .............................................................................................................28 

3.4 Discussion.......................................................................................................................... 28 
3.4.1 Accuracy.....................................................................................................................................28 
3.4.2 Importance of structure..............................................................................................................30 
3.4.3 Alternative binding modes ........................................................................................................30 
3.4.4 Network specificities .................................................................................................................31 
3.4.5 Extension of known co-complexed domain superfamilies .....................................................31 
3.4.6 Future directions ........................................................................................................................31 

Acknowledgements ................................................................................................. 32 

References .............................................................................................................. 32 

Appendix................................................................................................................. 38 



 5

1 General background 

1.1 Protein structure 
Proteins carry out a wide variety of tasks in the cells and participate in all the cellular 
processes. They are the most versatile macromolecules in biological systems and the 
numerous roles of proteins include acting as enzymes, transmitting nerve impulses, 
controlling cell growth and differentiation and providing mechanical support and 
immune protection. They also transport and store other molecules, and generate 
movement of cells.  

The functional properties of proteins are determined by their three-dimensional 
(3D) structures. The 3D structures are in turn dictated by the sequences of amino 
acids comprising the proteins. This ability to spontaneously fold into precise, complex 
structures serves as a direct link between the one-dimensional (1D) world of 
sequences and the 3D world of structure and function. It is an important feature that is 
crucial to the central role of proteins in biochemistry. Proteins are built up of linear 
chains of amino acid residues and can be described in four levels of structure (Berg et 
al., 2002): 

• Primary structure refers to the sequences of the polypeptide chains consisting of 
L-amino acids linked by peptide bonds. The polypeptide chains are linear and the 
peptide bonds are actually amide bonds formed between the carboxyl group of 
residue n and the amino group of residue n+1 in the sequence. Peptide bonds 
possess a number of features that are essential to the structure and function of 
proteins. First, they are uncharged which allows the chains to pack tightly, 
forming compact structures. Second, the peptide bonds have significant double-
bond character, which imposes some rigidity on the chains. Third, each peptide 
bond has a hydrogen bond donor as well as a hydrogen bond acceptor; this is an 
important feature for stabilizing the regular 3D structures of proteins. Finally, 
peptide bonds do not hydrolyze spontaneously, which results in proteins being 
kinetically stable under physiological conditions.   

• Secondary structure refers to the local, regular structures of the polypeptide chain, 
such as alpha helices and beta strands. Alpha helices are sections where the 
polypeptide chain is tightly coiled and residue n is hydrogen bonded to residues n-
3 and n+4 in the sequence. An alpha helix can be either right-handed or left-
handed, depending on the direction of the coil. In general, L-amino acids cannot 
form left-handed alpha helices, due to steric hindrance. Consequently, alpha 
helices in proteins are almost always right handed. In contrast to the compact 
alpha helices, beta strands are sections where the chains are more or less fully 
extended. Beta sheets consist of two or more beta strands, alongside each other, 
with hydrogen bonds between them. A beta sheet can be either parallel or 
antiparallel. In a parallel sheet the residues in successive strands run in the same 
biochemical direction, and in an antiparallel sheet the residues in successive 
strands run in alternating directions. 

• Tertiary structure describes the complete folding of one polypeptide unit, 
consisting of arranged sections of secondary structure. In aqueous milieus this 
folding usually results in compact structures with hydrophobic residues buried in 
the interior and hydrophilic residues on the surface. This arrangement is governed 
by the hydrophobic effect and allows the hydrophilic side chains to interact with 
the environment. Proteins in hydrophobic environments (membranes) usually 
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display the inverse arrangement with hydrophilic residues sheltered in the core 
and hydrophobic residues on the surface. Besides the hydrophobic effect, salt 
links, hydrogen bonds and covalent disulfide links (between cysteine residues) 
stabilize the tertiary structure. 

• Quaternary structure describes the arrangement of multiple polypeptide chains 
that form multi-subunit structures. Proteins can consist of one or many subunits. 
Subunits can be identical or different and are usually held together by non-
covalent forces. 

In this thesis, the term “structure” refers to three-dimensional structure (i.e., not 
primary structure) unless otherwise noted. 

1.2 Protein structure modeling 

1.2.1 Introduction 

In light of the crucial roles played by proteins in biology, it is evident that developing 
methods for functional annotation of proteins is tremendously important. Accurate 3D 
structures of proteins are very useful for such processes, due to the strong connection 
between protein structure and function. Protein structures are best determined by 
experimental methods, such as X-ray crystallography and nuclear magnetic resonance 
(NMR) spectroscopy. Experimental methods can, however, only be applied to a 
fraction of all proteins, for a number of reasons. Some proteins are especially difficult 
to analyze experimentally due to factors such as inability to crystallize etc., but 
furthermore the number of known proteins is far too large for it to be feasible to 
determine all structures experimentally. One of the prime motivations for developing 
protein structure modeling methods is the fact that the sequence databases are 
growing at a much higher rate than the database of experimentally determined 
structures. The number of experimentally determined structures deposited in the 
Protein Data Bank (PDB) increased from 23 096 to 31 823 over the last 2 years 
(August 2005) (Westbrook et al., 2002). Over the same period, the number of 
sequences in comprehensive sequence databases, such as UniProt (Bairoch et al., 
2005) and GenPept (Benson et al., 2005), increased from 1.2 to 2 million. 

These issues emphasize the need for computational methods for predicting protein 
structures. There are two major classes of methods for computational modeling of 
protein structures (Madhusudhan et al., 2005; Baker and Sali, 2001; Fiser et al., 
2002). Comparative methods, including comparative (or homology) modeling and 
threading, predict the structure of a protein by relying primarily on its alignment to at 
least one similar protein with known structure. Ab initio (or de novo) modeling 
methods model protein structures based on sequence information alone, but do not 
utilize any sequence similarity to known protein structures. Ab initio modeling is 
based on the assumption that the native state of a protein corresponds to the global 
free energy minimum in conformational space. These methods are based on the laws 
of physics and attempt to find the tertiary structure with the lowest possible free 
energy for a given sequence of amino acids. Such a procedure consists of two major 
components: an algorithm that efficiently carries out the conformational search and a 
free energy function used for evaluating the possible conformations. The accuracy 
and reliability of ab initio models are significantly lower than those of comparative 
models based on 30% or higher sequence identity (Madhusudhan et al., 2005; Baker 
and Sali, 2001). Since 1994, a meeting on Critical Assessment of techniques for 
protein Structure Prediction (CASP, http://predictioncenter.gc.ucdavis.edu/) has been 
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held every second year. Well in advance of each meeting, the participating groups are 
presented with a number of target proteins whose structures are about to be solved 
experimentally. Prior to the public release of the structures, predictions are collected 
from the participating groups. The categories include comparative modeling, 
threading and ab initio modeling. Independent assessors evaluate all predictions, and 
the results are released shortly before the meeting, during which the results and 
successful methods are presented and discussed. The aim of CASP is to establish the 
current state of the art in protein structure prediction, to identify what progress has 
been made, and to locate the areas in which future improvement efforts may be most 
profitable.  

This thesis focuses on methods used in conjunction with comparative modeling.  

