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Sammanfattning 
 
 
För att kunna förstå människor eller andra biologiska system behöver vi veta vad deras gener gör. 
Detta innebär dels deras kemiska funktion, och dels de villkor under vilka de aktiveras. Hur olika 
gener aktiverar eller avaktiverar varandra, det vi kallar det genetiska reglernätverket, är en av de 
centrala frågorna i den moderna biologin, både för att vi vill förstå organismerna i sig själva och 
för att kunna inverka på dem. Exempelvis dyker ofta situationen upp att ett läkemedel, kanske en 
cancerbehandling, har effekt men utan att vi är säkra på vilken gen den faktiskt inverkar på. För 
att kunna besvara sådana frågor behöver vi ett sätt att kartlägga det genetiska reglernätverket. 
 
Det har lagts fram metoder för att försöka göra detta. Dessa utgår från experiment där man 
systematiskt stör celler av den typ man vill studera genom att överuttrycka specifika gener. 
Därefter mäts hur mycket mRNA som produceras för varje gen och resultaten sätts samman till 
en datamängd som beskriver hur mRNA-nivåerna relaterar till varandra under olika villkor. 
Denna datamängd analyseras sedan bioinformatiskt, genom en algoritm som söker det 
reglernätverk som bäst motsvarar experimenten. Hur väl de här algoritmerna faktiskt fungerar är 
inte helt klarlagt. 
 
Detta arbete prövar ut sådana algoritmer för analys av genetiska reglernätverk. Detta görs genom 
att simulera ett stort antal experiment på virtuella system av gener under olika omständigheter. 
Därigenom kan algoritmens resultat jämföras direkt med de faktiska system som användes för 
simulationen, och på så vis kan dess effektivitet utvärderas. Här har fokuserats på två specifika 
sådana algoritmer, och det visas att de fungerar i princip. 
 
 

Examensarbete 20 p i Bioinformatikprogrammet 
 
 

Uppsala universitet augusti 2006 
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1 Introduction

1.1 Overview

This section (1) begins with an overview of its contents (1.1), then proceeds (1.2)
by describing the background and the underlying set of biological questions that
the techniques addressed in this thesis seeks to answer. Next follows a very brief
introduction to microarray technology (1.3) and to pattern recognition (1.4) as
they relate to this problem. The goals (1.5) of the project are described, and
finally (1.6) the report as a whole is outlined.

1.2 Background

In the so-called ”post-genomic” era following the completion of the Human
Genome Project, biology has increasingly shifted towards holistic or systemic
approaches, giving rise to the buzzwords of genomics, proteomics, peptidomics,
transcriptomics etc. These are all variations on a central theme; as we now have
access to almost every single component of the (human) biological make-up,
and increasingly powerful methods of measuring several quantities at once, we
may begin to study on a large scale how these components interact. A core
idea here is that biological responses cannot be adequatly modelled without
considering the setting in which they take place; understanding of a disease or
molecular mechanism does not come from studying a single gene, but rather a
set of interacting genes that together with the surrounding circumstances form
a whole.

Another key theme to the post-genomic era is that after the human genome se-
quencing provided a map of our genetic make-up, the post-genomic research will
provide an understanding of that map. Determining the functions of the 30,000
or so genes we possess is an enormous task. Because of the magnitude of this
endeavour, as well as the holistic understanding mentioned previously, system-
atic approaches must be taken here, entailing significant bioinformatic efforts.
By studying how several genes interact, it may be possible to draw conclusions
on their respective function; moreover, the process may to an increasing degree
be automated ([5], [14], [4], [15], [27]).
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Much of this work concerns gene regulation; that is, understanding not merely
what chemical or otherwise catalytic properties a gene product has, but why,
when and where it is expressed and as a result of what stimuli. The properties
are, of course, connected, so that it may be possible to draw chemical conclusions
concerning a protein by studying what situations cause it to be up- or down-
regulated and which its interactory partners are; or conversely, draw conclusions
on activating circumstances due to known catalytic function. Furthermore, it
stands clear that a full understanding of the gene regulatory network of an
organism would enable extensive predictions of what stimulus could produce
what effect, having significant consequences for treating medical conditions or
- if desired - changing how that organism functions and develops ([5], [14], [4],
[15], [27]).

One important medical area where gene regulatory information becomes partic-
ularly important is that of cancer treatment. Depending on the particularities
of a given cancerous growth it may or may not respond to particular therapies.
Determining what drugs are successful in a given case may be a lengthy and
costly process, and if it could be performed easier, it may mean that adequate
care can become more readily available. When a cancer is resistant to standard
therapies, often a screening assay is attempted, in order to find a suitable al-
ternative. If gene interactions could be more easily determined, this might not
be necessary, as then a direct gene target could be selected for that particular
cancer based on such understanding. Conversely, understanding of such regu-
latory networks would enable clarification of what the exact targets of a given
therapy or compound is, increasing our understanding of what to use where.
Such knowledge of drug mechanisms and targets would also help us direct tar-
geted research to handle, say, a variant cancer which is resistant to standard
treatments.

All of these reasons make the development of general techniques for large-scale
surveying of gene regulatory networks important. Lately, approaches combining
large-scale gene expression studies, using microarray (see below) or quantitative
polymerase chain reaction (qPCR) techniques with bioinformatics have been
suggested by some authors for such surveying. These perturbation techniques
build on causing several artificial externally induced changes to the gene ex-
pression patterns of the target systems, then estimating the actual regulatory
interactions from the reactions to such artificial changes. Perturbations may
include treating cell culture with various drugs, or adding inducible plasmids
to directly alter the expression of some mRNAs, or more drastic or complex
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methods such as gene deletions or RNA interference. ([9], [7], [24], [2], [14],
[23]).

1.3 Microarrays

To measure levels of gene expression, one readily accessible method is that of
the microarray. Using polymerase chain reaction techniques, the messenger RNA
content of a cell sample may be converted to a sample, similar in relative con-
centrations, of DNA, a cDNA sample. Use of specially tagged nucleotides in this
step enables making the cDNA sample fluorescent or otherwise making it easi-
er to measure its concentration. In basic microarray methodology (two-channel
system), this is done both for a perturbed system and an unperturbed reference
case, using different fluorescent dyes. For the next step, a microarray chip is used.
This is a surface with single-strand DNA sequences attached to it in discrete
spots corresponding to subsequences of specific genes, usually many thousands,
spanning large parts of the genome of an organism. Both dye-tagged cDNA sam-
ples (perturbed sample and reference) are added to the microarray and allowed
to hybridize to the immobilized single-strand nucleotide sequences in the spots.
Fluorescence intensity is then measured for both dyes (both channels) and the
ratio of intensities will correspond to the relative abundance of each transcript
between perturbed sample and baseline, and thus yield a measure of gene ex-
pression under those particular conditions. Single-channel techniques, such as
the Affymetrix array, allow measurement of absolute transcript concentrations
under ideal circumstances ([26]).

1.4 Data analysis and pattern recognition

Measuring the perturbed levels of gene expression across the system, techniques
ranging from simple numeric analysis to sophisticated machine learning or artifi-
cial intelligence approaches are taken to estimate the interdependencies between
expression levels. Thus - it is hoped - this should yield a mechanistic understand-
ing of the system ([9], [7], [24], [2], [14], [23]).

There are, however, several reasons to be cautious about the claims of such
methods. There are many hazards to pattern recognition. The basic problem
setup in this field is as follows: based on a series of observations, which we
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call the training set or the training experiments, we seek to adapt a model of
a given complexity so that it can predict not merely the training set, but any
set of observations made of the same real-world system. Since no measurement
of physical reality is ever perfectly exact, all such measurements are subject
to measurement noise. The more complex a model we choose - the more pa-
rameters it contains, the more complex types of system dynamics or behaviours
can it describe. However, unless we have a training set which is larger than the
minimum needed to determine the model parameters, the resulting model will
vary significantly with even small variations in the training set - in effect, we
will model the aforementioned measurement noise along with the actual sys-
tem dynamics. This is a form of what is known as over-fitting. While this may
in part be remedied by increasing the number of experiments underlying the
analysis, it might in practice only be possible to measure so much, leading to
an ever-present trade-off between not drawing incorrect conclusions because of
over-fitting and being able to capture interesting aspects of the behaviour of the
system ([28], [25]).

From this point of view, a systematic evaluation of perturbation methods is
clearly needed. The current work may be seen as a precursor to such an eval-
uation, investigating the ability of a particular set of perturbation methods to
retrieve correctly the interdependencies of simulated gene regulatory networks.
See ([12], [28], [21], [22], [25], [5]) for more information on simulated gene net-
works.

1.5 Project goals

The goal of this thesis is to determine the performance of perturbation methods
like the MNI approach put forward by di Bernardo et al ([7]) by applying it to
simulated systems based on that of Zak et al ([28]). To avoid jumping to conclu-
sions, the perturbation strategies are evaluated over a wide range of simulated
network models under different conditions. This partly avoids the potential risk
that a particular algorithm overperforms the others substantially in the con-
text of one net and one condition, while performing poorly in other cases and
conditions.

