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Coupling the macroscales and mesoscales in the
simulation of cellular reaction networks

Andreas Hellander

Sammanfattning

Kemiska reaktioner kan modelleras matematiskt genom att for-
mulera ekvationer som beskriver hur medelvardena av antalet
molekyler for de olika molekylslagen forandras i tiden. Det
fungerar bra néar antalet molekyler av varje sort ar stort och
mangderna inte andras for snabbt. Om reaktionerna sker inuti
en cell kan de villkoren inte alltid uppfyllas. Ofta ar kopietalet av
vissa molekylslag lagt, vilket innebar att det gor en stor skillnad
om enstaka molekyler omvandlas eller forsvinner ur systemet. En
modell som endast ser till medelvarden kommer darfor inte att ge
en bra bild av forloppet. En stokastisk modell baserad pa den s.k.
masterekvationen ger en béttre beskrivning, men kan vara i prin-
cip omojlig att 16sa numeriskt pa grund av att berdkningsarbetet
vaxer exponentiellt med antalet molekyler. I det har examen-
sarbetet har en metod som behandlar vissa molekylslag med
den enklare medelvérdesmodellen och andra med en stokastisk
simuleringsalgoritm implementerats och utvérderats. Den har
metoden &ar ett exempel pa en s.k. hybridmetod och ger en
mer korrekt beskrivning av reaktionerna an den helt determinis-
tiska modellen, men dr mindre kravande numeriskt &n den helt
stokastiska. Att utvecka snabbare algoritmer ar en viktig del av
berdkningsbiologin, eftersom man vill kunna studera storre, mer
komplicerade system, utan att for den skull vara tvungen att
vanta alltfor lange pa resulaten.

Examensarbete 20p i Molekyliar bioteknikprogrammet
Uppsala universitet maj 2006



Abstract

In this thesis, a hybrid solver for coupled macroscales and mesoscales
has been implemented and its performance has been evaluated on some
different model systems. The approach rely on the splitting of the set
of variables into a subset of approximately normally distributed species,
and a subset that needs a stochastic treatment. This gives a system of
integro-differential equations for the expected values of the determinis-
tic variables, which can be solved for given the probability distribution
function of the other subset. The discrete stochastic variables have been
simulated with Gillespie’s exact stochastic simulation algorithm (SSA) and
the ODE system has been solved with the second order backward differ-
entiation formula (BDF-2) with variable coefficients. It has been shown
that the hybrid solver can reduce the time needed to compute the solu-
tion if the number of reacting species is sufficiently large, while it is still
able to capture important features of the fully stochastic models. Alterna-
tively, the hybrid algorithm can be viewed upon as an improvement of the
macroscopic model by adding stochasticity to some components. While
being more computationally demanding than the pure ODE formulation,
the hybrid solver gives more realistic results to a low additional cost.
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1 INTRODUCTION 1

1 Introduction

In recent years, large-scale investigations of e.g. genome sequences have been
made possible, and the large amount of information generated has made the
field of bioinformatics flourish. The main focus has been on the development
of computational tools for data-mining and the prediction of different kind of
properties based on huge data sets. This has led to many new insights, and
the field is still developing rapidly. However, with our newfound knowledge, it
has been realized that information concerning e.g. genome sequences or protein
structures is not alone sufficient to understand the function of biological systems
[15].

The processes in a living cell are controlled by biochemical reaction networks
interacting in a complicated manner. For example, the circadian rhythm, which
is responsible for the adaption of an organism to periodic variations in the en-
vironment, is controlled by such chemical systems giving rise to oscillations of
certain molecular species. Obviously, the understanding of the underlying net-
works is essential in order to understand the phenomenon they give rise to on
a system level. Characteristic of the control networks is the fact that they are
generally difficult to understand based only on intuition [11], and to meet the
need to analyze their behavior, the field of computational systems biology has
emerged.

The development of techniques to quickly obtain interaction data on the pro-
teome level has provided the research community with a wealth of information.
So far it has shown that some proteins have many interaction partners, while
other have just one or a few, leading to a general picture of cellular control sys-
tems as complex, branched networks composed of hubs and nodes [6, 19]. The
dynamics of the systems is of great interest for the understanding of fundamental
processes such as development and differentiation.

In the process of drug development, it is of importance to identify key reg-
ulatory elements and obtain a thorough understanding of what role different
components play in the systems, both to be able to select good drug targets and
to get an understanding of the wider consequences the manipulation of the levels
of certain molecular species will have on the system . It is often hard and time
consuming to approach these questions with traditional biochemical methods,
and thus mathematical models could greatly simplify the analysis, at least by
being able to suggest appropriate experiments in the lab.

In a well stirred system with macroscopic concentrations the coupled chemi-
cal reactions are often modeled by the reaction rate equations, a system of (gen-
erally) non-linear, coupled ordinary differential equations. In many cases, the
macroscopic model provides a good description of the time evolution of the sys-
tem. In the cell however, the underlying assumptions are often violated. At least
some species are present in low copy numbers. For example, mRNA often exists
in one or a few copies, while transcription factors may range from ten to hun-
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dreds of molecules. Yet other components could be present in large numbers and
approach macroscopic values. This imposes several problems for the modeler.
First, the low copy number species are not well described with a deterministic
model since they are subject to random fluctuations which can not be neglected
and in many cases have a great impact on the behavior of the system [27, 30, 33].
Thus, a realistic model must take the inherent randomness into account and need
therefore be of stochastic nature.

Second, the different scales in both the copy number and in time and reaction
rates, give rise to computational difficulties. One way to model coupled chemical
reactions stochastically is by the use of the (exact) Stochastic Simulation Algo-
rithm (SSA) proposed by Gillespie [8]. This algorithm yield a correct realization
of the process, but the time required to generate information about the proba-
bility distribution of the species in the system is often dictated by the reactions
involving the molecules of largest copy numbers or fastest reaction rates, which
may well be the components where the stochastic description is the least impor-
tant. The convergence rate is also slow for this method and therefore it can be
difficult to obtain detailed information of the distributions when the number of
reacting molecules are large.