1.2.2 Comparative modeling 

Comparative modeling is based on statistical learning and utilizes the fact that 
evolutionary changes are gradual in order to preserve important functional features, 
which in turn requires the conservation of structure and, to a lesser extent, sequence. 
This process has resulted in families of related proteins that have similar sequences 
and structures, and sometimes even share functional features (Fiser et al., 2002). The 
3D structures of proteins within a family are more conserved than their sequences 
(Lesk and Chothia, 1980). Hence, if there is a significant degree of similarity between 
two proteins at the sequence level, this implies that they have similar 3D structures as 
well. The aim of comparative modeling is to generate a 3D model for a protein of 
unknown structure (the target), based on its sequence alignment to at least one similar 
protein of known structure (the template) (Marti-Renom et al., 2000). Two conditions 
have to be met in order for such a process to be feasible. First, the target sequence 
must have detectable similarity to at least one protein of known structure, which will 
be used as a template. Second, it must be possible to compute a substantially correct 
alignment between the target sequence and the template structure. In general, 
comparative modeling consists of four steps: fold assignment and template selection, 
alignment of the target to the template(s), model building and model assessment (Fig. 
1) (Madhusudhan et al., 2005). The quality of a model is strongly related to the level 
of sequence identity between the target and the template, partly because higher 
sequence identity implies higher 3D structural similarity, partly because alignment 
accuracy increases with increasing sequence identity. High-accuracy models are 
based on templates to which they have more than 50% sequence identity. The root 
mean square (RMS) error for the main-chain atoms of these models is generally about 
1 Å, which is comparable to that of low-resolution X-ray structures and medium-
resolution NMR structures (Baker and Sali, 2001). Medium-accuracy models have 
30-50% sequence identity to their templates and usually have 90% of the main-chain 
modeled with a RMS error of 1.5 Å. Finally, the low-accuracy models are those that 
have less than 30% sequence identity to their templates. 

There exists a plethora of applications for comparative protein structure models. In 
general, modeling errors are relatively rare in functionally important regions of 
proteins, such as active sites and binding sites, since these regions are usually more 
conserved than the rest of the fold (Sanchez and Sali, 1998). Thus, from a perspective 
of function prediction, a comparative model can often provide more accurate 
information than its overall RMS error would suggest. The accuracy of a model 
determines the applications for which it is suitable (Fig. 2). Low-accuracy models are 
mostly used for fold assignment of proteins, and rarely provide any detailed 
information. Nevertheless, function can sometimes be predicted from only rough 
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structural features. Medium- and high-accuracy models are often used for improving 
functional predictions derived from sequence alone, since ligand binding is more 
directly determined by the structure of the binding site than by its sequence (Baker 
and Sali, 2001). It is often possible to predict features of a target protein that do not 
exist in its template. For example, the existence and location of a binding site can be 
predicted by searching for clusters of charged residues (for binding charged ligands) 
(Matsumoto et al., 1995), and the volume of the binding site cleft provides 
information about the size of the corresponding ligand (Xu et al., 1996). Medium- and 
high-accuracy models can also be used to design proteins with specific features and 
purposes. Examples of these are proteins with compact structures – lacking long tails, 
loops and exposed hydrophobic residues – for improved crystallization, and proteins 
containing extra disulphide bonds for enhanced stability. High-accuracy models are 
often of such good quality that they can be used for docking experiments, where small 
ligands (Ring et al., 1993) or whole proteins (Vakser, 1995) are docked onto the mo-
deled protein. Combining comparative modeling with other methods, such as electron 
microscopy, extends its use. For example, molecular models of large macromolecular 
assemblies can be produced by fitting comparative models of the constituent proteins 
into electron microscopy maps of the whole assemblies. 

 

Fig. 1. A flow chart of the steps involved in comparative protein structure modeling. First, all 
protein structures that are related to the target are identified (fold assignment) and the ones 
that are appropriate for the given modeling problem are selected as templates (template 
selection). The target sequence is then aligned to the selected templates (target—template(s) 
alignment) and a 3D model of the target is constructed (model building). Finally, the model is 
evaluated (model evaluation) and a decision is made whether to keep the model or start over 
from the template selection or alignment steps. (Adapted from Madhusudhan et al., 2005). 
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Fig. 2. Applications of comparative models. The applications of a comparative model depend 
on its accuracy, which is strongly correlated with the sequence identity between the model 
and its template(s). The vertical axis indicates the different ranges of applicability of 
comparative protein structure modeling, the corresponding accuracy of protein structure 
models, and examples of applications. (A) The docosahexanoic fatty acid ligand was docked 
into a high-accuracy model of brain lipid-binding protein (right) based on 62% sequence 
identity to the structure of adipocyte lipid-binding protein (Xu et al., 1996). A number of fatty 
acids were ranked for their affinity to brain lipid-binding protein, and the results were 
consistent with experimental methods, even though the ligand specificity profiles differ 
between this protein and its template (left). (B) A medium accuracy model of mouse mast cell 
protease 7 (right), modeled based on 39% sequence identity to the structure of bovine 
pancreatic trypsin. A putative proteoglycan binding patch was identified on the model, even 
though its template does not bind proteoglycans (Matsumoto et al., 1995). The prediction was 
confirmed by experimental methods. (C) A molecular model of the complete yeast ribosome 
(right) was constructed by fitting atomic rRNA and protein models into the electron density of 
the 80S ribosomal particle, obtained by electron microscopy at 15 Å resolution (Spahn et al., 
2001). (Adapted from Fiser et al., 2000). 

Currently, automated comparative modeling, generating reliable models, is 
possible for domains in about 60% of the approximately 1.8 million unique protein 
sequences in the Universal Protein Resource (UniProt) database (July 5, 2005) (Pieper 
et al., 2006; Bairoch et al., 2005). However, roughly two thirds of these models have 
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less than 30% sequence identity to their best template and are likely to contain 
significant errors. At such low sequence identities, target-template alignment errors 
are common and they constitute the major error source in low-accuracy models. At 
present, there is no comparative modeling program that can recover from an incorrect 
target-template alignment. A substantial effort is thus invested in constructing more 
sophisticated structure-sequence alignment methods and making modeling less 
dependent on the input alignments. 

A factor contributing greatly to the importance of comparative modeling is its role 
in structural genomics, which aims to structurally annotate most protein sequences 
utilizing a combination of experiment and prediction (Baker and Sali, 2001). The first 
step of structural genomics is to carefully select a set of target proteins that will be 
structurally characterized by X-ray crystallography or NMR spectroscopy. There are a 
number of target selection schemes, ranging from studying only proteins that are 
likely to have novel folds to selecting all the proteins of a model genome. In a model-
centric view, the targets for experimental structure determination should be selected 
such that most remaining protein sequences are closely related to at least one of the 
solved structures. In this way, accurate comparative models can be built for a majority 
of all proteins, based on a relatively small number of experimentally solved 
structures. It is desirable that all of these model-template pairs pass a 30% sequence 
identity cutoff, due to the rapid decrease in model accuracy below it. It has been 
estimated that this cutoff requires a minimum of 16,000 experimental targets in order 
to cover 90% of all protein domain families (Vitkup et al., 2001). The experimental 
characterization of these 16,000 structures will allow the modeling of a very much 
larger number of proteins. For example, the New York Structural Genomics Research 
Consortium (http://www.nysgxrc.org/) found that each of their new solved structures 
on average allowed roughly 100 proteins, with previously unknown structures, to be 
modeled at least at the fold level. This illustrates the importance of comparative 
modeling in large-scale structure characterization efforts.  

2 Designing a web interface to the MODELLER 
sequence/structure alignment module SALIGN 

2.1 Introduction 

2.1.1 Protein sequence/structure alignments 

As discussed above, determining the structure of a protein and characterizing its 
function are crucial steps for obtaining a better understanding of cellular processes. 
To achieve these aims, it is important that robust methods are employed to compare or 
align protein sequences and structures with one another. Such methods are frequently 
used for inferring the function of a newly sequenced protein by analogy to previously 
characterized proteins (Koehl, 2001). Classifying proteins into structural families 
often requires pairwise and multiple structural superimpositions (Andreeva et al., 
2004; Holm and Sander, 1999). To build models of a protein (target) based on 
homology to other proteins of known structures (templates), it is vital to correctly 
align the sequence of the target protein to those of the templates (Marti-Renom et al., 
2000) (see section 1.2.2). Conserved and variable regions of sequences can be 
identified by studying the corresponding segments of many aligned proteins. These 
are but some examples of the applicability of protein sequence/structure alignment 
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methods. Methods for aligning sequences or structures follow the same general 
principles, and the alignments are constructed in analogous manners. 