Another aspect of the study is to examine how much the performance of MNI
and NIR depend on the ”built-in” choices of model complexity that implicitly or
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explicitly result from their various assumptions of degree of interactions between
genes with regards to their transcrips. This is referred to as the connectivity of
the models and defined as the maximum number of genes whose expression
independently may affect the expression of any given gene; in effect, how many
intra-transcriptional influences any gene may be subject to.

1.6 Outline of this thesis

This first section (1) describes background and project goals, as well as an
introduction to project and report as a whole. The methods section (2) describes
the algorithms tested, the simulation schemes used to do so, and the experiments
performed by applying the former to the latter. The results of these experiments
are described in the following section (3), after which the results are summarized,
evaluated and discussed (4). The final sections are acknowledgements (5) and
source references (5). Source code listings for the MATLAB environment have
been omitted for space reasons, but are available from the author on request.
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2 Methods, materials and algorithms

2.1 Overview

This section (2) begins with an overview (2.1) of its contents, then describes
the setup and algorithms of perturbation experiment data analysis (2.2), first
a simple intuitive method (2.2.1) for comparison, then both the recently pub-
lished methods to be evaluated: MNI (2.2.2) and NIR (2.2.3) as well as some
variants (2.2.4) of these. Other methods, which are not analyzed here, are listed
in section (2.2.5). Next, the methods for evaluating (2.3) simulated data for
testing purposes are presented, after which follows a comparison of the model
assumptions of NIR and MNI (2.3.1) as well as their performance in published
studies thus far (2.3.2, 2.3.3).

The next section describes the simulations (2.4) made in this study, the basic
approach (2.4.1, 2.4.2) and the three main systems used to generate simulated
datasets; the circular cascade (2.4.3), the Zak system (2.4.4), and last the ran-
dom architecture system (2.4.6). Section 2.4.5 discusses how to represent the
connectivity of the Zak system in matrix form. The perturbation settings (2.5)
used to generate the datasets are then presented, both for single-gene perturba-
tion experiments (2.5.1) and for experiments where pairs of genes are perturbed
(2.5.2).

Following this, the next section (2.6) describes the basic experiment setup (2.6.1)
and lists the types of experiments the study entails; varying the initial values in
MNI (2.6.2), investigating performance of slightly different algorithm versions
(2.6.3), the dependence of the methods on measurement noise (2.6.4), experi-
ments aiming to test the ability of the methods to distinguish direct and indirect
responders (2.6.5), testing dependence on an internal method parameter (2.6.6),
and last applying MNI to the dataset used to test NIR as it was originally pub-
lished (2.6.7).
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2.2 Methods for analysing perturbation data

2.2.1 The expression change method (”subtraction method”)

Obviously, the simplest way of analyzing perturbation data in the form of
steady-state transcript concentrations with the goal of determining outside in-
fluences would just be to use the unperturbed steady-state concentrations as a
reference and assume that any (or at least the greatest) changes in expression
are most likely to result from external influence. Since such an approach cannot
distinguish between direct and indirect targets of a perturbation, this will pro-
duce a large number of false positives in the form of genes incorrectly deemed
to have been externally influenced. As such, this ”subtraction method” forms a
good reference method to compare more complex perturbation methods against.
Their performance is expressed as their capacity of distinguishing primary from
secondary targets.

2.2.2 The NIR method

The Network Identification by multiple Regression (NIR) method was laid forth
by Gardner et al ([9]). It attempts to study network connectivity and estimate
drug targets by making use not only of the actual steady state expression pat-
terns in each perturbation experiment but also information about which gene
has been perturbed and the magnitude of that perturbation. This effectively
limits the useful experiments to cases where the exact size of the perturbation
can be measured. In particular, it requires controllable plasmid insertions where
an additional marker gene is also expressed, and which can be measured to
determine plasmid activity.

A simplified model of transcript concentration interdependency is assumed. First
and most importantly, the system is reduced from the ’true’ system of tran-
scripts, translation products, protein dimers, external ligands and promotor-
transcription factor complexes to a system consisting only of mRNA transcripts.
This already means a great change in what kind of dynamics may be modelled.
In this reduced model space, transcript changes per time unit are modelled as
functions of transcript concentrations, yielding a system of differential equations.
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We define

xi =
RNAi,perturbed

RNAi,unperturbed
− 1 (1)

as the expression change for gene i in a given experiment. Let ui be the external
influence on gene i in this experiment, and aij the influence of transcript j on
transcript i. Then the model for experiment l = 1..M on a system of j = 1..N

genes becomes

d

dt
xil =

∑
j=1..N

aijxjl + uil (2)

In steady state ( d
dtxil = 0), this can be expressed in matrix form as

Aij = aij , Xil = xil, Pil = uil (3)

AX = −P (4)

With both the expression data matrix X and the external influence or pertur-
bation matrix P known, this becomes at first sight a standard computational
problem - solving the linear equation system for the unknown connectivity matrix
A. However, dimensionality is an issue; the number of experiments is unlikely
to be any larger than the number of genes and may in fact be smaller. This
makes it impossible to solve for the connectivity matrix A, unless additional
assumptions of constraints are introduced. NIR employs the relatively reason-
able assumption that the connectivity matrix is sparse, that is, that each gene
is influenced directly (as opposed to indirectly) only by a few other genes. This
means that on each row of A, there are a relatively large number of zero elements
corresponding to interactions that do not occur.

Under the assumption that at most k out of N genes influence the ith gene, the
corresponding row of A may have at most k nonzero elements, distributed in
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∑
j=1..k

(
j
N

)
ways (the number of ways in which up to k nonzero elements may

be distributed between N positions). For relatively small values of k, such as
three or four, it is computationally feasible to evaluate every such solution form
for each gene/each row of A and select the solution for which the least squares
error (the norm of the matrix AX + P , which is zero if and only if A, P and
X satisfy the AX = −P equation system) is minimized. Thus, the problem of
finding the connectivity matrix becomes reduced to a lower-dimensional form
and the risk of over-fitting decreases, while there may conceivably be a risk that
the behaviour of some genes may not be modelled in the reduced net model.

In the original NIR implementation, the optimal connectivity k is determined
using a relatively complex method. For values of k that a priori cannot be ruled
out (k = {3, 4, 5, 6} were chosen for the nine-gene case presented in ([9])), opti-
mal connectivity patterns are computed and the statistical significance of these
solutions were computed. The stability of the resulting models is tested, exclud-
ing connectivites for which the solution do not provide a stable system (i.e. that
cannot reach steady state). For the remaining possible values of k, a number
of simulation experiments are performed generating perturbation datasets for
random gene regulatory network of the same size as the dataset being analyzed.
NIR is then applied to these using each of the remaining possible values of k,
and the recovered models are compared with the true models used to generate
this simulated data. That connectivity is then selected for which the trade-off
between coverage (percentage of proper connections recovered) and false posi-
tives was smallest. This approach, while rigorous, requires a significant amount
of work as well as some measure of human arbitration. In the implementation
used here, we instead use cross-validation to determine the ideal value for k.
This is done as follows: for each experiment in the training set, take it out of
that set and use the remaining experiments to recover the system model. Then,
see how well the data from the experiment that was removed can be predicted
from the model that was created from the other experiments. If the model has
too high a connectivity, it will fit the training set very well but not the remain-
ing data, and so the average fit when doing this for every experiment in the
training set will be best for the optimal connectivity.

Note that the time required to evaluate
(

k
N

)
possible connection patterns to find

the optimal one may be considerable. There are
(

k
N

)
= N !

(N−k)!k! = N ·(N−1)...(N−k+1)
1·2...k

such patterns, and as the problem size N increases, this number grows quali-
tatively similarly to Nk which rapidly becomes untenable. In practice, it may
be possible to use a heuristic of some sort, finding one connection at a time,
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though this might not locate the truly optimal connection pattern.

For NIR, it is necessary to know the perturbation matrix beforehand. For ex-
perimental data, this is easiest done by setting up the experiments so that the
magnitude of the external influence can be measured directly. For the dataset
used in the NIR article, a controllable (metabolite-activated) plasmid is added
to the cells in each experiment which overexpresses one gene at a time, but
which also can express a marker gene. By measuring marker product concen-
tration in cells under the same plasmid activation conditions, the magnitude of
the perturbation is measured.

2.2.3 The MNI method

The Mode of action by Network Identification (MNI) algorithm was suggested
by di Bernardo et al ([7]) and builds on the NIR method as presented above. The
starting point is a training set consisting of steady-state mRNA concentration
measurements of the system in question under a variety of perturbating condi-
tions. These may be drug treatments, RNAi, plasmid additions, gene deletions
etc., and it is neither crucial that the exact perturbation details are known, nor
what genes they perturb, as long as in each case at least one gene among those
for which transcript concentrations are taken changes its expression, and that
these changes sufficiently span the space of transcript concentrations and the
dynamics of the system.