The underlying stochastic process is often assumed to be memory lacking, i.e.
Markovian, and the time evolution of the process is described by a difference-
differential equation, the (chemical) master equation. Unfortunately, there is
no good way of solving this equation analytically for non-trivial problems. The
problem suffers from the curse of dimensionality as the computational work grows
exponentially with the number of dimensions (number of reacting species). Con-
sequently, this often limits the complexity of the models to three or maybe four
dimensions.

Some different ways to determine the solution, either by approximations of
the master equation [31] or dimension reduction by making assumptions about
the behavior of different components [12, 35] have been investigated. In the first
case, the master equation is approximated by the Fokker-Planck equation, a par-
tial differential equation derived from a truncated Taylor expansion of the master
equation. The Fokker-Planck equation is easier to solve than the master equa-
tion, but it is still limited by an unfavorable exponential growth in computational
time with increasing number of species. The other approach rely on some pre-
vious knowledge of the system in order to reduce the dimension of the problem.
While this can result in a considerable reduction of the complexity, a profound
knowledge of the biological system is required to make good assumptions.

Since there are efficient numerical methods to solve ordinary differential equa-
tions, it would be a great simplification if some components could be modeled by
deterministic equations, and other components treated with a stochastic model.
Such hybrid models are promising alternatives to fully stochastic models, and
some attempts have been made to implement this kind of solvers [12, 29].

Lotstedt and Ferm, 2005 [21] suggested a separation of the components into
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a subset of variables that can be treated as normally distributed with small
variance and a subset of variables that need a stochastic treatment. They derive
equations for the expected values of the first subset which can be solved for given
the probability distribution of the stochastic variables. The intent of this thesis
was to implement and evaluate this approach by comparing the results to those
of a fully stochastic description of the model systems.

The remainder of this thesis is organized as follows. First, the underlying the-
ory of the modeling of coupled chemical reactions and the system decomposition
is discussed and the main computational demands are introduced. Second, the
theory of the numerical methods used in the implementation is reviewed and the
structure of the implementation is presented. The hybrid solver is then applied
to a couple of model systems and the results are evaluated and compared to the
results from simulations with SSA. Finally, some conclusions are made regarding
the efficiency of this implementation and some extensions and improvements are
suggested.

2 Background

2.1 Modeling chemical reactions
2.1.1 Macroscopic and mesoscopic views

Throughout this thesis it will be necessary to make a distinction between the
macroscopic and the mesoscopic view. Macroscopically, we assume that the
chemical species are present in large copy numbers and formulate a description
for the expected values of the species. Obviously, each chemical reaction means a
discrete jump in the number of molecules, but as the numbers are large this does
not have a great impact on the mean values. In a mesoscopic model some molecu-
lar species are often present in small copy numbers, and thus these discrete jumps
can change the state of the system profoundly. Therefore we have to consider each
molecule individually in these models, and a stochastic description is nesscesary.
Meso means 'between’ and here refers to the fact that the mesoscopic descrip-
tion lies between macroscopic and microscopic (molecular dynamics, quantum
mechanics) models.

2.1.2 The Macroscopic view

The purpose of this section is to introduce some basic notation and quickly review
how chemical reactions are described and how the deterministic equations are
formulated. Consider a general chemical reaction where reactants y;, 1 =1...n
interact to form products z;, j =1...m:

a1y + 22 + ... AnYn L bll’l -+ bgl’g + ... bmxm
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The constants a; and b; are stoichiometric coefficients and dictate how many
equivalents of respective molecular species that are consumed and formed in the
reaction. The constant k is a rate constant. This name is somewhat misleading,
since it is not really a constant but depend for example on variables such as tem-
perature. From the above expression it is possible to formulate a rate law for the
reaction. This can be done in different ways depending on what kind of molecules
we model (e.g. reactions involving enzymes can have different expressions than
reactions without). We will see examples of some different rate laws later in this
thesis. In a sense, all reactions are reversible, meaning that the reaction can
proceed both to the right and to the left. For our purpose however, it will be
convenient to divide these reactions in separate forward and backward reactions
with different rate constants.

At the macroscale we can generally describe the time evolution of the concen-
trations of the reacting species accurately with a set of deterministic equations.
If we let y be the state vector consisting of the n reacting species y;, 1 =1...n,
we can write the familiar convection-diffusion equation:

% +(v-V)y = V- (DVy) = Ri(y, t).

This equation describes the change in concentration of the components at a given
point in space and time, when the changes are due to both diffusion and con-
vection as well as chemical reactions. For many problems in e.g. chemical engi-
neering, this equation can provide a good approximation of the time evolution of
the different reacting molecules, and good solvers for these kind of problems are
avaliable.

In a well stirred system we can assume spatial homogeneity and are left with
the reaction term. This leaves us with the system of ODEs known as the reaction
rate equations

0lyi] - .
5 :—E;nm»wr(y,t), i=1,...,n. (1)
r—
Here, n,; are stochiometric coefficients that tell if species y; is formed, consumed
(and how many) or unaffected by the reaction r (compare to the coefficients a;
and b; above). w,(y,t) is the reaction propensity related to the reaction r, and
is generally a function of the whole state vector. There is no recipe of how to
formulate the rate laws, but they will obey the law of mass action. To better
understand how the reaction rate equations are constructed, we consider another
example. This also serves to introduce one of the test system used later on. This
system will be referred to as ”coupled flows”, and is an idealized description of
the flow of two metabolites under enzymatic control. It has been used as model
system in earlier work, e.g. [32, 36]. We consider two metabolites, A B, that
react to form a third species in which we take no interest (the metabolites can be
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e.g. different amino acids, consumed in protein synthesis on the ribosome). The
formation of A and B is controlled by two different enzyme systems, E; and Es,
and their action is represented as a single enzymatic step. Further, the enzymes
are controlled by feedback inhibition, meaning that as the metabolite pool grows,
the enzyme available for synthesis is inhibited, and thus the influx of metabolites
decreases. The set of reactions describing this scenario is

ka[E1] ky[E1]

L+ i 1+
) —— A 0 — B,
ALo BL Y,

k

A+ B =0,

_kea__ keb

A] [B]

1+ 14+
0 —= B 0 — Ey,

EL50 E, 50,

where expressions in brackets denote concentrations of the respective component.
For the system above the reaction rate equations are given by:

(G = R - kB - a4,
G = Rl k4B - i)
d[il] — 1JI:e[aK_AI] — u[Ey],

\ o= 1}:[}”(3] — plE],

In this case, the second order reaction in which the metabolites are consumed
is described with a second order rate law, but in the general case, all reaction
propensities could be any function w(y,t).