Sequence/structure alignment refers to the assignment of residue-residue 
correspondences between two or more proteins (or sections thereof), based on 
sequence alone, structure alone, or a combination of sequence and structure. Any such 
assignment, where the sequential order of residues within each protein is preserved, is 
an alignment. The objective of an alignment program is to find the best possible 
alignment for a given set of sequences/structures. In such a process, a system for 
scoring the alignments is crucial. A variety of scoring schemes have been invented 
and implemented for different types of alignments. 

2.1.2 Sequence-sequence alignments 

A simple type of scoring scheme is that used for pairwise sequence-sequence 
alignments. Such a scoring scheme reflects the similarity between the aligned 
sequences, based on the number and types of editing operations required to transform 
one sequence into the other. The rationale behind the use of such a measure lies in the 
fact that these editing operations mimic the natural events that take place during 
evolution and cause sequences of common ancestry to diverge. There are two distinct 
types of events – substitutions and deletions/insertions. A scoring function should 
punish rare substitutions and reward those that are likely (as well as conservations) 
and correspondingly favor some identities more than others. This is implemented by 
introducing a substitution matrix, which contains the substitution and match scores for 
all possible residue-residue combinations. Insertions and deletions are accounted for 
by introducing a gap penalty; a cost for matching a residue in one sequence with a gap 
in another. The simplest gap penalty functions are directly proportional to the gap 
lengths, whereas affine functions penalize the opening of a gap more than its 
elongation. Given a substitution matrix and a gap penalty function, a score can be 
calculated for any pair of aligned sequences. The similarity of two sequences, X and 
Y, comprised of residues x1,…,xN1 and y1,…,yN2 respectively, is defined as: 

sim(X,Y) = max
all alignments
betweenX&Y

score(X,Y) X = x1,...,xN1 , Y = y1,...,yN2  

An alignment that produces the maximum score is called an optimal alignment. The 
original, and still widely used, method for finding an optimal alignment is based on a 
mathematical technique called dynamic programming (Needleman and Wunsch, 
1970; Sellers, 1974). The dynamic programming algorithm guarantees to find the 
global optimum, and thus the best alignment, with respect to the utilized scoring 
function. It should, however, be noted that many alignments can have the same 
“optimal” score and that none of these necessarily have to correspond to the 
evolutionarily correct alignment. The dynamic programming algorithm calculates the 
optimal alignment score recursively, utilizing the fact that the total alignment score is 
a sum of the scores for all positions. With time, the scoring function and its 
optimization have been improved, resulting in increased accuracy and speed (Marti-
Renom et al., 2004). Furthermore, they have been extended and applied to a variety of 
alignment problems. Most of these improved methods are based on the same general 
principles as the simple approach described above, even though specific steps of the 
procedures vary greatly. 

One of the most significant improvements in alignment accuracy was achieved 
through the use of sequence profiles (Gribskov et al., 1987, 1990; Gribskov, 1994). A 
sequence profile is calculated from a multiple sequence alignment (MSA) of related 
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sequences and specifies a preference for each of the 20 standard amino acid residue 
types at each position in the alignment. A MSA may, however, not contain enough 
homologs to calculate a statistically robust profile solely from the distribution of 
residue types in the MSA. In order to circumvent this problem, a number of 
estimation schemes have been suggested, most of which depend on prior or expected 
probabilities of residue occurrences and/or residue-residue substitutions. Profiles are 
valuable for detecting remote homologs in the so-called “twilight zone”, where the 
sequence identity between the proteins is lower than 30% (Sadreyev et al., 2003). 
Furthermore, the use of profiles increases the accuracy of “twilight zone” alignments 
significantly. This is of great importance for comparative modeling and is reflected in 
the accuracy and extent of the resulting models. Today, methods exist for sequence-
profile alignments as well as profile-profile alignments, which have been shown to be 
more sensitive than the former (Madhusudhan et al., 2005). 

2.1.3 Sequence-structure alignments 

Another approach that increases the accuracy of alignment methods significantly is 
the incorporation of structural information about one of the sequences in a pairwise 
comparison. One such method is threading (Torda, 1997), where fold assignment and 
alignment are attained by threading a sequence through each of the structures in a 
library of all known folds. Each such sequence-structure alignment is assessed by the 
energy of a corresponding coarse model, without taking sequence similarity into 
account.  

Yet another approach, which lies between purely sequence-based methods and 
threading methods, is to incorporate structural information into profile alignment 
methods. This is implemented by making the substitution scores depend on solvent 
accessible surface area, secondary structure type, hydrogen bonding properties etc. 
(Luthy et al., 1992). Further enhancement of this approach is possible by extending 
the use of structural data to the sequence side of the structure-sequence pair. This can 
be achieved by making use of the predicted local structure of the sequence (Tang et 
al., 2003). Further improvement of the accuracy can be achieved by adjusting gap 
penalties according to the local environment in which the gaps occur (Zhu et al., 
1992).  

2.1.4 Structure-structure alignments 

Structure-structure alignment methods can usually align proteins in the “twilight 
zone” much more accurately than sequence based methods. This is due to the fact that 
3D structures of proteins in the “twilight zone” are more conserved than their 
sequences. The most direct approach for comparing two structures is to superimpose 
them as rigid bodies and look for equivalent residues (Koehl, 2001). This approach is 
however limited to structures that are relatively similar, as it will not be able to detect 
local similarities between structures that differ on the global level. Breaking the 
structures into fragments solves this problem, but can lead to situations where the 
global alignment is missed instead. Recent work has been focused on methods 
satisfying both the global and local criteria (Koehl, 2001). A majority of the structure-
structure scoring schemes are based solely on the geometrical properties of the sets of 
points that represent the structures, ignoring information about the local environment 
of the residues. Even though most of these are far more complicated than the root 
mean square (RMS) deviation, this remains the general measure for describing the 
similarity of two protein structures. Two types of RMS measures have been proposed, 
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cRMS and dRMS. The cRMS provides a measure for the distance between the 
coordinate sets of two superimposed structures: 

cRMS =
1

N
x(i) y(i)

2( )
i=1

N

 

where N is the number of atoms to be compared, x(i) is the coordinate vector for atom 
i in one of the structures, and y(i) is the corresponding coordinate vector for the other 
structure. dRMS, on the other hand, compares the intramolecular distances between 
two structures: 

dRMS =
1

N N 1( )
dij
A dij

B( )
2

j= i+1

N

i=1

N 1

 

where dij
A is the distance between atoms i and j in one of the structures, and dij

B is the 
distance between the corresponding atoms in the other structure. Both RMS measures 
are based on the Euclidian norm and thus very sensitive to outliers, which limits their 
efficacy to closely related structures. For example, consider two distantly related 
proteins with similar structures of the core regions, but major differences in their loop 
geometries. In such a case, a RMS measure could favor a poor alignment, where all 
regions of the proteins were relatively close to each other, rather than one where the 
core regions were well aligned and the loops were far away from each other. An 
important complement to the RMS measure is the structural overlap, or equivalent 
positions measure. This estimates the number of equivalent residue atoms (e.g. C ) 
that lie within a certain cut-off distance. A number of other methods, some less 
sensitive to outliers than others, have been proposed, but none of them appears to be 
ideal for all scenarios. Koehl (Koehl, 2001) argues that the problem of structure 
comparison is ill posed and that additional information is required to characterize a 
problem with a well-defined solution. He exemplifies this by fold recognition 
applications, which focus more on the conserved core regions of the proteins than 
loop geometry. For such situations, he suggests defining a similarity score that only 
includes atoms in the core.  