Initially, a reduced-space differential equation system as in the NIR method is
assumed. Let yi be the mRNA concentration of gene i, let di be the degradation
rate of transcript i, let nij be a regulation constant describing the influence of
transcript j on the rate of transcription of transcript i, and let pi be an external
influence on the rate of transcription of gene i. Then

d

dt
yi = pi

∏
j

y
nij

j − diyi (5)

It is worth noting that a multiplicative model of this kind does not allow for a
gene to be independently influenced by several others. If a parameter nij has
a value different from 0 (representing a transcriptional influence in either di-
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rection), then transcript j must have a nonzero concentration for transcript i

to change, even if there are other parameters nik that have values significantly
different from 0. While this is a correct model for systems where, say, the tran-
scription of gene i is controlled by a protein heterodimer JK of the proteins
J and K, it would not correctly model the system where the corresponding
mRNAs j and k both independently increased production of I.

At first sight, this would seem to make the model vastly different from that used
in NIR, to a degree that would make it impossible to simultaneously describe a
system in both models. However, a number of additional assumptions are made.
First, as in NIR only steady states are considered, that is, d

dtyi = 0. A baseline
case is defined where no external perturbations takes place, defining pi0 and yj0.
Next, the degradation constant di and the regulation constants nij are assumed
to be perturbation-independent. Then

pi0

∏
j

y
nij

j0 − diyi0 = pi

∏
j

y
nij

j − diyi (6)

yj

yj0
=

pi

pi0

∏
j

(
yj

yj0

)nij

(7)

which, employing the logarithm function, yields

bi =
∑

j

aijxj (8)

for bi = log pi

pi0
, xi = log yj

yj0
and aij = nij for i 6= j, aij = nij − 1 for i = j.

While this may be scaled differently, it does mean that the final model used in
the method is still linear in the space of logarithmed expression rate quotients.
Written in matrix form, for a set of N genes and M experiments, we have

AX = −P (9)
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where Aij = aij , Xik = xi for the kth experiment and, similarly, Pik is −bi for
the kth experiment.

At first glance, this problem appears computationally impossible. The goal here
is to obtain estimates of A and P only by means of the data matrix X. This
obviously cannot be done without additional constraints and/or assumptions.

The perturbation matrix P is postulated to be relatively sparse; for each gene
i of N genes present in M experiments, only in a few of those experiments
(the set perturbed(i), which together with the set unperturbed(i) form the full
experiment set 1..M) is it assumed to be perturbed. The expression measure-
ments for those experiments where gene i is directly perturbed is then X(:
, perturbed(i)), that is, all columns in X with indices contained in perturbed(i).
If these experiments can be reliably selected, then the remaining experiments
X(:, unperturbed(i)), that is, all columns in X with indices contained in unperturbed(i),
should correspond to the case

aiX(:, unperturbed(i)) = pi(unperturbed(i)) = 0 (10)

where ai and pi are the ith rows of A and P respectively, corresponding to gene
i, and pi(unperturbed(i)) are the elements of pi corresponding to experiments
where gene i is not deemed to be perturbed (and which therefore display the
effects of other genes on the expression of gene i in the absence of external
influences). This is well-defined, and in this way it is possible to compute, row
by row, a non-trivial solution for A for Equation 9. This requires determining
for which experiments a gene is directly perturbed.

We observe that a gene’s regulation of itself must be significant - if nothing else,
its transcript degradation will depend on its own concentration. Thus diagonal
elements of A are not identically zero. Effectively, for ai, the ith row of A,
one may assume any nonzero value for the ith element and solve for the rest,
provided an estimate of the corresponding row of P , pi. This is required to
avoid the trivial solution of no regulation where no external perturbations are
assumed.

To put this together, an initial guess of gene expression interdependencies (i.e.
the connectivity matrix A) is made. As in NIR the computations are performed
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separately for each gene. Under this guess, external perturbation estimates are
computed and a sparsity condition is applied, that is, just as stated above, the
perturbation matrix is required to be sparse, reflecting the assumption that each
gene is only directly affected in a small fraction of the experiments. This con-
dition can be more explicitly stated as follows. Let the algorithm be applied to
data from M experiments on N genes. Within a given iteration of the algorithm,
there is a hypothetical solution A = Ae which satisfies AeX = −P to a degree
for the matrix P = Pe = −A−1

e X. Let ae,i and pe,i be the row of Pe and Ae

that correspond to the ith gene. Let ae,ij and pe,ij be the elements of these rows
corresponding to the jth experiment. By the sparsity condition, we assume that
for gene i, experiment index j belongs in the set unperturbed(i) if

|pe,i(j)| < σ · max
1≤l≤M

(|pe,i(l)|) (11)

holds. The parameter σ = 0.25 was chosen by the authors of the MNI method
empirically, from unpublished experiments on simulated data ([7]). That is,
experiment j is assumed not to involve external perturbation of gene i if pe,i(j)
is at most 25% of the maximal external perturbation that gene i is subjected
to. As stated above, this condition is applied to select the experiments where
external perturbations are assumed not to occur, after which Equation 10 is
applied to determine Ae, row by row. This solution is used to recompute the
external perturbation estimates Pe yet again using Equation 9, these are culled
again using Equation 11, and the process is repeated until neither Ae or Pe

change significantly between iterations, at which point A = Ae and P = Pe is
taken as the final solution.

The initial connectivity guess Ae0 appears to be relevant to the results. As this
guess initially is used to calculate initial guess for external perturbations, this
first step can be seen either as an initial guess at connectivity or as an initial
guess at external influences. In the seminal paper for the MNI method, it is
suggested that an initial guess at no inter-gene connections at all, only negative
self-feedback (P = X, A = −I) would work well. Remarkably, this method is
not used in the actual tests of the algoritm performed by the authors ([7]); there,
instead, the initial guess for perturbations is taken as P = (XXT )−1X rather
than computed from an initial guess at connectivity, after which subsequent
rounds of the algorithm proceeds as per the above ([8]). As will be seen below,
this latter initial condition works much better.
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2.2.4 Variant MNI methods

There are several immediate ways in which the MNI method could be altered
and, possibly, improved. As it is, the MNI algorithm applies a sparsity assump-
tion to the perturbation matrix P in each iteration, assuming that a gene is
only externally influenced in a fraction of the experiments in the training set.
As sparsity may also reasonably be assumed for the connectivity matrix A (as
the number of direct influences on a gene should be limited), a logical step
would be to similarly assume that only those elements in each row of A that
are largest in an absolute-value sense represent actual interactions. Our new al-
ogorithm candidate therefore applies another sparsity condition to both Ae and
Pe: for each row ae,i, pe,i, only the largest (in the absolute value-sense) 50% of
the elements represent significant connections or perturbations. This is termed
the 50% fixed-sparsity variant of the MNI method. In the plots below, it is listed
as MNI - enforce 50% sparse A/P.

In another similar variant we assume that the perturbation matrix is not only
sparse but a column-permuted diagonal matrix, i.e. that no gene is perturbed
in more than one experiment. This is a most limiting and artificial assumption,
but as it holds in many of the simulation studies, it is a way of evaluating
MNIs performance under artificially ideal assumption. We term this the sparse
P variant. In the plots below, it is listed as MNI - enforce sparse P.

Most importantly, the initial guess at the connectivity matrix A at the start of
the first iteration of the algorithm, Ae0, appears relevant. In the above section
are presented two options, either that described in the MNI seminal article ([7])
or that actually used in the implementation of those authors ([8]). In this thesis,
both of them were evaluated. The (P = X, A = −I) initial guess is listed in the
plots below as MNI - alternate start guess 1 while the P = (XXT )−1X initial
guess is listed simply as MNI.

We also try out an additional starting guess (Ae0 = −XT (XXT )−1, Pe0 =
−Ae0X) which, we postulate, may lie closer to the true connectivity and per-
turbations in that it fulfills Equation 9 already as the algorithm starts (though
it need not be the optimal such solution), thus avoiding local minima or con-
verging faster. This initial starting guess is listed in the plots below as MNI -
alternate start guess 2.
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2.2.5 Other perturbation methods

There are also entirely different approaches to analyzing perturbation data.
These include boolean networks, Bayesian methods, and other approaches. Due
to the results reported for MNI, investigating the performance of that family of
methods has been the primary priority of this work, and therefore due to time
constraints the other alternatives will not be covered here ([7], [9], [23], [19],
[14], [16], [15], [27], [18], [2], [11], [24], [5]).

2.3 Evaluating the performance of perturbation methods

In their 2005 paper, di Bernardo et al ([7]) demonstrates their method purely by
virtue of applying it to a composite dataset of yeast expression data and there
comparing it to some standard methods of compound target detection. The re-
covered system model is neither presented nor compared to any known ”actual”
network model, which is not unexpected as the biological system investigated is
large, complex and not fully understood. However, this means that this aspect
of MNI performance does not seem to have been tested exhaustively.

2.3.1 Model differences

As presented above, MNI and NIR use quite different models. While both de-
scribe gene expression by a system of linear differential equations, one uses
expression rates and the other logarithms of expression rates. In this work, we
seek to simulate data according to some model, then retrieve it using either algo-
rithm and compare the retrieved model with that used to generate the dataset.
If the results are to be possible to compare between the algorithms, they must
assume the same type of model, which they obviously do not.

Our solution is to perform all trials with slightly modified versions of the MNI
and NIR algorithms. While the original methods assume different types of mod-
els, the core of the algorithm - arguably the part which we are interested in
evaluating the performance of - simply solves a linear equation system of the
form AX = −P . Further, with the increasing popularity of single-channel-type
systems for expression measurement, we are interested in method performance
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when data is supplied as absolute concentrations.