2.1.3 The mesoscopic view: Markov processes and the master equa-
tion

This section follows [10, 34] where thorough reviews of the general properties of
Markov processes are given. Consider a molecule that can undergo the following
one-step reaction:

X —Y

Assume that we know the state of the molecule at some time ¢t. Now consider the
probability that the molecule is still in state X at time ¢+ 6¢. This probability is
the same as the probability that the molecule was in state X at time ¢ minus the
probability that it has made the transition to state Y in the time interval given
that it was in state X at time t. I.e.
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P(X,t+6t) = P(X,t) — Pxy(t,t + 6t),
by the law of total probability

Pxy (t,t + 0t) = Pxy(t,t + 6t| X, t)P(X, 1)

We can now write

P(X,t+0t) — P(X,t) = —Pxy(t,t + 6t| X, t) P(X, t).

This gives a differential equation for P(X,t) if we divide by ¢¢ and take the limit
as 0t — 0

dP(X,t) _ . Pxy(tt+0tX,0)
dt 650 5t

Equation (2) is a master equation for the simple one step reaction. Up until now,
no assumptions have been made about the stochastic process. The key to the
behavior lies in the transition probability per time unit

P(X,1). 2)

) ny(t,t+5t|X,t)
lim
5t—0 ot

which generally can be any time dependent function. From here on we will make
some assumptions regarding the nature of the process. Let Z(t) be a stochastic
process for which Z(ty) = 2. To the n first random variables Z(¢,) we can
formulate a joint probability density

Pél)(zn, tnlzn 1,tn 15 .5 20,t0) = Prob{Z(t;) € [z, zi+dz;),i =1,...,n given Z(ty) = 20}

Let us consider a subclass of such stochastic process for which

PO (25, ti]25 1,85 15 -3 20, t0) = P25, ti]25-1,t51)-

That is to say that the next state of the process only depends on the current
state, and no information of values of the stochastic variables at previous times
is needed. Processes with this property are said to be Markovian [10]. The
memory lacking property is typical of Markov processes, and make them easier
to handle than more general processes. For a stochastic process to be Markovian,
the probability density needs to obey the Chapman-Kolmogorov equation

o0

P(z3,t3|21,11) :/ P(z3,t3|za, ta) P(29, ta| 21, t1)d 2o (3)

—00
which can be viewed upon as a consistency condition on the density function [34].
If the process has these properties, the transition probability in (2) is constant,
that is
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dP(X,t)
dt
and this is a great simplification. For this one-step process we can easily obtain
the analytic solution to the master equation, but this is usually not the case. For
a general Markov process, the master equation describes the probability flow to
and from a state at a given time and can be written

= —kP(X,1)

ap(a? ) - D (we(X, )p(R, 1) = wi(x,1)p(x, ) @)

where X denote values of x after a shift associated with the reaction r. Even
though it is theoretically possible to solve this equation numerically in this form,
it is infeasible for more than a few molecular species.

2.2 Dimension reduction

This section follows Lotstedt and Ferm, 2005 [21], where formal proofs are given
to the results presented here. Consider a set of chemical species X;,i =1...,n,
taking part in the reactions R;,j = 1...,r with reaction propensities w;(x,?).
We denote the number of molecules of species X; by x;. If we now make the
assumption that a subset Y;,7 = 1...,m, of the reacting molecules are present
in relatively large copy numbers and vary slowly, that is, they are assumed to be
approximately normally distributed with a small variance, we obtain a partitioned
set of variables x — (x/,y) where the dimension of x’ is nx = n — m (from here
on the set of stochastically treated variables in the partitioned set will be denoted
x, dropping the prime for convenience). Furthermore, we make the assumption
that the two sets of stochastic variables are independent. Then the probability
distribution function can be written

p(x,y,t) = px(x,t)py (y,1)
If the variables Y; are independent, the density function py (y,t) has the form

m
Py (¥,t) = Ymexp(— Z i,
= 20

where 7, is a normalizing constant and y;(¢) is the mean value of the chemical
species Y; and o is the standard deviation. The expected values y;(t) satisfy

dy .
= anzwrx+mr,y<t>,t>po<x+mr,t> j=1...,m (5)
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where m, is the shift in x associated with reaction r and py(x + m,,t) is the
marginal probability distribution function (PDF). In [21] it was shown with nu-
merical experiments that the shift m, can be neglected for practical purposes,
and this has been done in the implementation of the hybrid solver. The marginal
PDF satisfies the master equation (4), and it is given by

202

m = N2
Yi — Y
i) = [ oy 0y = xt) [[exp= 30 0 gy
j=1
The normalizing constant -, satisfies

'ym/exp(— Z %—?’2) dy =1,

o
7=1
therefore
Po(X,t) = px(x,1).

When the assumptions made in the derivation of these equations hold, the
original problem of solving the master equation in n dimensions is reduced to
solving a master equation in n —m = ny dimensions for py(x,t) and m ordinary
differential equations (5) for the expected values of the remaining species Y.
Obviously, this approach does not provide any information of the distributions
for species Y}, other than the time dependent mean. However, the underlying
assumption was that they have a normal distribution with small variance, o2.

The equation for the remaining ny stochastic variables will still need to be
solved. In [5] the marginal PDF is successfully solved for using the Fokker-Planck
approximation and the applicability of the method is evaluated by the solution
of the Vilar oscillator [35]. However, as already discussed the Fokker-Planck
equation is still numerically difficult in many dimensions, and consequently nx
must be kept small.

Another way of obtaining an approximation of pg(x, t) is by exact simulation
of the Markov process using the SSA algorithm [8], which is the approach taken
in this thesis.

2.3 Coupling the macro and mesoscales

From the previous section we conclude that a solution of the system of equations
(5) will require both the approximation of the marginal PDF and the solution of
the system of ordinary differential equations. This in turn requires the evaluation
of a sum of dimension ny. As will be discussed in more detail later, the sum
needs to be evaluated both as the right hand side of the system of equations,
and at least once for each element of the Jacobian matrix required to solve the
non-linear system in each time step. The requirement for the hybrid approach
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to be successful is that this can be done considerably faster than the stochastic
simulation of the full system.