2.1.5 SALIGN 

The multi-purpose alignment module of MODELLER (Sali and Blundell, 1993), 
SALIGN (Madhusudhan et al., in preparation), is capable of aligning sequences, 
structures, or a combination of the two. It is loosely based on the algorithms used by 
the program COMPARER (Sali and Blundell, 1990). All pair-wise alignments are 
calculated using global or local dynamic programming methods. The weight matrix 
used in the dynamic programming consists of a combination of weighted scores 
contributed from 6 different sequence and structure features (Fig. 3). The features 
include 1) residue-residue substitution score, 2) root mean square deviation (RMSD) 
of chosen atoms of residues, 3) fractional side chain solvent accessibility, 4) 
secondary structure type, 5) local similarity as reflected in the distance RMSD, and 6) 
any user created input matrix. Features 2-5 are useful in structure alignments while 
feature 1 is useful to align sequences. SALIGN provides two distinct methods, “tree 
alignment” and “progressive alignment”, for generating multiple alignments. The tree 
algorithm first creates a dendrogram of the structures/sequences from a matrix of all 
pairwise alignment scores. Guided by the dendrogram, the tree multiple alignment is 
then constructed, by aligning the closest linked branches to each other (Fig. 3). The 



 14

progressive alignment algorithm is simpler and less computationally expensive. This 
approach begins with the alignment of two arbitrary sequences to each other, followed 
by the alignment of a third sequence to the first two; and in n-1 steps, a multiple 
alignment of n sequences is created. If two pre-aligned blocks of sequences are to be 
aligned, the profile-profile alignment method is used. To align a block of sequences to 
a block of structures, the Align2D algorithm (Madhusudhan et al., 2006) is used. 
Align2D uses local or global dynamic programming but replaces the affine gap 
penalties with an environment-dependent gap penalty function. SALIGN is extremely 
flexible, and the user can manipulate most features described above.  

The current project consisted of creating a web-based user interface to SALIGN. 
Such a utility should be vastly helpful in categorizing and studying families of 
proteins, by making SALIGN available to non-experts. The web server is available at 
http://salilab.org/salign/ (password protected during an evaluation period). The 
methodology is first described, followed by a brief section covering implementation 
details. Finally, an attempt is made to describe how the server decides on a course of 
action based on the input information. 

2.2 Methodology 
The main user interface is an input page that allows the user to upload arbitrary 
numbers of structure (in PDB format) and alignment files (in PIR or FASTA format) 
(Fig. 4). The alignment files may contain sequence entries, structure entries, or a 
combination of the two. For each structure entry, the SALIGN server searches the 
PDB library as well as the uploaded files for the corresponding structure file. If no 
match is found the entry is treated as a sequence instead. In case the user wants to 
align structures that are not represented in any alignment file, the segments to be 
aligned can be specified manually on the web page. This option is available for 
uploaded structure files as well as those that can be fetched from the PDB. 
Furthermore, an option for pasting sequences is provided. 

To simplify usage, the server processes the input information and decides on a 
course of action that is likely to result in the most accurate alignment. The proposed 
action is presented to the user who can choose to submit the job or switch to an 
advanced view. The advanced view offers the option to override the default action 
and furthermore allows a number of advanced parameters to be set (Fig. 5). The 
advanced features displayed depend on the input. For example, the user will not be 
given the option to ask for a structural alignment if the input only consists of 
sequences. 

After successful completion of an alignment task, the results package contains the 
resulting alignment file, superimposed coordinate files if structures were aligned, a 
dendrogram file if a tree was constructed, the MODELLER log file, which gives 
details pertaining to the alignment process, and the MODELLER input file(s). The 
MODELLER input file can be used with any stand-alone version of MODELLER, 
version 8 and higher. The log file contains information about RMSD, number of 
equivalent positions, number of residues etc. The results package is retrievable via a 
web page, which is reachable through a hyperlink that is emailed to the user. On the 
results web page, the user can either download or view the output files. If structures 
have been aligned, the page also features a link that opens aligned structure files in 
the molecular graphics viewer CHIMERA (Pettersen et al., 2004), which provides 
instant visualizations of the alignments. If errors are encountered during the run, the 
user is notified by email as well. This email contains a link to a web page that allows 
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the user to view or download the log file. In such a case, it may be instructive to 
peruse the log file, since errors are generally reported there. 

2.3 Technical details 

2.3.1 Implementation 

The web server was implemented as a set of Perl and Perl/CGI scripts. As a job is 
submitted, a script creates the required MODELLER input files. In the next step, the 
job is added to a Linux cluster queue by a daemon that checks for new jobs every 
minute. SALIGN is then run on the cluster, computing the appropriate alignment(s). 
When a run is finished, the daemon executes a script that processes the results. This 
script checks for errors and emails the user a link to the results web page.  

2.3.2 Decision process 

This section describes how the server decides on a course of action based on the input 
information. Additionally, a set of flowcharts, which may clarify the decision process, 
is provided in the appendix. Note that the user can choose to override this default 
procedure in the advanced options.  

Given a set of structures, the server will opt to construct a tree-based multiple 
alignment. The same is true for a set of sequences. There is no limit on the number of 
structures or sequences that the server can handle but some practical limits are 
enforced to optimize run time. Progressive alignment is used when the number of 
sequences exceeds 500 or when the number of structures exceeds 50. If two sets of 
sequences are input a two-step approach is performed. In the first step, each set of 
sequences is aligned using a substitution matrix. Sets of more than 500 sequences are, 
however,  not  aligned  and  should  thus  be  prealigned  upon  submission.  In  the  second 

 

Fig. 3. Multiple structure tree alignments. PDBs 1cdg, 2aaa and 6taa were multiply aligned 
by SALIGN, using the tree algorithm, based on two different sets of feature weights. The 
feature weights dictate the influence of different sequence and structure features on the 
alignment (section 2.1.5). A) Feature weights: 1 1 1 1 1 0 (quality score: 88.4%) B) Feature 
weights: 0.1 1 0 0 0 0 (quality score 81.3%). 
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step the two sets are aligned to each other by matching their profiles. The same 
procedure is carried out even if one or both files consist of mixtures of structure and 
sequence entries. In this case, only sequence information is used for the structure 
entries as well. If one of the sets consists of only structure entries, it is aligned using 
the structure-structure feature instead. Step two is then performed as a structure-
sequence alignment if the sets contain no more than 100 sequences and structures 
respectively. For larger sets a profile-profile alignment is performed. If the input 
consists of a mixture of structures and sequences, not arranged in two distinct sets, 

 

Fig. 4. SALIGN web server input page. The upper text input field provides the user with the 
option to paste sequences to be aligned. By clicking the “Choose File” button, the user can 
upload sequence/structure alignment files, as well as PDB structure files. Clicking “Upload” 
for a chosen file enables the user to select a new file for upload. Pasted sequences and 
uploaded files are listed in the area below the “Upload” button. Further down a text field is 
provided for specifying structure files to be fetched from the PDB library.  
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independent multiple alignments of sequences and structures are performed, 
regardless of the distributions in the uploaded files. The multiple sequence and 
structure alignments are then aligned to each other by a structure-sequence pairwise 
alignment if neither contains more than 50 entries. If either is larger than 50 entries 
the two blocks are aligned using a profile-profile alignment instead. 
 