We simulate data according to

A(Y − Y0) = AX = −P (12)

for connectivity matrix A, perturbation matrix P , absolute steady-state tran-
script concentrations Y and absolute steady-state transcript concentrations Y0

in the absence of perturbations. Matrices A, X and P then satisfy the form
AX = −P which is required for our adapted MNI and NIR variants, and the
resulting solutions for A and P can be directly compared with the true values,
enabling simultaneous evaluation of MNI and NIR on the same dataset.

2.3.2 Performance in published studies - NIR

The NIR method has been applied to simulated data with decent results ([6]).
There are also published results ([9]) where it is applied to the SOS subnet-
work of genes in E. coli, a system of nine genes perturbed using controllable
overexpression by plasmids. In these tests, much of the network but not all is
recovered, to the degree that the actual connections are actually known. See
([17]) for more information on the yeast genomic regulatory network.

A simulation study was also performed for NIR ([6]). In that study, gene net-
works of 100 genes with 10% sparsity were used to generate expression data
using a setup similar to that of the current work, and connectivity matrix re-
covery was measured. Results from this were positive as to NIRs performance.

2.3.3 Performance in published studies - MNI

In the Nature Biotechnology article ([7]) where MNI is first presented, it is ap-
plied to a set of 6000 yeast gene expression levels over a total of 515 experiments.
These are taken from two compendia of such results, the Hughes compendium
([13]) and the Mnaimneh data ([20]). From the combined dataset, a model for
the yeast regulatory network over these genes were computed. Among the ex-
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periments of the Hughes compendium were 11 promoter insertions, and the
computational model was then used to calculate the corresponding perturba-
tions for these 11 experiments, ranking each gene on how likely it was to be the
direct target for that particular perturbation experiment - in effect, trying to
perform a molecular mechanism study based only on expression data.

Ideally, the genes in question should rank highest, and this was the case for 9 of
these 11 experiments. Furthermore, when rankings were compared with those
acquired using z-score of expression change (a technique that takes variance into
account to determine significance of the results), the true gene was consistently
ranked higher with MNI than when using z-scores.

The model was also used to rank gene targets for fifteen experiments where
compounds were added, nine of which have known targets. For these nine, MNI
did not correctly identify the target genes, but for seven of the nine, the correct
pathway was overrepresented among the fifty highest ranking genes. This is to
be expected as this type of drug hardly affects transcription directly as with a
promoter insertion, and although performance was not stellar, identification of
the proper pathway may be useful in its own right. ([7])

2.4 Simulated systems

2.4.1 Simulation approach

This work focuses primarily on simulated data, both because it is available in
unlimited amounts and because it lets us control all parameters directly. The
works of di Bernardo et al. ([7]) complement this by providing a trial of MNI
on a biological dataset, and as a final experiment, this study also applies MNI
to the dataset used in ([9]) to evaluate the NIR method.

2.4.2 Linear system model

To simulate a system of genes, a linear model is assumed. We consider transcript
concentrations yi close to a perturbed or unperturbed steady state yi0 with
perturbations ui. Then
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d

dt
(yi − yi0) =

d

dt
xi =

∑
aij(yj − yj0) + ui =

∑
aijxj + ui (13)

which in the above matrix form becomes

AX = −P (14)

satisfying the basic form for the MNI and NIR algorithms ([9], [7]). The default
unperturbed steady state yi0, i = 1..N can be set to arbitrary nonzero values. In
the simulations, these parameters are randomized (distributed evenly between
0.5 and 1.0) for each run to avoid artifacts of steady-state choice.

Simulations are performed in the numerical programming environment MAT-
LAB (Mathworks, Inc.) using its in-built least squares solvers to calculate X

under different choices for A and P . To ensure the system is stable (i.e. that a
set of steady-state transcript concentrations as per the above actually exists) the
eigenvalues of A are investigated. If these all have strictly negative real parts,
steady-state concentrations exist and the system is stable ([3]).

The result is a matrix X of transcript concentration deviations from unper-
turbed steady state, a true system connectivity matrix A, and a true pertur-
bation matrix P . Corresponding estimates Ae, Pe are based on X using the
algorithms tested, then compared to the true matrices to calculate recovery
efficiency.

2.4.3 Cascade system

This network, simulations of which form the majority of this work, is a circular
negative self-feedback cascade loop of ten genes, that is, each gene positively
regulates the next with the last doubling back to the first. Also, each transcript
negatively regulates its own transcription. Two additional genes with negative
self-feedback only are also included to represent genes included in the experi-
ment but with no regulatory connections to the main system. This is done to
ensure that independent genes included in the experiment will not obstruct the
analysis of any connected systems present. A graphical representation of the
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connectivity matrix is shown in Figure 3, with the same matrix presented in
detail in Table 1. Figure 2 shows the time progressions of the system for twelve
different constitutive plasmid perturbations, one for each gene respectively, i.e.,
the step responses of the system.

The idea of this is to set up as simple a system as possible to function like a
benchmark. Furthermore, the following strategy creates a very simple situation
where only an algorithm that can distinguish direct and indirect responders may
correctly retrieve the model. To obstruct reconstruction, an additional regulato-
ry connection is added - one gene (1) has a variable positive regulatory influence
on a non-adjacent gene (6) in the cascade. This is designed to display the sim-
plest conditions under which the näıve expression-rate change method will be
unable to correctly estimate the system parameters. The reason for this is that,
with a large enough amplitude for this secondary regulatory motif, perturbation
to gene 1 will increase the concentration of gene 6 even more, and from steady-
state concentrations only, gene 6 will appear to be the most perturbed. Thus,
estimation of regulation on gene 1 will be obstructed, and this difficulty will
increase as the amplification parameter (that is, the element of the connectivity
matrix which describes the effects of transcript 1 concentration on transcript 6
expression) does. Figure 1 shows the architecture of this system.

For analyzing the results of the algorithms on this system as the amplifica-
tion factor increases, recovery scores are taken separately for gene 1 and the
remaining genes. Comparing these scores yields a measure of how sensitive to
this particular situation each method is, in effect, how well the method may
separate primary and secondary perturbation targets.
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Figure 1: Network architecture of the circular cascade system with amplification
factor = 0. Arrows represent connections, with signs corresponding to whether
or not the influence increases or decreases expression.
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Figure 2: Response of circular cascade system presented in Figures 1 and 3
and Table 1 to perturbation of each gene (1 − 12) in turn. Note that for most
experiments, more than one gene changes expression, as a result of the system
connectivity. Each graph represents a single possible perturbation experiment,
in which one of the genes is given a constant overexpression from time t = 0
onwards. Thus, these are the step responses of the network. Graphs are ordered
from left to right, row by row, in order of increasing gene index.
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Figure 3: Circular cascade system connectivity (A) matrix. This is a graphical
representation, in which red fields correspond to positive values, blue to negative.
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-2.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.750 0.000 0.000
0.290 -2.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.330 -2.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.370 -2.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.410 -2.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.450 -2.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.490 -2.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.530 -2.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.570 -2.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.610 -2.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -2.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -2.000

Table 1: Circular cascade connectivity matrix (A) without cross-system connec-
tions (amplification factor = 0).

2.4.4 Full (Zak) system

To contrast with the previous system, a more complex simulation approach is
also used. Presented by Zak et al ([28]), this system is pieced together from
common regulatory motifs and with parameter values resembling biological re-
ality reasonably well. It is quite complex and works using an expanded system
containing promotor concentrations, transcripts, translation products and trans-
lation product dimers (hence the term ”full” system). This system is included
mainly to put the results from the linear simulations in context, to investigate
whether the results hold for a more realistic system. The original implementa-
tion also employs a hybrid stochastic-deterministic model to simulate the effects
of very low transcript concentrations, but this was not used in the current im-
plementation as we focus on the effects of network architecture. Figure 4 shows
the basic network architecture of the Zak system as used in this study.

When perturbing the Zak system, perturbations are made ten times as high as
with the linear systems (in each time step while simulating a given experiment,
a value of 1.0 is added to the transcript concentration of the gene being per-
turbed), to compensate for the different scale of this system. Figure 5 shows the
dynamics of the Zak system when simulated from unperturbed steady state un-
der perturbations to each gene in turn. As above, this was done using MATLABs
built-in methods for stepwise integration.
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-0.0599 -0.0010 -0.0000 -0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0001 -0.0220 -0.0000 -0.0000 0.0000 0.0932 0.0000 0.0000 0.0000 0.0000
0.0021 -0.0010 -0.0620 -0.0819 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
-0.0000 0.0000 -0.0000 -0.0620 0.0000 0.1009 0.0000 0.0000 0.0000 0.0000
0.0000 -0.0000 -0.0000 -0.0005 -0.0028 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0620 0.0000 0.0000 0.0000 0.0000
0.0000 -0.0000 -0.0041 0.0000 0.0000 -0.0000 -0.0620 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0016 -0.0010 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0194 0.2847
0.0000 -0.0000 -0.0041 0.0000 0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0620

Table 2: Connectivity (A) matrix equivalent for the Zak system, as determined
by the method in Section 2.4.5.