There are numerous methods for numerical integration, but one of the most
generally applicable is the use of Monte Carlo techniques [2]. In the implemen-
tation of the hybrid solver the summation is performed with an algorithm using
quasirandom numbers.

2.4 Exact Stochastic Simulation Algorithm (SSA)

The SSA algorithm has long been a popular method to simulate chemical reac-
tions. Even though some effort has been made in recent years to improve the
performance of the algorithm [7, 14], it is still widely used due to its conceptual
simplicity and the ease of the implementation. In the original paper [8], two
mathematically equivalent formulations were presented, the first reaction method
and the direct method. In the first reaction method, all possible events are as-
signed a reaction time sampled from a exponential distribution, and the reaction
with the shortest reaction time is executed. This requires that the same amount
of pseudorandom numbers as the number of possible reactions is generated in
each time step. Therefore this method is quite expensive and hardly ever used in
actual implementations.

The direct method on the other hand, needs only two random numbers and
is thus more efficient. The algorithm can be outlined as follows. First initialize,
that is compute the reaction propensities for each reaction from the initial val-
ues. Then generate a pair of random numbers (7, 1) from the joint probability
distribution function for the reaction time and the reactions

P(1, 1) = wy(x, t)e” =1 @n(tT, (6)

This is usually done with the inversion method. First, 7 can be chosen by sam-
pling a pseudorandom number z; from the uniform distribution and taking

7= () wulx, 1)) In(1/z)

We can then form a random integer p that tells which reaction to execute at time

7 by sampling another uniform number z; and taking p to be the number for
which

p—1 r 12
Z%(X, t) < 29 Zwu(x, t) < Z%(X, t)
v=1 pn=1 v=1

Now advance the time by 7 and execute the reaction according to p. Then recom-
pute the reaction propensities w, and repeat until the desired time is reached.
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This procedure of course, only give one possible outcome of the stochastic
process. However, we can obtain an approximation of the probability density by
using the information from many independent trajectories starting with the same
initial values.

We can note some things characteristic of the Gillespie algorithm. If we let
the number of reactions be R, the work is proportional to ¢R, where ¢ is some
constant that can be large for some systems. Many reactions and large reaction
propensities leads to small values of 7, and this in turn means that many steps
have to be taken in order to arrive at the final time. Furthermore, when it is
used to form the probability distribution, several independent trajectories need
to be sampled. As for other Monte Carlo methods, the error of the distribution
decreases as M~/2, where M is the number of realizations.

3 Numerical methods

3.1 Computation of the marginal PDF

The first step of the time stepping scheme will be the simulation of the stochastic
variables in order to obtain an approximation of the marginal PDF. If several
independent trajectories are simulated up to the same time ¢, the value of the
PDF in a certain point in the state space can be approximated by the ratio
between the number of trajectories with just that value and the total number of
trajectories. The values of the trajectories are stored as rows in a M x (nx + 1)
matrix T

(n)

T11 T192 e Tinx tl

To1 Tz ... Topy b2
TM(n) _

Tpm1r Tm2 --- TMnx tM

Mx(nx+1)

and updated each time step by SSA. M is the total number of trajectories and
is typically large. The last column holds the individual times of each trajectory.
Since the time steps in SSA are chosen randomly, the value t; of trajectory ¢ will
not exactly match the desired time at t"™!, thus it is important to keep track of
the individual times of the trajectories. Also, the states are only updated in SSA
if the present time t; < t"*1. If the state of a trajectory ¢ at time ¢ is denoted
X;(t) = {xn wio ... Ty}, the value of the distribution at point x is computed as

1 M
pO(Xa t) - M Z 'UJZ'(X, t))
i=1

0 otherwise

wi(x, t) = {
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The mean values of the individual components can of course be computed in the
same spirit. The matrix Ty is stored and maintained in the main routine written
in MATLAB, and submitted as a parameter to the C-routines that perform SSA
and evaluates the distribution.

Even though the state space needs to be truncated, it can still be very large.
One realizes that computing and storing the value of py in every discrete point
will be very expensive. However, this is not necessary, since the reason why we
need the PDF is to evaluate the sum in the right hand side of (5). Since this will
be done with a Monte Carlo method, we know the points where the values are
needed in advance. Thus, we only need to evaluate py in those points, and this
will reduce the work and storage requirements tremendously if the dimension is
large.

This means that to evaluate the PDF we need to find the entries in the matrix
that correspond to the quadrature points x. By applying a sorting algorithm to
the matrix, followed by a binary search algorithm this can be done efficiently.
In the implementation, a sorting routine provided by MATLAB (sortrows) that
implements a stable quicksort algorithm has been used. It sorts the rows of
the trajectory matrix in ascending order with respect to the columns (first the
matrix is sorted according to the leftmost column, then it proceeds from left to
right). The binary search has been implemented in C, and simply finds the row
in the matrix that correspond to the quadrature point. To avoid unnesscesary
work, trajectories with the same value (identical rows) are first removed from the
original matrix before the searching algorithm is applied. This is done with the
MATLAB routine unique.

It is necessary to discuss the error of the PDF. When approximating of the
sum of (5), a number of quasirandom sequences are used. This will be described in
more detail in section 3.2. For each quadrature point of these sequences, po(x, t) is
evaluated. We let a quasirandom sequence for the summation be denoted S;, j =
1,... n. Further, denote the elements of S; by X;(j),i = 1,..., N, where N is
the length of S; (i.e. the number of evaluation points). If the trajectory matrix
Ty is divided into m submatrices, Ty, k =1, ..., m of length M , M = mM, the

variance of po(x;(7), 1), O’ii(j), can be computed as

1 m _
2 _ (k) 2
O2:i(j) = 1 Z(Pzi(j) - PIi(j)) )

3|H
Ms

z(]
k=1

This means that the error of the pooled estimate is bounded by (by Student’s
t-distribution)
1960—1‘;())
| zi(j) z(])| S \/m



3 NUMERICAL METHODS 12

within a 95% confidence interval. In the implemetation of the hybrid solver, the
error in p is measured as

1 n
r = Z 102:(3) |0
j=1

i.e. as the mean value based on the n different QMC sequences of the maximum
absolute standard deviation over all evaluated quadrature points N. This mea-
sure decreases as LM with increasing number of trajectories. It has been seen
that o, (;) varies little with j. Within the present framework it is not possible to
adjust the number of trajectories to meet some predefined error tolerance. How-
ever, for the test systems considered later, M in the range 10° — 10° seem to be

suitable values with respect to the error.