 

Fig. 5. Example of an advanced view page of the SALIGN web server. The SALIGN web 
server customizes the advanced view according to the inputs. The options presented in this 
figure are based on the uploading of two distinct sets of sequences and no structures. In the 
advanced view, the user is also provided with the option to override the default alignment 
category (see section 2.2.3.2 and Appendix).  
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3 Protein complex compositions predicted by 
structural similarity 

3.1 Introduction 
As discussed in section 1, accurate protein structures may provide essential infor-
mation about cellular processes. The structural characterization of isolated proteins 
alone is, however, often not sufficient for deducing biological function. This is partly 
due to the fact that biologically functional units often are large, complex assemblies 
of several macromolecules (Russell et al., 2004). These assemblies vary widely in 
size and shape, and play a number of key roles in the cellular processes. Examples 
include the ribosome, which is responsible for protein synthesis, and the nuclear pore 
complex, which controls the trafficking of macromolecules through the nuclear 
envelope. The structural characterization of macromolecular assemblies is an 
important component of the mapping of biochemical and cellular processes.  

Recent developments in high-throughput screening have generated large data sets 
identifying protein complexes. The Saccharomyces cerevisiae proteome has been 
especially well characterized through yeast-two-hybrid (Y2H) (Uetz et al., 2000; Ito 
et al., 2001) and tandem affinity purification (TAP) experiments (Gavin et al., 2006; 
Ho et al., 2002; Gavin et al., 2002). Experimentally observed interactions, resulting 
from both high-throughput and traditional low-throughput methodologies, are 
deposited in databases such as the Biomolecular Interaction Network Database 
(BIND, Bader et al., 2003) and the Database of Interacting Proteins (DIP, Salwinski 
et al., 2004). 

Concomitant with these experimental advances, a spate of computational 
techniques to predict protein-protein interactions have also been developed. Several 
approaches based on protein sequence, structure, function, and genomic features have 
been described (Salwinski and Eisenberg, 2003). In an effort to reduce the prediction 
errors, several methods integrate multiple types of experimentally determined 
information and theoretical considerations (Jansen et al., 2003; Lee et al., 2004; Lu et 
al., 2005). 

Structure-based methods have been developed for the prediction of binary protein 
interactions. InterPreTS (Aloy and Russell, 2002) uses a statistical potential derived 
from known hetero-dimer structures and MULTIPROSPECTOR (Lu et al., 2002) 
relies on threading to score pairs of proteins that are similar to binary interactions of 
known structure. In addition to predicting new interactions, structure-based methods 
can also annotate interactions that have been previously observed experimentally. A 
recent study used computational methods in conjunction with experimentally 
determined complex compositions and electron density maps from negative-stain 
electron cryo-microscopy to generate structural models of yeast complexes (Aloy et 
al., 2004). In a similar vein, structural knowledge has been used to predict the 
domains that are most likely to mediate binary protein interactions (Nye et al., 2005). 

In this study (Davis et al., 2006) we predicted proteins that form complexes in S. 
cerevisiae based on similarity to complexes whose atomic structures have been solved 
experimentally. First, comparative models of conceivable complexes are built and 
then assessed by a specialized statistical potential. The high-confidence interactions 
can be additionally filtered by examining orthogonal sources of information including 
sub-cellular localization and functional annotation. 

The current study is unique primarily in its prediction of structural models for 
higher-order complexes as well as homomeric complexes. Computational methods 
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have been developed to infer higher-order complexes from binary protein interaction 
networks (Bader and Hogue, 2003; Spirin and Mirny, 2003), but they do not explicitly 
use structural knowledge. Previous studies have also focused primarily on the 
prediction of heterodimers, though homodimerization is biologically prevalent and 
functionally significant (Marianayagam et al., 2004). The multiple structure-based 
assessment steps, from the initial fold assignment, to the interaction prediction, 
enables our method to achieve a higher coverage, and presumably accuracy, than 
methods based solely on sequence similarity (section 3.4.2). 

First, the approach and benchmarking of the method are described. Predictions are 
then presented for proteins in S. cerevisiae and validated against experimentally 
observed complexes. The performance of the protocol is highlighted in the selection 
of the correct binding mode when multiple template interface structures are available 
and newly predicted co-complexed superfamilies are discussed. Finally, section 3 of 
this thesis is concluded with a brief discussion of potential applications of the method 
in light of the ultimate goal of full structural coverage of interaction space. 

3.2 Methods 

3.2.1 Prediction algorithm 

Candidate complexes are first generated, then assessed, and finally filtered by 
orthogonal biological information (Fig. 6(a)). 

3.2.1.1 Candidate complex generation 

Pairs of S. cerevisiae proteins were identified as potential interaction partners if they 
were assigned SCOP domains belonging to superfamilies for which an interaction 
structure exists in PIBASE (Fig. 6(b)) (Davis and Sali, 2005). In some superfamilies, 
such as the ARM superfamily (SCOP a.118.1), the lengths of the member domains 
vary widely. Because alignments between structures of different lengths are difficult, 
a threshold was placed on the relative sizes of the target and template domains – the 
shorter of the two domains must be at least 60% of the length of the longer domain. In 
addition, the target interface was required to have residue pairs aligned to at least 50% 
of the template interface contacts. 

Protein Data Bank (PDB) (Berman et al., 2000) structures that contained more than 
two domains were used as templates for the prediction of higher-order complexes 
with more than two proteins. Target domains that were assessed to interact through 
the interface modes in a given PDB structure were listed as candidate complex 
members. Each complex was then scored with the worst of the Z-scores for the 
interacting domain pairs it contained, as described below. Predicted complexes were 
merged if they contained different domains of a single target protein. In effect, the 
covalent link between the domains served as a “bridge” between predicted complexes 
that were based on different templates (Fig. 6(c)). 

3.2.1.2 Assessment of candidate complexes 

Each candidate interaction pair was scored by assessing the agreement between the 
target sequences and the template interface structure using a statistical potential 
derived from binary interface structures in PIBASE. 

First, residue contacts across the interface were calculated for the template 
interface and grouped into classes based on the main chain or side chain participation 
of  each  residue.  Next,  the  MODBASE  models  of  each  candidate  interaction  partner 
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Fig. 6. Prediction Logic Overview. (a) Prediction Flowchart. Groups of protein sequences 
modeled with SCOP domains observed to form a complex in PIBASE are listed as candidate 
complexes. These candidate complexes are then assessed by a statistical potential. 
Interactions that score above a Z-score threshold are filtered using sub-cellular localization 
and functional annotation. The resultant predictions are deposited in MODBASE. (b) 
Candidate Complex Generation. Comparative models of target domains are structurally 
aligned to templates of known structure in PIBASE using the SALIGN module of 
MODELLER. Putative interface residues are identified from the alignment. (c) Predicted 
complexes are merged if they contain different domains of a single target protein. 
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were structurally aligned against the corresponding domains in the template interface 
using the SALIGN module of MODELLER (Sali and Blundell, 1993). Finally, the 
residue correspondences defined by the alignments were used to score the candidate 
partner sequences against the template interface contacts using the statistical potential, 
as described below. 

A Z-score was calculated to assess the significance of the raw statistical potential 
score, by consideration of the mean and standard deviation of the statistical potential 
scores for 1000 shuffled target sequences. Sequence randomization has been 
previously shown to perform comparably to a more physical model involving 
structural sampling in the context of fold assessment (Melo et al., 2002). 

3.2.1.3 Orthogonal biological information 

Orthogonal biological support for each predicted complex was provided by sub-
cellular localization and gene ontology functional annotation of their components, 
obtained from the YeastGFP (Ghaemmaghami et al., 2003) and SGD databases 
(Dwight et al., 2002), respectively. The numbers of shared localization and function 
terms were computed for both experimental and predicted complexes. If all pairs of 
proteins in a complex shared at least one function or localization term, the complex 
was flagged as co-functioning or co-localized, respectively. 