2.4.5 Estimating connectivity for the full system

Note that as the full system builds on complex relationships between many
different molecular species to determine expression, there is no reason to expect
transcript concentrations to conform to an equation of the form AX = −P

except as a Taylor expansion ([1]) around a given point in concentration space.
However, as we are interested specifically in steady-state behaviour, we can
linearize the system by Taylor expansion around its steady state, upon which
the resulting connectivity matrix A and the linear equation system A(Y −Y0) =
AX = −P will describe the system when the transcript concentrations Y are
close to the steady state Y0. In this region, then, it is possible to compute
such a connectivity matrix equivalent, then compute connectivity matrices via
MNI and NIR and compare these with the connectivity matrix equivalent to
determine algorithm performance on the full system close to a steady state.

To compute this connectivity matrix equivalent around a steady state, we use
the following approach, as described in ([10]). We begin by stating the Implicit
Function theorem.

Assuming that the following M identities exist.


F1(x1, x2, ..., xN , z1, ..., zM ) = 0
F2(x1, x2, ..., xN , z1, ..., zM ) = 0
... ...

FM (x1, x2, ..., xN , z1, ..., zM ) = 0

(15)
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Let J be an M × M matrix for which it holds that

J =


∂F1
∂z1

∂F1
∂z2

... ∂F1
∂zM

∂F2
∂z1

∂F2
∂z2

... ∂F2
∂zM

... ... ... ...
∂FM

∂z1

∂FM

∂z2
... ∂FM

∂zM

 (16)

Furthermore, let J be nonsingular at the point (xo, zo). By the Implicit Function
Theorem, the system in Equation 15 defines the following set of locally valid
unique functions

zn = gn(x1, x2, ..., xN ) n = 1, 2, ...,M. (17)

which can be derived implicitly as

DxF =
∂F
∂x

+
∂F
∂z

(x,g(x))
∂g(x)

∂x
= 0 (18)

Consider the network dynamical model

dxm

dt
= fm(xm,xp,xpm) (19)

dxp

dt
= fp(xm,xp,xpm) (20)

dxpm

dt
= fpm(xm,xp,xpm) (21)

for mRNA concentrations xm, protein concentrations xp, and promoter con-
centrations xpm. Further, we assume that the system is in steady state, and
hence

0 = fp(xm,xp,xpm) (22)
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0 = fpm(xm,xp,xpm) (23)

Let F = [fp fpm]T . For Np protein equations and Npm promoter equations, we
assume that the (Np + Npm) × (Np + Npm) matrix J is non-singular, then by
the Implicit Function Theorem, this means that Equations 22 and 23 implicitly
defines the Np locally unique functions xp = ξp(xm) and the Npm locally unique
functions xpm = ξpm(xm). By making use of implicit differentiation DxmF = 0,
we may then acquire their derivatives.

Hence, for small perturbations of xm from its steady state value, implicitly
well defined perturbed values of the protein and promoter concentrations exist,
which can be determined from the vector valued functions ξp and ξpm.

We then define

f̃m(xm) = fm(xm, ξp(xm), ξpm(xm)) (24)

and may then describe the local mRNA dynamics around the steady state as

dxm

dt
= f̃m(xm). (25)

By Taylor series expansion ([10]) of these functions around the steady state, we
have

dxm

dt
= A(xm − xo

m). (26)

for A = ∂ f̃m
∂xm

|xm=xo
m

= ∂fm
∂xm

+ ∂fm
∂xp

∂ξp

∂xm
+ ∂fm

∂xpm

∂ξpm

∂xm
|xm=xo

m
.

Define zm(t) = xm(t) − xo
m, then apply, as in a perturbation experiment, an

external constitutive perturbation u on mRNA transcription. Local dynamics
can then be linearly approximated as
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dzm

dt
= Azm + u. (27)

which yields an equivalent of the connectivity matrix A around a steady state
even for a system where no such matrix is explicitly defined. By applying this
algorithm to the simulated system, where derivatives may be computed numer-
ically using difference quotients at any given point, this connectivity matrix
equivalent is computed and used as the closest approximation of the ”true” sys-
tem for evaluating perturbation method performance on the full system. Figure
6 shows a graphical representation of this matrix, which is presented in Table
2.

2.4.6 Random architecture system model

Another simulated model uses a random architecture, vaguely similar to the Zak
system ([28]) in type, for each experiment. This is done to see how well results
from the cascade system holds up in simulations of more complex linear models.

The random architecture model assumes the following: the system includes be-
tween 10 and 12 genes. Of these, 2 to 5 are ”hubs”, which influence several other
genes in either positive or negative direction. The rest form cascades moving off
from the hubs. Parameter values are on the same scale as for the circular cascade
system above.

Figure 7 shows an example architecture obtained this way, Figure 8 a graphical
representation of its connectivity matrix, which is presented in Table 3, and
Figure 9 show the result of perturbing this system from unperturbed steady state
one gene at a time. As above, these results were obtained by using MATLABs
built-in methods for ode solving.
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Figure 4: Network architecture of the Zak system. Arrows represent connections,
with signs corresponding to whether or not the influence increases or decreases
expression. The gray arrows represent sequestering of gene products A and B
into the heterodimer form AB.
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Figure 5: Response of the Zak system to perturbation of each gene (A, B, C,
D, E, F, G, H, J, K) in turn. Note that for most experiments, more than one
gene changes expression, as a result of the system connectivity. Each graph
represents a single possible perturbation experiment, in which one of the genes
is given a constant overexpression from time t = 0 onwards. Thus, these are the
step responses of the network. Graphs are ordered from left to right, row by
row, in order of increasing gene index.
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Full (Zak) system connectivity matrix equivalent
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Figure 6: Connectivity (A) matrix equivalent for the Zak system, as determined
by the method in Section 2.4.5. This is a graphical representation, in which red
fields correspond to positive values, blue to negative.
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Figure 7: Sample random architecture system connectivity. Arrows represent
connections, with signs corresponding to whether or not the influence increases
or decreases expression.
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Sample random architecture connectivity matrix
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Figure 8: Sample random architecture system connectivity. Red fields corre-
spond to positive values of the matrix, blue to negative.
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Figure 9: Response of the sample random architecture network of Figure 8 and
Table 3 to perturbation of each gene (1−12) in turn. While in most experiments
more than one gene actually reacts to the perturbation, because of the system
connectivity, this is hard to see in the graph as the connections in this particular
example are relatively weak. Each graph represents a single possible perturba-
tion experiment, in which one of the genes is given a constant overexpression
from time t = 0 onwards. Thus, these are the step responses of the network.
Graphs are ordered from left to right, row by row, in order of increasing gene
index.
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-1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 -0.952 -0.040 0.000 -0.027 0.000 -0.042 0.000 0.000 0.000 0.000 0.000
-0.034 0.000 -1.045 0.000 0.000 0.000 0.000 0.013 0.000 0.000 0.000 0.000
0.044 0.000 0.037 -1.000 0.000 0.000 -0.027 0.000 0.000 0.000 0.000 0.000
0.000 -0.040 0.000 0.000 -1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.021 -0.026 -0.029 0.000 -1.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 -0.097 0.034 0.011 0.000 0.000 -1.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.087 0.000 0.000 0.000 0.000 -1.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.024 0.000 0.000 0.000 0.000 -1.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 -0.034 0.000 0.000 0.000 -1.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000

Table 3: Sample random architecture connectivity matrix (A). This matrix is
the same as that visualized in Figures 7, and 8 and the perturbation response
of which is shown in Figure 9.

2.5 Perturbation sets

2.5.1 Single plasmid-type perturbations

The simplest form of experiment for the above systems involves perturbing each
gene exactly once, in as many experiments as there are genes. The perturbation
matrix will be some multiple of the identity matrix, for these simulations simply
the identity matrix (i.e. the amplitude of each perturbation is 1.0). This would
involve making a specific plasmid perturbation to every gene in a set of interest,
perhaps those found to be differentially expressed under some condition or in
some cell type. By including all genes once in this perturbation set we ensure
that, for the purposes of this work, the space of genetic dynamics is spanned by
the perturbations. In the experiments performed here, columns of the pertur-
bation matrix are randomly permuted to avoid possible method artifacts, such
as a method incorrectly favouring the identity matrix.

2.5.2 Pairwise plasmid-type perturbations

For comparison, another possibility is perturbation of every set of two genes.
This would reflect more complex external influences as well as more experiments
in total. In this study, what is done is simulating the system using the single per-
turbation set above, then trying to recover the network model from the results.
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Then, the system is simulated using every set of perturbation of two different
genes simultaneously, and the ability of the previously taken connectivity matrix
to recover these perturbations is investigated. This is done in order to ensure
that the methods can operate even when test set and training set do not over-
lap. Obviously, the pairwise plasmid-type perturbation set represents far more
experiments than would ever be performed in a real example, and is used here
to investigate method performance under ideal circumstances. Just as for the
single plasmid-type permutation set, columns are randomly permuted for each
run.