3.2 Monte Carlo integration

From the formulation of the coupled ordinary differential equations for the ex-
pected values it is evident that the evaluation of the right hand side will be very
expensive. Considering also the fact that solving the system of equations in every
time step involves evaluating the Jacobian in which every element demands at
least one additional computation of the integral in the case of a forward differ-
ence approximation of the derivatives, makes this step the main bottleneck in the
solution of the system. This will be true at least for moderate dimensions.

A viable option when facing multidimensional integrals is the use of Monte
Carlo methods. The simple Monte Carlo estimator of an integral is:

T
RISERS Z f(x:) (7)
where x; are chosen from the uniform distribution. By independent replication
the root mean square error (RMSE) of the monte Carlo quadrature can easily
be computed [2]. By the central limit theorem the mean of the errors of these
estimates are normally distributed, and the RMSE is an unbiased estimate of
the standard deviation. Evidently, there are different options when reporting the
error of the estimator (7), but the RMSE is a common indicator of the error

_
Nuuse = \/ 77 Dol (1Y — Iy

s M gy
IN_Mijllj

where M is the number of independent replications of estimates I JN according to
(7). The total number of points used is M N, and in the case of pseudorandom
numbers the error could as well be estimated by the partitioning of one single
sequence of length M N. However, we will be using quasirandom sequences, and

(8)
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for practical reasons it is more convenient to use M different sequences of length
N in the implementation of the hybrid solver. It is a well known fact that the
convergence rate of (7) is of order N™'/2. This can be shown using the central
limit theorem, and a partial proof is given in [2].

In our case, we are dealing with a sum rather than an integral, but we apply
the techniques of Monte Carlo integration to evaluate it. The remainder of this
section will discuss some of the theory regarding Monte Carlo quadrature in terms
of integrals, but we need to keep in mind that in the hybrid solver it is actually
a summation as in (5) that we carry out. The corresponding integral is on the
form

f(x)p(x,t)dx.
[0,1)¢

To evaluate it with Monte Carlo (MC) integration we have two obvious op-
tions. We can use the estimator (7) in a plain (raw) MC integration with the
integrand being the product f(x)p(x,t), or we can notice that the problem is
equivalent with the computation of the expected value of f(x) when x is dis-
tributed according to p(x,t). In either case, we can use (7) to approximate the
value of the integral, and 8 to estimate the error. The difference lies in that while
we in the first case use points sampled from the uniform distribution, the second
approach require the sampling of points from some unknown probability distri-
bution, pg(x,t). In the scheme we shall develop, this distribution will however be
simulated by the Gillespie algorithm, and is therefore available.

3.2.1 The rejection method

One way of sampling from the distribution p(x, ) is to use the acceptance-rejection
method. This method is described in e.g. [2]. Consider a function f(z) with the
property f(x) < p(z) ,Vz. Assume also that we have a way of normalizing the
function f(z) so that f (z) = f(z)/ [ f(z)dz. Then the following procedure yields
random samples form the distribution p(z): Sample = from the density f (x) and
a trial variable y from the uniform distribution. Accept z if 0 < y < p(z)/f (),
otherwise reject and try another x. Repeat until the desired amount of sample
points is obtained. The closer f(x) is to p(x), the more efficient the sampling
procedure will be, but a method to generate samples from f (x) is needed, and
therefore in practice f(x) is often chosen to be a constant. The efficiency of
the sampling method depends on the ratio of accepted to rejected trial points.
Therefore, it is crucial to obtain as tight an upper bound on p(x) as possible. In
practice, this can be difficult, especially when the distribution is not evaluated in
every possible point in the state space.

The major drawback with regular Monte Carlo integration as in (7) is the slow
rate of convergence O(N~Y/2). There are a number of different variance reduction
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Fig. 1: Two dimensional scrambled
Faure quasirandom sequence. The se-
quence was generated with algorithm
823 in [13] scrambling 10 digits.

Fig. 2: Pseudorandom sequence. Note
the areas with high and low density of
points.

techniques such as importance sampling, stratification and control variates, but
they only affect the constant, not the convergence rate in N.

3.2.2 Quasi-Monte Carlo sequences

Pseudorandom numbers have a tendency to aggregate, so that the sequence dis-
plays clusters and gaps [24]. One could expect the error to be smaller if the
sample points were more evenly spread in the integration domain. Quasi-Monte
Carlo (QMC) point sets are deterministic sequences with the property that they
in some sense minimize the discrepancy, that is, they are more evenly distributed

than their pseudorandom counterparts.

QMC methods have been extensively

used e.g. in the field of computational finance and have been shown to out-
perform Monte Carlo methods for many problems [16]. The difference between
pseudorandom and quasirandom point sets is visualized in Fig. 1 and Fig. 2,
where the clustering of the pseudorandom point set is evident.

Many different constructs of low discrepancy sequences have been proposed,
and the implementation made in this thesis have used the sequence of Faure
[3]. For details concerning the generation of the sequences and implementational
details see e.g. [13, 1]. It can be shown that for a QMC quadrature rule the
Kokshma-Hlawka inequality provides an upper bound of the error. For a quasir-

andom sequence Xi, Xo,..., Xy it states

Iy — 1| < D:Vak(f) 9)

where D} is the star discrepancy of the sequence (a measure of how equidis-
tributed the points are) and Vg is the total variation of the integrand in the

sense of Hardy and Krause [2].
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The practical outcome of this is that for the best sequences, the theoretical
convergence rate can be (’)((logil\];f)d)) where d is the dimension of the integral,
which is a considerable improvement over the simple Monte Carlo estimator at
least for small d and large N. Even if this bound on the error is valid if Vg
is bounded, it is impractical. In practice, both the star discrepancy and Vyg is
computationally infeasible, in fact, it can be as difficult to compute them as the
computation of the integral, and furthermore it often results in overestimations of
the error [2, 25]. To overcome the difficulty of error estimation, techniques to gen-
erate scrambled nets have been developed [13, 26, 4]. A scrambled quasirandom
sequence is obtained if the points in the underlying sequence is shifted in such way
that the low discrepancy property is conserved. The type of scrambling used in
the hybrid solver (and the generation of data in Figs. 1 to 3) is a scrambling due
to Owen, 1998 [26]. As for pseudorandom sequences, the scrambled sequences are
independent samples from the uniform distribution. The use of such randomized
sequences can be seen as a hybrid of QMC and regular Monte Carlo integra-
tion, having the superior convergence properties QMC methods while allowing
for simple error estimation according to (8).