3.2.2 Construction of statistical potentials 

A series of statistical potentials was built using the binary domain interfaces in 
PIBASE extracted from structures at or below 2.5 Å resolution, randomly excluding 
100 benchmark interfaces. Twenty-four statistical potentials were built using different 
values of three parameters: the contacting atom types (main chain - main chain, main 
chain - side chain, side chain - side chain, or all), the relative location of the contac-
ting residues (inter- or intra- domain), and the distance threshold for contact 
participation (4, 6, or 8 Å): 
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for each residue type pair was normalized by nij
(p), the total number of possible 

contacts of that type in each protein, weighted by max(cifaij). In the case of the inter-
domain potential, nij

(p) was computed by taking into account the occurrence of each 
residue type in each domain individually. Finally, the score for each residue type pair 
was normalized by the sum of the scores observed for all residue type pairs (Eqn. 2). 

3.2.3 Benchmarking of statistical potentials 

Performance on the benchmark set of 100 interfaces was used to compare the 24 
statistical potentials. The sequences of these interfaces were scored against their 
structures and a Z-score was calculated, as described above. Receiver-operator curves 
(ROC) were built to describe the observed false-positive and true-positive rates at 
different Z-score thresholds. The ROC curves were then integrated to calculate the 
area under the curve (AUC). The AUC represents the probability that a classifier 
ranks a randomly chosen positive instance higher than a randomly chosen negative 
instance, with 0.5 corresponding to a random prediction, and 1 to a perfect classifier 
(Fawcett, 2003). 

3.2.4 Validation of complex prediction 

The predicted interactions were validated in two ways. First, the predicted S. 
cerevisiae complexes were compared to the experimentally determined complexes in 
the BIND database (Bader et al., 2003) and those recently reported by Gavin et al., 
referred to as Cellzome (Gavin et al., 2006). The binary interactions were compared 
by counting the overlap of the predictions with the interactions in the BIND and 
Cellzome sets. The Cellzome set consisted of pairs of proteins that were deemed 
highly reliable in forming partnerships based on their computed ‘socio-affinity’ score 
(Gavin et al., 2006). 

Second, the higher order complexes were compared between the predicted and 
experimental sets by counting how many of the predicted complexes were equivalent 
to, or were subcomplexes of, experimentally determined complexes. Since the 
predictions are based on known structures, the sizes of the predicted complexes are 
far smaller than those obtained by biochemical methods such as tandem affinity 
purification methods. For this reason, we elected not to use a metric that explicitly 
penalizes size differences (e.g., the metric defined in Bader and Hogue, 2003). 

3.2.5 Binding mode selection 

The ability of the potential to select the proper binding mode when multiple template 
interfaces of different orientation are available was assessed. The test cases used were 
the structures of camelid VHH domains AMB7, AMD10, and AMD9 bound to 
porcine pancreatic -amylase (PPA) (PDB codes 1kxt, 1kxv, and 1kxq, respectively). 
All three modes were evaluated for each VHH-PPA complex using the interface 
statistical potential. 

3.2.6 Data sources 

The prediction algorithm uses three types of data: (i) target protein sequences among 
which complexes are to be predicted, (ii) structures of protein complexes to be used as 
templates, and (iii) a list of the locations and types of structural domains in the target 
and template proteins (Fig. 6(a)). 
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3.2.6.1 Target proteins 

S. cerevisiae protein sequences were obtained from MODBASE, a relational database 
of annotated comparative protein structure models for all available protein sequences 
matched to at least one known protein structure (Pieper et al., 2006). The models were 
calculated by MODPIPE (Eswar et al., 2003), an automated modeling pipeline that 
relies on MODELLER for fold assignment, sequence-structure alignment, model 
building, and model assessment (Sali and Blundell, 1993). 6,600 S. cerevisiae 
proteins were processed, resulting in 9,464 models for 3,440 sequences. 2,659 
sequences had at least one reliable model (5,387 reliable models in total). A model is 
considered reliable when the model score, derived from statistical potentials, is higher 
than a cutoff of 0.7 (Melo et al., 2002). A reliable model has a greater than 95% 
probability of having at least 30% of C  atoms within 3.5 Å of their correct positions. 
3,376 sequences had at least one reliable fold assignment (8,935 reliable folds in 
total). A fold assignment is considered reliable when the model is based on a PSI-
BLAST match to a template with an e-value smaller than 0.0001. 

3.2.6.2 Structural domain annotation 

The domain definitions for PDB structures were obtained from the SCOP database 
(ver. 1.69) that classifies each domain using a four level hierarchy, class, fold, 
superfamily, and family (Murzin et al., 1995). The location and types of domains in 
the target protein sequences were then predicted using the SCOP annotation of their 
MODBASE templates, as follows. Domain boundaries were first assigned based on 
the MODBASE alignment of each target protein to its structural template. Each target 
domain was required to have at least 70% of the residues in its template domain to 
receive the domain assignment. Next, if the target domain had greater than 30% 
sequence identity to the template domain and the MODBASE structural model was 
assessed to be reliable, the target domain received the template’s SCOP classification 
at the family level. If the sequence identity was less than 30% and a reliable model 
was built or if the sequence identity was greater than 30% but MODBASE deemed 
only a reliable fold assignment, the superfamily was assigned. The remaining domains 
received the template domain’s SCOP classification at the fold level, and were not 
used in the interaction prediction. 

For those target proteins for which multiple models were available in MODBASE, 
a tiling procedure combined the domain assignments for each model into a non-
overlapping set of domain boundaries that maximized the coverage length and 
classification detail in the SCOP hierarchy. 

3.2.6.3 Template complexes 

Structures of template complexes were retrieved from PIBASE, a comprehensive 
relational database of structurally defined protein interfaces (Davis and Sali, 2005). It 
currently includes 209,961 structures of interactions between 2,613 SCOP domain 
families. The ASTEROIDS component of the SCOP ASTRAL compendium was used 
to cluster the interfaces, reducing the computational expense of the predictions 
(Chandonia et al., 2004). The ASTEROIDS alignments, available for SCOP classes a-
g, were used together with the interface contacts stored in PIBASE to cluster all 
interface structures that shared pairs of SCOP families. When two interfaces shared at 
least 75% equivalent interface contact positions, they were merged into a single 
cluster. The clustering reduced the 79,428 domain interfaces between pairs of 
domains in the SCOP classes a-g to 21,791 representative interfaces. These interfaces 
were filtered using a threshold of at least 1,000 interatomic contacts resulting in a set 
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of interfaces of significant size. The final set of template binary interfaces contained 
5,275 structures, including both intermolecular and intramolecular interfaces. 

3.2.7 Technology 

The prediction system was implemented as a Perl module and an integrated set of Perl 
scripts, except for the inter-atomic contacts calculator written in ANSI C (Davis and 
Sali, 2005). The SALIGN module of MODELLER (Sali and Blundell, 1993) was 
used to generate model template alignments. The Perl DBI interface was used to 
access the MODBASE and PIBASE MySQL databases (http://www.mysql.com). The 
calculations were done in a parallel fashion on 50 3.0 GHz Pentium IV processors, 
taking 20 hours for the yeast genome. The predictions are accessible via the 
MODBASE web interface (http://salilab.org/modbase). 

3.3 Results 

3.3.1 Benchmark 

The statistical potentials were tested using the benchmark set of 100 complexes, and 
their performance compared using receiver operator curves (ROC) (Methods). The 
highest power of discriminating between the native and non-native interfaces was 
achieved by the statistical potential built from side chain - side chain contacts across 
the interfaces at a threshold of 8 Å, corresponding to the extent of the first residue 
shell (Fig. 7). The ROC curve for this potential had an area under the curve (AUC) of 
0.993, and at the optimal Z-score threshold of 1.7 had true positive and false positive 
rates of 97% and 3%, respectively. Clear performance trends were observed for the 
parameters sampled in the potential construction. The inter-domain potential always 
performed better than the corresponding intra-domain potential, when all other 
parameters were equivalent (data not shown). The side chain - side chain (SS) 
potential performed better than the corresponding main chain - side chain (MS) 
potential, which in turn performed better than the corresponding main chain - main 
chain (MM) potential. At 6 Å and 8 Å, the all atom-type potential performed better 
than only the MM potential. At 4 Å, the all atom-type potential performed better than 
both MS and MM potentials. The range of performances, generated by varying the 
other parameters (i.e., atom type, inter- or intra-domain), was widest at the 4 Å 
distance threshold and least at 8 Å. 