2.6 Experiments

2.6.1 Experiment setup

The basic setup of the experiments performed is as follows: for a given simulated
system from those described above, apply either single or pairwise perturbations
and simulate to steady-states. Then separate the experiments into training and
test sets; in the case of single plasmid perturbations, we are interested primarily
in the application of the method for charting regulatory networks and thus esti-
mate the connectivity from the training set, then use this estimate to estimate
the external perturbations used to generate the training set. In the case of pair-
wise plasmid perturbations, we use a training set of single-gene perturbation
experiments to estimate connectivity, then use this estimate to try to recover
the external perturbations used to generate a test set, which was generated us-
ing every combination of pairwise gene perturbations. By doing this, we seek to
ensure that the method does not require the test set experiments to be present
in the training set.

In each experiment, some parameter (such as measurement noise), which we call
the obstructing factor, is varied which is expected to make system recovery more
difficult. As this parameter increases, decrease in performance is monitored both
for recovery of connectivity and recovery of external perturbations, across the
various methods described above. The purpose of this is to allow comparisons
of the methods under a variety of obstructing values of parameters.

For every value of the parameter which is varied, twenty simulations are made,
each using random unperturbed steady state values (evenly distributed between

37



0.5 and 1.0). These are analyzed independently and mean and variance for the
results are taken.

To represent common laboratory practices as well as estimate variance of mea-
surements, all simulations are made in triplicate, and then averaged. Data is also
preprocessed as per the ([7]). In test runs, it was found that for these datasets,
use of z-score statistics (that take into account variation in the data) made little
difference for the results, and hence, results using these are omitted.

2.6.2 Dependence on initial guess

Several variants of MNI are used, with different initial guess at the connectivity
matrix prior to the first iteration of the algorithm. These are in effect treated as
different methods, and as such, the comparison is made in each of the following
experiment setups. Details of these variants (listed in the plots as MNI - alter-
nate start guess 1 and MNI - alternate start guess 2) are described in section
2.2.4 above.

2.6.3 Other MNI variants

The previously described variants using either fixed 50% sparsity for connectiv-
ity and perturbation matrices (listed in the plots as MNI - enforce 50% sparse
A/P) or assumes at most one experiment perturbs each gene (listed in the plots
as MNI - enforce sparse P) are likewise applied to the datasets. See section 2.2.4
for details.

2.6.4 Dependence on noise

To investigate the effect of stochastic measurement noise on system recovery,
different degrees of noise was used. This is stochastic (Gaussian) noise, where
for each measurement, a percentage of the average transcript concentration of
the dataset is multiplied with a normally distributed pseudo-random number
between −1.0 and 1 and added to the measurement to simulate measurement
errors of all kinds. The analysis is made for the above circular cascade system,
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with the amplification factor set to 0 (that is, for a pure circular cascade) using
both single and pairwise perturbation sets, as well as for the random architecture
and full systems using single perturbations. This not only yields a comparison of
the effects of increasing noise on the different methods, but also for the different
types of system. The noise percentage is varied between 0% and 400% of the
average transcript concentration.

2.6.5 Dependence on amplification factor

For the linear circular cascade system, system recovery should become more
difficult using expression changes only as the transcriptional influence of gene 1
on gene 6 becomes stronger, just as described in section 2.4.3. By varying the
corresponding element in the generating connectivity matrix (that is, by increas-
ing the amplification factor) from zero upwards (while remaining within system
stability), the various methods can be compared with respect to this effect. The
core issue is whether the methods tested for recovering the perturbation matrix
can outperform the alternative of just looking at expression level change for the
particularly obstructed gene A.

2.6.6 Dependence on MNI σ factor

The MNI algorithm contains a sparsity assumption which is regulated by a
parameter σ. In the original MNI article it is stated that simulations have shown
a value of σ = 0.25 as suitable, but this is not described or motivated in any
detail. To clarify the effects of varying the σ parameter, σ is allowed to vary
between 0.0 and 1.0. For each value of the parameter, 20 datasets are simulated
for each of the three networks described above, without any measurement noise
or other obstructing factors, and MNI is applied to the dataset using that value
for the σ parameter.

2.6.7 Result corroboration MNI - NIR

Finally, the present implementations of the MNI and NIR methods were applied
to the dataset used in the original NIR article ([9]). The recovered matrices are
compared to those actually used as well as the results from the NIR method.
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This data was acquired by Gardner and associates by growing E. coli cells with
controllable plasmids added as per the requirements of the NIR method, then
measuring both transcript concentrations in steady state for the nine genes of
the SOS pathway and the magnitude of the plasmid perturbation.
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3 Results

3.1 Overview

This section (3) begins with an overview of its contents (3.1), then proceeds
(3.2) by describing the methods for evaluating the perturbation data analysis
methods on simulated data (3.2.1) as well as describing how the results are
presented (3.2.2). Following this, the actual results are shown, experiments for
testing method dependence on measurement noise (3.3) and their interpretation
(3.3.1), experiments for testing method capacity to distinguish direct from in-
direct responders (3.4) and their interpretation (3.4.1), experiments for testing
the dependence of MNI on its internal σ sparsity parameter and their interpre-
tation (3.5.1), and last, application of MNI to the dataset on which NIR was
originally tested (3.6) and an interpretation (3.6.1) of these results.

3.2 Evaluating results

3.2.1 Matrix comparison

There are several ways in which methods considered in this thesis may be eval-
uated. All rely on applying them to known networks, then comparing estimated
results to the true nets.

To evaluate network reconstruction, one may either look at the connectivity
matrix A itself, or see to which degree the estimated interdependency matrix
may be used to retrieve the actual perturbed steady states from the associated
perturbation matrix. The former is interesting in that it reflects how well the
algorithm can recover system characteristics in themselves, and so indicate its
usefulness as a tool to study genetic regulation for its own sake. The latter is
interesting as it shows the algorithms usefulness in molecular mechanism detec-
tion and similar applications. Performance in these two respects is connected;
perfect recovery of the A matrix would entain perfect recovery of the P matrix.
However, a method could conceivably be better at predicting external influences
than regulatory connections.
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Both the perturbation ranking matrix and the connectivity matrix are, at least
for MNI, potentially differentially scaled row-wise ([7]). That is to say, the MNI
output is a connectivity matrix which in the ideal case differs from the actual
matrix A only by multiplying each row by some constant. Thus, it is not a priori
certain that the element size-order in a column reflects the underlying biology.
The comparisons between estimate and reality are thus made on the basis of
ranking within rows. The highest elements in a given row are likely to represent
actual connections or influences.

When comparing true and estimated perturbation and connectivity matrices,
the following approach has been used. Let Dt be the true N ×M matrix, which
we assume to be relatively sparse. Let D be the matrix computed by the algo-
rithm we test. Let di, dti be the ith row of these matrices. Let ni be the number
of nonzero elements in dti. Let ui be a vector with the elements of di ordered
by absolute value, and define vi so that ui(j) = di(vi(j)) for j = 1..M - that is,
vi are the size-ordered indices for the ith row of the computed matrix. Define
δ(a, b) as 1 if a, b are both nonzero and have the same sign, 0 otherwise. Then,
our performance metric e, or the average recovery score, is defined as

e =
∑

i=1..N

∑
j=1..ni

δ(ui(j), dti(vi(j)))
ni

(28)

That is to say, e is the proportion of elements in matrix D that correspond
to actual influences or connections in matrix Dt that are neither outranked by
other elements in matrix D nor assigned the wrong sign. To understand the
rationale behind this metric, consider a row of Dt. This row will contain a small
number of nonzero elements. As we seek to capture the existence and type of
the connections or perturbations represented in Dt, rather than their size, we
have no way of ranking these internally, but they can be singled out as those
indices of this row that correspond to actual connections or perturbations. For
the corresponding row of the recovered matrix D, we note that the elements of
that row can be ranked according to absolute value. If the elements of that row
that rank highest are the same elements as the nonzero elements in this row of
Dt, and also have the same signs as these, then the highest-ranking elements
of this row of D captures the connections or perturbations represented by the
corresponding row of Dt well. The metric e measures the degree to which this
similarity of representation exists.
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This metric ranks from 0.0 to 1.0, for complete recovery of matrix characteristics.
This means that type of regulation/perturbation is considered (in the form of
its sign), but not relative size of such influences. This recovery metric is used
in all method trials. Obviously, this approach only makes sense when the true
system matrices are sparse. In these experiments, it is sometimes of interest to
compare performance between genes or sets of genes. In this case, the metric is
simply taken separately over the corresponding submatrices, that is, for the two
sets of genes I1 and I2 we have

e1 =
∑
i∈I1

∑
j=1..ni

δ(ui(j), dti(vi(j)))
ni

, e2 =
∑
i∈I2

∑
j=1..ni

δ(ui(j), dti(vi(j)))
ni

(29)

In particular, this is done to separate the performance on one particular gene
out from the rest.

3.2.2 Result presentation

Almost all of the experiments performed yield results of a similar nature - for
each method there is a series of average recovery scores as the obstructing factor
increases. In the experiments performed using the circular cascade system with
increasing amplification factor, separate such scores exist for gene 1 and the
remaining genes, and for all experiments, separate scores are taken for connec-
tivity and perturbation recovery. Most graphs have logarithmic x-axes as the
obstructing parameter has been taken over a logarithmic range.