In Fig. 3 we see a comparison of the computed relative RMSE obtained by
evaluating the integral

B (m2+y2+22)

/[ }3(# +y*+2%)e 2z dV
0,1

using the randomized Faure sequence and pseudorandom numbers. No variance
reduction technique has been applied, and the points are sampled form the uni-
form distribution in a plain Monte Carlo method. The number in parentheses
in the legend is the convergence rate. 20 sequences were used to compute the
RMSE, i.e. M =20 in (8). The QMC method yields much lower error than the
pseudorandom method, and the convergence rate of the former is superior.

3.2.3 Smoothing techniques

The rejection method has been seen to have an undesirable effect on the conver-
gence rate of QMC integration [2, 18]. This can be understood if we rewrite the
integral

1 1 el
| t@m@s = [ [ st < po)dyds
0 o Jo
where x(y < p(x)) is the characteristic function

x(y < p(z)) = { (1) i 2 i Z(E)p(aj)

This function if discontinuous, and does not have a bounded variation in
the sense of Hardy and Krause. Therefore, the Kokshma-Hlawka inequality can
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Monte Carlo integration using pseudo and Faure sequences
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Fig. 3: The relative RMSE using pseudorandom
numbers and the Faure sequence. Typically, the
error of the QMC method is much smaller, and
has a convergence rate of O(N~!) compared to
O(N~1/2) for the plain Monte Carlo integration.

not be used to obtain a bound on the error and convergence rates are often
lower than O(N~1) [18]. In our case, one additional complication is that the
probability density p(x,t) is defined for discrete x, and is therefore not smooth.
This is expected to have consequences on the performance of the quadrature.

One way to overcome the problems

with discontinuous characteristic func-

tions is to replace them with continuous or differentiable weight functions. This

approach is called smoothed rejection sampling.

In this work, some different

smoothing techniques have been considered. In [18] a differentiable B-splines
smoothed characteristic function is suggested.

(1
i 2
(a—y+h) ((a y2hh/2) )

a—y+h

2h

(a—y+3h/2)?
4ph

L O

q(x,y) = <

a=v""p(x),

if0<y<a—3h/2,
ifa—3h/2<y<a-—h/2,
ifa—h/2<y<a+h/2,
ifa+h/2<y<a+3h/2,
ifa+3h/2<y<1,

v < sup p(x).
xeNd

Even though this sampling procedure is shown to improve the convergence
rate, the RMSE is often lager than the corresponding error obtained with pure
rejection sampling for the test integrals evaluated in [18]. Here 2h is referred to
as the smoothing width and must be chosen manually.
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In [23] a linearly smoothed rejection sampling is proposed, and is shown to
improve the convergence for some classical test integrals. In this case the weight
function is

1 if y <p(x)—nh
g(x,y) =4 0 if y >p(x)+h
linear if p(x) —h <y <p(x)+h

Another alternative is to use weighted uniform sampling. In this method, the
decision process is eliminated altogether, and instead every point is assigned a
weight equal to the acceptance probability

g =7 'p(xi,t).

The the value of the sum is approximated as

1 N
jN = i f (i)
Zi]\il i 121:
This method is biased, but the bias is normally small compared to the RMSE
[23].

3.3 Time discretization

The time discretization has been made with the second order backward differenti-
ation formula (BDF-2) with variable coefficients [22]. This is an implicit scheme,
which is desirable since we would like to be able to take as large time steps as
possible without instability in order to gain more advantage compared to the full
simulation algorithm, SSA. The implementation has been made with the possi-
bility of time adaptivity, but as we will see later, sometimes a fixed time step is
preferable due to the large cost of recomputing the right hand side of equations
(5).

The solver was implemented as a predictor-corrector pair where the corrector
is iterated to convergence with the Newton method. The Jacobian is computed
once initially in each time step, and recomputed only if the convergence criterion
has not been met within some fixed number of iterations. Due to the large cost
of evaluating the sum the elements of the Jacobian are approximated with first
order forward differences. In such way, only one evaluation is needed for each
element plus one additional evaluation which is the same for every entry. The
linear system is solved with a direct method, but since the main part of the
routine is written in Matlab, using different iterative solvers would be possible
without changing much in the code. The explicit predictor is [22]
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an = 1/(1+07), ar=0"—1, a=—(0")2/(1+0"), 6" = Ar/Ar—,

R
DRI = =) ek Y we(%, 37 8)po(x, ) dx,
—1 Zm
and the implicit corrector is given by

agy" ™ = Atw(y™ ") — aly" —aly" T, (11)

af =1/(L+0"), af=0"—1, af=—(0")>2/(1+0")
The local error in the solution y"*! can be computed as
Gy — 3
(Cp - Ci) ,
C«i(enJrl) — _(1 4 9n+1)2/(69n+1(1 + 29n+1)), Cp(9n+1) _ (1 + 1/9n+1)/6.

The implicit step (11) will then be solved using Newton iteration with the initial

guess ynJrl,O — }A,nJrl

6nJrl _

(12)

Solve (Oég[ — Atn']w)(sk = _f(yn—i—l’ka yn, yn—l), (13)

aa) (ynJrl, tTLJrl)

Jo= T

f(yn—l—l,k,yn,yn—l) — agyn-I—l,k o Atn@(yn-I—l,k,tn-I—l) + a?yn + agyn—l‘
Update the solution according to

n+1,k+1 n+1,k + 5k'

y

This leaves us with the following time stepping scheme, which also serves to
illustrate the main algorithm of the hybrid solver.

First, a number of quasirandom sequences are computed and stored. These
sequences contain the quadrature points used in the scheme below, and need
only be generated once. Then the solution vectors and the trajectory matrix are
initialized. Usually, the stochastic variables are set to be distributed according
to a normal distribution centered at some user supplied point. The user also
supplies an error tolerance for the time integration and a vector containg the
times where an output of the solution are desired.