3.3.2 Predictions 

The best statistical potential, as determined above, was then used to assess candidate 
interactions between S. cerevisiae proteins. 12,867 binary interactions that scored at 
or below a Z-score threshold of 1.7 were predicted between 1,390 S. cerevisiae 
proteins (Fig. 8(a)). Next, the co-function and co-localization filters were separately 
applied, reducing the original 12,867 interactions to 6,808 and 4,432, respectively. 
The combined co-localization and co-function filter resulted in 3,213 predictions. 
12,702 higher-order complexes were also predicted at a Z-score threshold of 1.7 
between 589 proteins. Similar to the binary predictions, the orthogonal filters reduced 
this number to 1,234 complexes between 195 proteins. 

The predictions spanned the entire spectrum of target-template sequence similarity 
(Fig. 8(b)). This distribution reflects both the comparative modeling procedure used to 
build models of the individual proteins and the procedure used to identify potential 
interaction templates. The mean target-template sequence identity of the reliable 
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models built for S. cerevisiae proteins is 31%. Domains from different families within 
the same superfamily, the SCOP level used to identify potential interaction templates, 
often share less than 30% sequence identity. Both of these factors influence the 
distribution of target-template identities observed for the predicted interactions. 

The fractions of predicted binary interactions that passed the co-function (53%), 
co-localization (34%), and both co-function and co-localization (25%) filters were 
similar to the fractions for BIND interactions (39%, 33%, and 21%, respectively). The 
Cellzome set more readily passed these filters (85%, 58%, and 52%, respectively). 

3.3.3 Validation 

The predictions were then compared with known experimental interactions, as 
deposited in the BIND database. 248 of the 3,213 predicted binary interactions that 
passed the combined co-localization and co-function filter overlapped with known 
binary interactions. 8 of the 1,234 predicted higher-order complexes were also found 
as subcomplexes of experimental complexes. 

The enrichment of the unfiltered predictions with known binary interactions begins 
to plateau at 0.2 around a Z-score threshold of 3.5, with an enrichment value of 0.03 
at the Z-score of 1.7 (Fig. 9(a)). The predictions that passed the separate localization 
and function filters both reached a peak of 0.28 at a Z-score of 3.6. Both filters 
produced enrichment values of 0.06 at the Z-score threshold of 1.7. The enrichment 
of the predictions that passed the combined co-localization and co-function filter 
exhibited a higher peak of 0.36 at the Z-score of 3.6. At the Z-score threshold of 

1.7, the combined filter produced an enrichment of 0.08, a more than two-fold 

 

Fig. 7. Assessment of statistical potentials. Receiver operator curves (ROC) are shown for the 
inter-domain potential performance on the benchmark set of complexes. 
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increase compared to the unfiltered predictions. 

3.3.4 Comparison to other computational methods 

The performance of the method in predicting binary interactions is comparable to 
similar structure-based methods that have been previously applied to S. cerevisiae on 
a genomic scale. Here, an overlap of 248 binary interactions is observed between the 
set of 3,213 (7.7%) predictions and 19,424 (1.3%) experimental observed binary 
interactions. 374 of 7,321 (5%) interactions predicted by threading occurred in a set of 

 

Fig. 8. S. cerevisiae predictions. (a) Predictions of binary and higher-order complexes 
filtered by sub-cellular localization and annotated function. (b) Average sequence identity of 
predicted interaction partners to template interacting domains vs. Z-score. The predictions 
shown were scored with Z-score  1.7, and passed the combined co-localization and co-
function filter. 
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78,930 (0.4%) experimentally determined yeast interactions (Lu et al., 2003). An 
overlap of 59 predicted interactions with an experimental set of 2,590 (2.3%) 
interactions was obtained by interface model assessment (Aloy and Russell, 2002). 

 

Fig. 9. Experimental overlap of S. cerevisiae predictions. (a) The probability of finding an 
experimentally observed interaction in the predicted set, as a function of the statistical 
potential Z-score. The unfiltered predictions are represented by dotted-dashed, the co-
function filtered by dotted, the co-localization by dashed, and the combined co-localization 
and co-function filtered set by solid lines. The curves are only shown to a Z-score threshold of 

5.0, because of the sparseness of predictions below this level. (b) Experimental overlap of 
the binary and higher-order predictions filtered by sub-cellular localization and annotated 
function. 
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3.3.5 Alternate binding modes 

The ability of the algorithm to correctly select the native binding mode when alternate 
templates are available was tested. The native binding mode was correctly selected for 
all three VHH domains interacting with porcine pancreatic -amylase (Fig. 10). In 
addition, the statistical potential scores that were computed for the native binding 
modes exhibit the same rank-order as the affinity measured experimentally by total 
internal reflectance (Lauwereys et al., 1998). 

3.3.6 Co-complexed domains 

An extension process merged predicted complexes containing different domains of a 
single target protein (Fig. 6(c)). This process predicted 279 pairs of co-complexed 
SCOP domain families that were not present in the structures of template complexes. 
The comparison to experimental complexes was done at the superfamily level, as 
many of the domains in the experimental complexes were assigned domains that were 
classified only to this level in the SCOP hierarchy (Fig. 11). 

3.4 Discussion 
Sections 3.2 and 3.3 described our method to predict protein complex compositions 
by generating comparative models of candidate complexes based on sequence 
similarity to structurally known complexes followed by model assessment (Fig. 6). 
We applied the method to the S. cerevisiae proteome (Fig. 8) and compared the 
predicted complexes with experimental data (Fig. 9, Fig. 11). We further tested the 
method by distinguishing between multiple template binding modes (Fig. 10). The 
observed performance is now discussed and the limitations of the algorithm are 
described. Finally, the information gained in the present study, and its applications to 
increasing structural description of protein interactions, is discussed. 

3.4.1 Accuracy 

Because a large set of true negative interactions is not available, only the positives, or 
predicted interactions, can be compared between experiment and predictions. This 
limitation restricts the validation of the predictions because if the Z-score threshold is 
loosened, maximal overlap can be achieved at the expense of the false positive rate. 
However, the false positive rate can not be counted with certainty, as false positives 
can not be distinguished from false negatives in the experimental data sets, which can 
be quite high (von Mering et al., 2002). Similar validation problems are encountered 
when testing protein ligand docking algorithms. Here, a measure related to the 
enrichment factor used in protein ligand docking was applied (Fig. 9(a)). 

The overlap observed between the predicted and experimentally observed 
complexes is comparable to that between different experimental procedures (von 
Mering et al., 2002). 248 of the 3,213 predicted binary interactions and 8 of the 1,234 
predicted higher-order complexes were present in the BIND or Cellzome datasets 
(Fig. 9). 

This overlap is a result of several factors. First, by construction our method is 
restricted to protein interactions for which structural templates exist. For this reason, 
our method is also biased towards complexes that are stable enough to be amenable to 
structure determination, whereas the yeast-two-hybrid method that populates most of 
the high-throughput entries in BIND, is biased towards transient interactions (von 
Mering et al., 2002). Secondly, many PDB entries do not contain complete domains 
for both partners (e.g., SH3 domain - peptide complexes) and were thus not 
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considered as templates in the current prediction protocol. Finally, the challenge faced 
in predicting binary interactions increases combinatorially for higher-order 
complexes. 