To display these results, scores are plotted as a function of the obstructing
factor. To interpret these graphs properly, note the comparison on one hand
between methods, including the benchmark of the subtraction method, on the
other hand, for the amplification factor experiments, between gene 1 (which
becomes harder to recover parameters for as the amplification factor increases)
and the other genes.

For comparing the results from the original NIR paper ([9]) with the results
from MNI applied to the same dataset, the recovered matrices are presented
but also graphically displayed as cell graphs.
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3.3 Dependence on measurement noise

Four main experiments were made testing how increasing measurement noise af-
fected recovery. The circular cascade system was perturbed using both the single
and the pairwise perturbation sets above. The full system and the random archi-
tecture system was perturbed using single perturbations only. For each of these,
the following methods were applied to recover the connectivity matrix: MNI,
the two alternate start guesses, MNI with enforcing P sparsity and 50% A/P

sparsity, respectively (see sections 2.2.4 and 2.6 for details on these variants),
and NIR. For perturbation matrix recovery, using the expression level change
data is also applied. Figures 10, 11, 12 and 13 show the results of each of these
experiments.
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Figure 10: Matrix recovery under increasing measurement noise, single perturba-
tions, circular cascade system. Each graph represents a method or method vari-
ant, each point the average recovery metric (e) score over 20 simulated datasets
generated using that level of measurement noise.
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Figure 11: Matrix recovery under increasing measurement noise, pairwise per-
turbations, circular cascade system. Each graph represents a method or method
variant, each point the average recovery metric (e) score over 20 simulated
datasets generated using that level of measurement noise.
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Figure 12: Matrix recovery under increasing measurement noise, single pertur-
bations, full (Zak) system. Each graph represents a method or method variant,
each point the average recovery metric (e) score over 20 simulated datasets
generated using that level of measurement noise.
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Figure 13: Matrix recovery under increasing measurement noise, single perturba-
tions, random architecture. Each graph represents a method or method variant,
each point the average recovery metric (e) score over 20 simulated datasets
generated using that level of measurement noise.
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3.3.1 Interpretation

There are some core features of the noise experiment results. First of all, both
MNI and NIR succeed in recovering the model matrices satisfactorily up to a
certain degree of noise (most of the time around a gaussian noise amplitude of
50% of the average expression level). When recovery efficiency does drop, it does
not do so gradually, but rather relatively abruptly. This implies that the methods
locate and amplify a signal where it is present, but as the effects of noise rise
above those of signal, no recovery is possible. NIR is not significantly better than
MNI at recovering the connectivity (A) matrices. It does perform better for the
perturbation (P ) matrices, but as it has access to the true solution in these cases
(test set is in training set) this really means very little. None of the suggested
variant methods perform better than either MNI or NIR, nor does MNI perform
significantly better than expression level analysis in these experiments. It can
further be seen that performance drops quicker in respons to noise for the more
complex network types. Moreover, NIR performs relatively poorer for the more
complex Zak system. This appears to be because cross-validation under these
circumstances selects a connectivity which is too low to represent the system
dynamics with full accuracy.

3.4 Dependence on amplification factor

For the circular cascade system, experiments were made using both single and
pairwise perturbations, increasing the strength of the cross-system connection
parameter (the ’amplification factor’). Results are shown separately for gene
1 and the remaining genes, as we seek to investigate how well the methods
work under the particular sets of circumstances applied to gene 1. For single
perturbations, Figure 15 shows recovery of gene 1 whereas Figure 14 shows
average connectivity and perturbation recovery for the remaining genes. For
pairwise perturbations, Figures 17 and 16 show corresponding results.
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Figure 14: Matrix recovery under increasing amplification factor, single pertur-
bations, circular cascade system. Each graph represents a method or method
variant, each point the average recovery metric (e) score over 20 simulated
datasets generated using the value of the amplification factor indicated on the
x-axis. These results correspond to recovery of every part of the system except
gene 1, results for which are instead shown in Figure 15.
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Figure 15: Matrix recovery under increasing amplification factor, single pertur-
bations, circular cascade system. Each graph represents a method or method
variant, each point the average recovery metric (e) score over 20 simulated
datasets generated using the value of the amplification factor indicated on the
x-axis. These results correspond to gene 1 for which we expect results to dete-
riorate quickly with increasing amplification factor unless the method tested is
able to distinguish between direct and indirect responders. For the remaining
11 genes, results are instead shown in Figure 14.
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Figure 16: Matrix recovery under increasing amplification factor, pairwise per-
turbations, circular cascade system. Each graph represents a method or method
variant, each point the average recovery metric (e) score over 20 simulated
datasets generated using the value of the amplification factor indicated on the
x-axis. These results correspond to recovery of every part of the system except
gene 1, results for which are instead shown in Figure 17.
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Figure 17: Matrix recovery under increasing amplification factor, pairwise per-
turbations, circular cascade system. Each graph represents a method or method
variant, each point the average recovery metric (e) score over 20 simulated
datasets generated using the value of the amplification factor indicated on the
x-axis. These results correspond to gene 1 for which we expect results to dete-
riorate quickly with increasing amplification factor unless the method tested is
able to distinguish between direct and indirect responders. For the remaining
11 genes, results are instead shown in Figure 16.
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3.4.1 Interpretation

First of all, we can see that, as the amplification factor remains low, system re-
covery remains possible. There is little difference between the results for the case
where we perturb a single gene per experiment and the case where we perturb
two genes per experiment; likely because every experiment nevertheless spans
the entire gene expression dynamics space. The expected higher performance for
MNI/NIR compared to expression level analysis is clearly present for the par-
ticularly perturbed gene A. No variant functions significantly better than these
methods, nor is NIR significantly better than MNI at recovering the connectivity
matrix. There does seem to be an unexpected drop in NIR efficiency at pertur-
bation retrieval at one region of the dataset, possible representing some difficulty
in optimizing to the right point for this particular system. Furthermore, we can
conclude from the double plasmid-type perturbation set experiment that for a
perturbation set that spans the system dynamics sufficiently, it is possible to
retrieve perturbations that were not among those used to generate training data
for the method.

3.5 MNI σ factor dependence

Figure 18 shows how changing the σ sparsity parameter affects the ability of MNI
to recover connectivity and perturbation model parameters from the various
systems used here to generate data under otherwise ideal condition.
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Figure 18: Recovery of connectivity and perturbation matrices using MNI for
increasing values of the σ parameter, that is, decreasing assumption of per-
turbation matrix sparsity. Each graph represents one of the systems presented
above, perturbed using the single perturbation set. Each data point represents
the average recovery score over 20 simulated datasets.
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3.5.1 Interpretation

The choice of σ = 0.25 made by the creators of MNI obviously work well for
some datasets, but less well for others. It is clear that selection of this parameter
is relevant, and that increasing it from this value may improve performance in
some cases. Setting it too high will tend to make the model less sparse, and as
such, more sensitive to over-fitting, and so an approach using some form of cross-
validation to determine an optimal σ for a particular dataset may prove useful.
A curious observation is that the choice of sigma primarily affects difficulty of
connectivity recovery, something that may result from the perturbations being
easier than connectivity to recover via these methods.

3.6 Result corroboration MNI - NIR

Applying the MNI algorithm as well as the present implementation of the NIR
algorithm to the (biological, controllable plasmid-perturbed) dataset used in
the NIR article accomplishes two things. First, any relevant differences between
this NIR implementation and the more complex one used in the article will
be displayed. Second, performance on this set by MNI can be compared with
the results from NIR. The data from the NIR article is given as expression
change ratios (xi = yi−yi0

yi0
) rather than absolute concentrations, but still yields

a problem on the form AX = −P which is what the implementation of MNI/NIR
used in this work requires. Results are displayed as color fields. Figures 19 and 20
show a graphical representation of the matrices as determined in the NIR paper
and in this study, while Tables 4, 5, 6, 7 and 8 display the matrices directly.

-0.5970 -0.1790 -0.0100 0.0000 0.0960 0.0000 -0.0110 0.0000 0.0000
0.3870 -1.6700 -0.0140 0.0000 0.0870 -0.0680 0.0000 0.0000 0.0000
0.0440 -0.1890 -1.2750 0.0000 0.0530 0.0000 0.0270 0.0000 0.0000
-0.1808 0.2377 -0.0251 -1.0000 -0.0554 0.0000 0.0000 0.0000 0.3900
0.2810 0.0000 0.0000 0.0000 -2.0940 0.1560 -0.0370 0.0120 0.0000
0.1120 -0.4030 -0.0160 0.0000 0.2050 -1.1470 0.0000 0.0000 0.0000
-0.1710 0.0000 -0.0170 0.0000 0.0250 0.0000 -1.5130 0.0210 0.0000
0.0960 0.0000 0.0010 0.0000 -0.0090 -0.0310 0.0000 -0.4830 0.0000
0.2170 0.0000 0.0000 -1.6780 0.6720 0.0000 0.0770 0.0000 -3.9210

Table 4: Connectivity matrix (A) as determined using NIR in [9].
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-1.0000 0.0000 -0.0143 0.0000 0.1503 -0.0381 -0.0234 -0.0007 -0.0575
0.2256 -1.0000 -0.0095 0.0000 0.0389 -0.0428 0.0208 0.0029 0.1174
0.0832 -0.2619 -1.0000 0.0000 0.0601 -0.0053 0.0257 0.0048 -0.0876
0.0709 0.0533 -0.0261 -1.0000 0.0048 0.0646 0.0335 -0.0044 0.3936
1.4102 0.3068 0.0289 0.0000 -1.0000 0.1259 0.0115 0.0051 0.0000
0.1563 -0.4047 -0.0152 0.0000 0.1732 -1.0000 -0.0087 -0.0051 -0.0036
-0.1494 -0.0520 -0.0139 0.0000 -0.0331 0.0398 -1.0000 0.0110 0.3279
0.3041 -0.4157 0.0020 0.0000 -0.0105 -0.0855 0.0134 -1.0000 0.0000
0.1141 -0.2484 0.0049 0.0000 0.1446 0.0092 -0.0106 0.0110 -1.0000

Table 5: Connectivity matrix (A) as determined by MNI from the dataset used
in [9].