Then, the following procedure is repeated until the stopping time has been
reached:

=Y
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1. Simulate the stochastic variables with SSA up to time ¢"*! using the val-
ues y". This allows the computation of the distribution py(x, ") at the
selected quadrature points.

2. Compute predicted values for the deterministic subset according to eq. (10),
using the distribution generated in the previous step (1).

3. Take the predicted value of y"™! from step (2) as initial guess for the cor-
rector in eq. (11) and perform Newton iterations as in eq. (13) until
convergence.

4. Compute the local error as in eq. (12) and decide to accept or reject step
based on the criterion below.

5. Repeat from step (1) until the stopping time has been reached.

In the case of adaptivity in the time step selection, some care need to be taken
in the choice of At™ since it is expensive to recompute a step. The time step has
been chosen in the following way. First compute

(= [

€ll2

where e is the tolerance supplied by the user. Accept the step without any change
in At if ¢ > 0.98. Increase At"*! = 1.1A¢t if ¢ > 1.15, otherwise reject the step
and try At" = 0.9CAt".

3.4 Complexity of the algorithm

We will here consider the complexity of the steps involved in the simulation of
the system. First, the work of the Gillespie algorithm is O(RM) if the number
of reactions are R and the number of trajectories M. The constant can be quite
large for some systems. In order to evaluate py(x,t) we need to sort the trajectory
matrix twice. Let nx, ny be the number of stochastic and deterministic variables
respectively. The work in the quicksort algorithm is on average O(M log,(M)),
and to find N points of dimension ny using binary search is O(nx N log,(M)).
The evaluation of the integral need work of O(NN) with a constant that depend on
the cost of evaluating the function w(y,¢). Finally the evaluation of the Jacobian
is O(Nn?) and the solution of the system of equations in (13) is O(n?) with a
direct method, but the system can be solved considerably faster with an iterative
solver if necessary. We can see that there is extra work in the hybrid solver in
proportion to N log, (M), while we still need to perform SSA with work of order
M. We assume that nyx and ny are small in comparison to N and M for most
practical applications. From this we can conclude that the hybrid method could
outperform SSA only if the reduction greatly affect the constant implicit in the
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work of SSA. For example, consider a chemical system consisting of 100 reacting
species, and it is possible to split the system so that only three of them need a
stochastic treatment. Then both the number of reactions R and the constant of
the SSA algorithm could be considerably reduced. However, the work would still
be O(M) for M trajectories, but if the reduction of the constant is large enough
to compensate for the increased work of O(Nlog, M) + O(M log, M) (with a
hopefully much smaller constant) a speedup could still be obtained. It is evident
however, that the performance of the algorithm will be system dependent, and
that the nature of the splitting will be important.

4 Numerical results

4.1 Coupled flows

The system of coupled flows discussed in Sect. 2.1.2 has been simulated using the
hybrid algorithm. The variables have been partitioned so that the metabolites
A, B are treated as stochastic variables, and the enzymes E; and E5 are treated
deterministically. With this partitioning, we end up with the following set of
reactions and equations

kalE1] kp 1] dlE kea
1+[7Ai] 13% [ 1] = [A] _M[El]
h—>4 0—5B i1+
A A @ B i> @ d[EQ] keb
k2 dt B] HE)
A+B %9 1+ %

This means that 9 reactions have been reduced to 5 in SSA, and two linear
ODEs have to be solved for the mean of the enzyme concentrations. The values
of the reaction rate constants that are used in the simulation are found in table 1.

ka kb k2 Kz H kea keb Kr
0.3 0.3 0.001 60 0.002 0.02 0.02 30

Table 1: The parameters for the coupled flows

The problem is numerically simple to solve, since the ODEs are linear and not
stiff. From the equations describing this system, we can also note that if A, B and
Ey, E5 are given the same initial values, the solution for the metabolites and the
enzymes will be identical. In all simulations, the initial values were A, B, Fy, Fy =
10. Simulation of the system with the Gillespie algorithm (Fig. 4 and Fig. 5)
reveals that the metabolites A and B display relative large fluctuations around
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Fig. 4: One realization of a simulation Fig. 5: Metabolite Y and enzyme E;
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Fig. 6: Expected values of metabolite Fig. 7: Expected values of enzymes E}

species X and Y based on 10° indepen- and E, based on 10° trajectories.

dent trajectories.

their mean, while the enzymes vary to a lesser extent. This motivates the splitting
of the state space, even though the copy number of the enzymes are lower than
for the metabolites.

Figs. 4 to 9 show the results from a stochastic simulation of the system up
to t = 1000 s. The number of trajectories used to form expected values and
approximations of the PDFs were taken to be 10°. At this time, the system has
not reached steady state, but very small changes take place if the system were to
be simulated longer. Also in Fig 8 we see that the fluctuations of species X,Y
is larger than for the enzymes, since the distribution is much smoother for the
enzymes for the same number of trajectories.

For the hybrid solver, different integration techniques have been evaluated. In
Fig. 10 we see the result from integration with the probability distribution taken
at t = 1000s which is the endpoint of a hybrid simulation. Raw Monte Carlo with
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Fig. 8: Isolines of the probability den- Fig. 9: Isolines of the probability den-
sity based on 10° trajectories. The sity of the two enxymes F; and FEj
metabolites X and Y based on 10° trajectories.

pseudorandom numbers (i.e. no sampling from py(x, t)) has been compared to raw
Monte Carlo using numbers from the Faure sequence generated with [13]. Also,
different smoothing alternatives have been tested. One important consideration is
the fact that when for example the rejection method is used to generate numbers
from the distribution, fewer evaluation points will be accepted and used than in
e.g. raw Monte Carlo. This means that the number of quadrature points N in
(8) will be different for different methods. So the errors reported in Fig. 10 refer
to the error obtained with a fixed number of trial points N. This is not the usual
way to compare different methods, but what we are interested in is which method
gives the smallest error per generated random number, since there is a cost in
generating the numbers and most of all in evaluating the distribution. It has
to be evaluated for all trial points, not just the accepted ones. The probability
distribution function has been computed based on 10° trajectories.