The use of sub-cellular localization data and functional annotation as filters for the 
predictions increased their overlap with experimental complexes, as compared to the 
unfiltered predictions. This finding is in agreement with previous observations that 
combining multiple sources of information improves the accuracy of function 

 

Fig. 10. Selection among alternate binding modes. Camelid VHH domains AMB7 (orange), 
AMD10 (magenta), and AMD9 (blue) bind to porcine pancreatic -amylase (PPA, grey 
surface) through three distinct binding modes (PDB codes 1kxt, 1kxv, and 1kxq, respectively). 
All three modes were evaluated for each VHH-PPA complex using the interface statistical 
potential. The Z-scores are presented along with the raw score in parenthesis. Dissociation 
constants measured by total internal reflectance (IAsys) were obtained from literature 
(Lauwereys et al., 1998). Image created by PyMOL (Delano Scientific, 2002). 

 

Fig. 11. Co-complexed domain superfamilies. The pairs of co-complexed superfamilies 
observed in the BIND and Cellzome complexes are compared to the direct interactions in the 
PDB, co-complexed pairs in the PDB, and the predicted co-complexed pairs resulting from 
the complex extension procedure. 
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annotation as well as interaction prediction (Jansen et al., 2003; Lee et al., 2004; Lu et 
al., 2005). Our method easily allows for the use of additional biological filters when 
other types of data are available, such as synthetic gene lethality (Tong et al., 2001), 
co-expression (Tirosh and Barkai, 2005), etc. This incremental addition of orthogonal 
information is also necessary to more accurately represent the conditions in the 
cellular milieu, where the propensity of two protein structures to interact is not limited 
only by the physical chemistry of the interaction, but also by higher levels of 
biological regulation, including compartmentalization, expression, degradation, abun-
dance, etc. Depending on the application, the user may decide to apply different 
biological filters. 

3.4.2 Importance of structure 

The majority (98.6%) of the filtered binary interactions as well as the subset that 
overlapped with experimentally observed interactions (86.9%) were based on 
templates sharing less than 80% sequence identity, a threshold previously established 
for reliable transfer of a known interaction to a putative interaction between 
homologous proteins (Fig. 8(b)) (Yu et al., 2004). This distribution highlights the 
advantage garnered by the use of structure and the importance of a structure-based 
assessment. 

One such example is the experimentally observed interaction between LSM2 and 
LSM7 that was predicted here based on structural similarity to the 14-mer complex of 
SmAP3, an Sm-like protein from the archae Pyrobaculum aerophilum (PDB 1m5q). 
The sequence identities of LSM2 and LSM7 to SmAP3 are 23% and 2.4%, 
respectively. While interface templates with higher sequence identities were available 
(highest identities of 20.7% for LSM2 and 32.1% for LSM7 to chains G and A of 
PDB 1jbm, respectively), the 1m5q-based model was scored most favorably by the 
statistical potential. Another example of a known interaction predicted using a 
distantly related template interaction is that between the delta (GCD2) and beta 
(GCD7) subunits of the translation initiation factor eIF2B, predicted based on 
similarity to the structure of Ypr118w, a methylthioribose-1-phosphate isomerase 
related to regulatory eIF2B subunits. The prediction was made based on sequence 
similarities of 16% and 15%, respectively. 

3.4.3 Alternative binding modes 

The ability of the algorithm to choose the correct binding mode when multiple 
templates are available was illustrated by evaluation of three alternative binding 
modes that have been structurally characterized between porcine pancreatic -
amylase and camelid VHH domains (Fig. 10). The algorithm successfully chose the 
native binding mode for all three VHH domains. In addition, the statistical potential 
scores that were computed for the native binding modes exhibit the same rank-order 
as the affinity of the interactions measured by total internal reflectance (Lauwereys et 
al., 1998). 

However, this example is also cautionary in that each VHH domain had one non-
native mode that scored below the optimal Z-score threshold, though only the native 
modes produced negative raw scores (Results). In a large-scale predictive setting, if 
the native binding mode was not available as a template, the VHH domain would 
have been predicted to interact with PPA, but through an incorrect binding mode. 
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3.4.4 Network specificities 

A more difficult test of the method is the prediction of specificities within interaction 
networks between homologous proteins. To address this problem, the method was 
applied to predict the specificities within the Epidermal Growth Factor Receptor 
(EGFR) and Tumor Necrosis Factor  (TNF ) networks of ligand receptor 
interactions (data not shown). In both networks the method failed to recapitulate 
known binding preferences. Specifically, the rank order of the Z-scores for the 
assessed pairs did not correlate with known binding preferences. 

This error was not surprising. The randomization scheme employed in the Z-score 
assessment of the raw statistical potential score simulated alternative binding modes. 
In contrast, it was not designed or tested to determine specificities. This task is 
difficult as large training data sets of this type are not available. 

Rather than predicting specificities, the method presented here is applicable as a 
first pass for genome-wide predictions of protein complexes. The resulting predictions 
are then suitable for a follow up with more accurate computational methods, which on 
their own are not feasible on a large-scale. 

3.4.5 Extension of known co-complexed domain superfamilies 

Large protein complexes present unique challenges to structural characterization. 
Direct physical interactions have been experimentally observed between domains 
from 671 pairs of different SCOP superfamilies (excluding homo-family interactions). 
Domains from 1,555 pairs of different superfamilies have been observed to co-
complex in the same PDB entry. 420 of these pairs have also been observed in 
biochemical complexes. Through an extension process that merged predicted 
complexes containing different domains of a single target protein, an additional 100 
pairs of superfamilies were predicted to be co-complexed (Fig. 6(c), Fig. 11). 43 of 
these newly predicted pairs were also found in the experimental complexes. This 
extension procedure will be especially informative when applied to proteins from 
higher organisms with greater domain architecture complexity than S. cerevisiae 
(Bornberg-Bauer et al., 2005). 

3.4.6 Future directions 

Section 3 of this thesis presented a tool for the prediction and assessment of the 
composition and structure of protein complexes. The results suggest that the 
algorithm may in practice be useful in conjunction with additional biological data, 
such as protein localization and functional annotation. Through its integration with 
MODBASE, the method is applicable, in an automated fashion, to all genomes with 
sequences that are amenable to comparative protein structure modeling. The method 
will be especially informative for proteomes of species that have not been 
characterized to the extent of S. cerevisiae, either because the genomes have only 
recently been sequenced or because the organisms are difficult to analyze 
experimentally. 

In addition to proposing new protein complexes that have not previously been 
observed, the present study also enables a more rigorous, structure-based, analysis of 
experimental protein interaction data. For instance, the system could be used to 
distinguish complexes from temporally distinct interactions by assessing whether the 
interactions are sterically compatible or exclusive (Han et al., 2004). The predictions 
may also prove useful in guiding experiments that aim to probe the interactions, such 
as various site-directed mutagenesis and interaction design studies. 
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Comparative protein structure modeling is increasingly used to help bridge the 
resolution gap between electron cryo-microscopy (cryo-EM) density maps and atomic 
protein structures (Topf and Sali, 2005). Fitting of protein and protein domain models 
into density maps of large assemblies is already common, but depending on the 
resolution, the information encoded in the map is often insufficient for an 
unambiguous determination of the positions and orientations of the individual 
proteins (Fabiola and Chapman, 2005). Models of the complexes predicted here may 
provide additional restraints for a more accurate fitting of proteins into large 
complexes studied by cryo-EM and electron cryo-tomography (Sali et al., 2003; Aloy 
et al., 2004). 

As the number and size of experimentally determined structures of protein 
complexes increase, the number of complexes that can be predicted and modeled 
using these structures as templates increases correspondingly, expanding the 
structural coverage of protein interaction space (Aloy and Russell, 2004). In 
combination with other computational methods, the presented method will allow 
biologists to harness interaction information that has been experimentally determined 
for similar systems to inform their hypotheses or experiments. 
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