-0.6915 0.0000 -0.0096 0.0000 0.0991 0.0000 0.0000 0.0000 0.0000
0.5932 -2.2964 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.4293
0.0000 0.0000 -1.2744 0.0000 0.0516 0.0000 0.0000 0.0040 0.0000
0.0000 0.0000 -0.0878 -3.0815 0.0000 0.0000 0.0000 0.0000 1.0541
0.0000 0.0000 0.0550 1.6447 -2.2085 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.2040 -1.1557 0.0000 -0.0085 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -1.5169 0.0173 0.3387
0.0855 0.0000 0.0000 0.0000 0.0000 -0.0365 0.0000 -0.4832 0.0000
0.0000 0.0000 0.0000 0.0000 0.8903 0.0000 0.0000 0.0568 -5.9419

Table 6: Connectivity matrix (A) as determined by the current implementation
of NIR from the dataset used in [9].

0.6529 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 1.1711 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 13.4120 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 1.6705 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 4.5415 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 2.3555 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 4.7083 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 12.8658 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 4.1089

Table 7: Perturbation matrix (P) used to generate the dataset in [9].

0.8927 -0.1347 -0.0000 0.1522 -0.0000 -0.0000 -0.0000 -0.0000 0.0000
0.0000 0.4240 0.0000 0.0138 0.0000 0.0000 -0.0000 -0.0000 0.0000
0.0000 0.0000 10.5097 0.0548 0.0000 -0.0000 0.0000 0.0000 0.0000
0.0000 -0.0000 -0.0000 0.0777 0.0000 0.0000 0.0000 0.0000 0.0000
-1.2333 0.0000 -0.0000 -0.0000 1.6391 -0.0000 0.0000 -0.0000 0.1243
-0.0000 -0.0000 -0.0000 0.1920 -0.0000 1.9672 0.0000 -0.0000 0.0000
0.0000 -0.0000 -0.0000 -0.1002 0.0000 -0.0000 3.0797 0.0000 0.0000
-0.0000 -0.0000 0.0000 -0.0742 -0.0000 0.0000 0.0000 26.6718 0.1261
0.0000 -0.0000 0.0000 0.0270 0.0000 -0.0000 -0.0000 0.0000 0.6813

Table 8: Perturbation matrix (P) from the dataset in [9] as determined by MNI.
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Figure 19: A graphical representation of the connectivity matrices as estimated
by NIR in [9], by the implementation of NIR made in this paper, and by MNI.
Red fields correspond to positive values, blue to negative. Tables 4, 6 and 5 show
these same matrices.
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Figure 20: Graphical representation of the true perturbation matrix from [9]
(see Table 7) compared to that determined by MNI from the dataset (see Table
8). Red cells represent positive values, blue cells negative.
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3.6.1 Interpretation

The model as determined by MNI is similar (although not identical) to that
presented in [9], which is significant, particularly as, again, MNI makes use only
of expression data whereas NIR also requires perturbation data. The recovered
perturbation matrix also captures the main features of the true matrix. Another
fact worth noting is that the implementation of NIR used in this work does not
reproduce the results of [9] exactly. This would appear to be mainly due to the
difference in connectivity selection (cross-validation versus the more complex
scheme used in the article). Again, it appears that the cross-validation strategy
under these circumstances selects a model (k = 3) which is too simple to capture
all the traits of this dataset.
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4 Discussion

4.1 Overview

This section (4) begins with an overview of its contents (4.1), then discusses
the results of the present study, how they may be interpreted and what their
limitations are (4.2). The ability of MNI and NIR to distinguish between direct-
ly and indirectly responding genes is evaluated (4.2.1) and the various method
variants that were proposed are evaluated (4.2.2). Next, reflections are made on
the relative performance of MNI and NIR on the same datasets (4.2.3), after
which their capacity as a tool for studying gene regulatory networks in them-
selves is considered (4.2.4). The limitations of this study are adressed (4.2.5),
after which some recommendations for further testing and application (4.3) are
offered.

4.2 Conclusions

4.2.1 Direct/Indirect responder discrimination

The simulation studies that have been performed aimed primarily at isolating
particular characteristics of the techniques evaluated. In particular, the ques-
tions we sought to answer were the ability of the MNI method to distinguish
between direct and indirect responding genes to a given treatment. From the cir-
cular cascade/amplification factor experiments, it is possible to conclude that,
for strongly responding indirect targets, both the MNI and NIR methods can
succeed where merely considering expression changes fail. However, when con-
sidering systems where indirect responders are present (although in moderation)
such as the random architecture or the full system, performance was not sig-
nificantly better than when using expression changes. In the previous studies
on biological systems, MNI seemed to outperform expression change analysis,
and so a possible conclusion may be that the amplification effect - i.e. system
recovery becoming harder as a result of significant indirect responders - has
greater influence in actual biology than was assumed in these simulations. A
tentative conclusion would thus be that the methods indeed can distinguish
between direct and indirect responders.
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4.2.2 Variant methods

In none of the cases, our suggested variant methods function significantly better
than the previously published methods. There are some indications, however,
that varying the value of the MNI σ parameter may affect method performance,
and we conclude that this parameter ideally should be selected individually for
each dataset.

4.2.3 MNI and NIR comparison

For all the experiments, MNI and NIR functions more or less equally well in
recovering system connectivity, and hence also in recovering unknown pertur-
bations. A conclusion will thus be that the introduction of the MNI method
removes the need for the NIR method with its cumbersome measurement re-
quirements. While it is difficult to evaluate the performance of either under
actual biological conditions, it appears that the extension into MNI is sound
and with only small losses in performance.

It is also noted that the number of connections used for the recovered model
in NIR is crucial to its performance, and that selection of a suitable number
of connections is non-trivial. Cross-validation over simulated datasets like these
appear to often select a less complex model than that which is needed to describe
the system properly.

4.2.4 Connectivity recovery

Under the conditions used in these experiments, both MNI and NIR are shown
to be able to recover system connectivity reasonably well. This is in accordance
with earlier simulation studies for NIR and implies that, given datasets that
match these conditions (i.e. controllable plasmid experiments, gene deletions or
similar directly targetting methods) the methods may be used to study inter-
action patterns in gene expressions. How well this may work in practice is hard
to say.
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4.2.5 Limitations

This study evaluates only small systems where perturbation sets are guaranteed
to span the gene dynamics sufficiently, effectively matching the experiment setup
necessary for NIR with the difference being that we need not know the actual
perturbations, only that they possess these properties. However, it appears likely
that the results may be generalized to larger systems, particularly if these can
be broken down into independent subsystems. The ”typical size” of a relevant
genetic network is not immediately obvious.

From the MNI article, we can conclude that different types of perturbations are
recovered with different ease. The method clearly works best when perturbations
have a direct mechanism influencing transcription. How to simulate situations
where this is not the case (as with less easily defined perturbations, such as
many drugs) is not immediately obvious, but it is clear that the question must
be adressed to evaluate the limitations of the methods in such situations.

4.3 Future directions of work

The results from experiments with the Zak network imply that, while the added
complexity of going beyond linear dynamics do detract from performance, it
does not make it impossible. Whether or not low transcript concentration effects
form a significant problem is not obvious at this point, but could be investigated
by extending this implementation of the Zak system into including the hybrid
stochastic-deterministic approach used in the original article.

Another interesting approach would be to proceed further with a wider range
of random architecture simulated systems. System size, degree of sparsity and
variance of expression levels would all be interesting factors to increase system-
atically in much the same way as the experiments performed here, as would be
changing the variance of the perturbations in an experiment set or decreasing
the rank of the perturbation set. Further exploration of methods to select model
complexity is also advised.

Last, a very interesting experiment would be to locate a suitable system with
known regulatory interactions in a relatively small network, similar to those
simulated here; perturb it using plasmids and compare the MNI connectivity
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estimate with the known system. Also, it might be interesting and viable to
compile a truly large metaset of published expression experiments for a given
system, estimate connectivity from this, then make a small number of control-
lable plasmid-perturbations and investigate the recovery of these perturbations
from this estimate. In this way, the number of experiments necessary to provide
more experimental support for the method will decrease drastically.
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