From Fig. 10 we see that quasirandom numbers give a much better result than
pseudorandom numbers also in this case. However, rejection sampling, B-splines
weighted sampling and linearly smoothed rejection sampling all perform badly
for this problem. In fact, QMC with either of these methods have no smaller error
nor higher convergence rate than raw Monte Carlo with pseudorandom numbers.
The smoothing width 2h has been chosen to be 2e — 3 for both B-splines and
linear smoothing. This parameter has been chosen to be the best in a number of
tests with different values. Apparently, the characteristic function could not be
smoothed sufficiently for the QMC estimator to regain convergence rate. Also,
one problem is the fact that the sampling distribution pg(x,¢) is not smooth,
which is a requirement to assure the higher convergence rate. However, uniform
weighted sampling (UWF) performs well on this problem, with as high conver-
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Monte Carlo integration with different smoothing techniques
10 T T

RMSE (30 runs)
[
o

107°L | — Pseudo, raw (-0.500) Y i
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- Faure, UWS (-0.91) TN o
- - Faure, B-splines smoother (-0.48) ~
-+ Faure, A-R (-0.52) - N
o Faure, lin.smoother (-0.53) ' N

4

10 L L
10° 10° 10* 10°

Fig. 10: The relative RMSE for some different variants of
Monte Carlo integration.

gence rate as raw quasi-Monte Carlo, and even smaller relative error. Therefore,
this method has been chosen for the time integration in the hybrid solver.

We would also expect the integration error to be dependent on the number
of trajectories used to construct the sampling distribution, i.e. the error of the
probability density function. Fig. 11 shows the RMSE for uniform weighted
sampling for some different number of trajectories. The distribution function
p(x,t) was taken from simulations with the hybrid solver at ¢ = 103s.
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Dependence of the number of trajectories on the integration error
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Fig. 11: Relative RMSE for varying number of trajectories
used to construct pg(x,t) (the numbers in the ledgend, 103 —
10%). N is the number of points from the Faure sequence.
Uniform weighted sampling (UWF') has been used.

In Figs. 12 to 18 we see the results of a simulation with the hybrid solver.
The time steps were chosen adaptively with an relative error tolerance of 0.1%.
As a maximal time step At = 5s was chosen. Even if the local error tolerance for
the deterministic variables can be met for even larger time step, since the values
of these variable will be treated as constants during the simulation with SSA, an
upper limit is probably appropriate for the time step.

[
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3 3
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3* w4
15 al
10f ol
5t 1t
00 160 260 360 460 560 660 760 860 960 1600 00 160 260 360 460 560 660 760 860 960 1600
t[s] ts]
Fig. 12: Expected values of X and Y Fig. 13: Expected values of F; and Fs,
computed by simulation with the hy- the deterministic variables in the re-

brid solver. Stochastic variables. duction.
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The mean values computed with the hybrid solver compares well with those
of the full SSA (Fig. 6). The same number of trajectories, M = 10°, has been
used to approximate the probability distribution.

For this problem, meeting the error tolerances is relatively easy. In this sim-
ulation not a single time step was rejected. Figs. 14 and 15 shows the time step
and the relative local error measured in this simulation.

7t
ol
sl
H
5] 54
@ 3
g E
= 53
c
’ |
0'50 260 460 660 860 1060 1200 00 160 2(50 360 460 560 660 760 860 960 ldOO
t[s] ts]
Fig. 14: Time step chosen by the adap- Fig. 15: Relative local error.

tive time stepping scheme.

The time step quickly reaches its maximal value, and the relative local error of
the ODE solution is kept small. We can also look at the relative integration error.
The integration within the solver is performed by using ten scrambled sequences.
They are generated and stored initially and then used to form estimates of the
integral and error as in (7) and (8). If the RMSE is smaller than 10% of the
local error tolerance of the ODE solver no more points are used. In practice,
the tolerance has proven to be difficult to meet for small values. The weights
generated are stored and used throughout the Newton iteration in order for it
to converge. In the simulations reported here, 2'¢ ~ 65.000 quasirandom points
were used for each sequence. Figs. 16 and 17 show the relative and absolute
RMSE for the simulation. As mentioned, uniform weighted sampling was used
as integration method.

Unfortunately, while the hybrid method captures the behavior of the expected
values, it does not provide as good an approximation of the PDF. Figure 18
shows isolines of the probability density function at ¢ = 1000s computed with
the hybrid solver (10° trajectories). If we compare with fig 8 we see that some of
the characteristic shape of the coupled flows has been lost in the approximations
made. The distribution is still centered on the same expected values, but some
synchronization of the trajectories is inevitable in the hybrid approach. However,
the distribution obtained with this solver compares well with the results in [21]
where a Fokker-Planck approach is used to solve the same problem.

To address the issue of efficency of the method, the MATLAB tool Profiler
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has been used. It provides a detailed list of the time spent on each line in the
code and the relative amount of time taken by all subroutines. Since the major
components of the hybrid solver (SSA, evaluation of the distribution, integration
and computation of the Jacobian) have been implemented in C and wrapped as
mex-files, it is easy to compare their contribution to the time needed to solve
the system for a given set of parameters. The generation of the quasi sequence
is written as a mex-file calling a fortran routine [13]. Even if this is also time
consuming, it is only done once initially and contributes little to the total time
if the number of time steps needed to compute the solution is sufficiently large.
The number of evaluation points for the integration is 2! ~ 32.000 and can be
considered to be a moderate value for this problem.

In Table 2 we see the relative amount of time spent in SSA within the hybrid
solver for varying number of trajectories when the system is solve to ¢ = 103s.
The values reported are the percentage of the total execution time.

Number of trajectories | 10> 10* 10° 10°
Time spent in SSA [%] | 3.3 18.7 44.7 50.9
Total time [s] 35 48 181 1615

Table 2: Time spent in SSA.

We see that for many trajectories the SSA takes about 50% of the time. The
other major part is the sorting algorithms provided by Matlab, and needed in
order to evaluate the probability density function. They take almost 40% of the
execution time for 10° trajectories. It is evident that this part of the algorithm
needs to be improved. However, what is interesting here is the fact that if SSA
for the full system would take more than twice the time of the corresponding split
system, the hybrid solver would be faster already for a four dimensional problem.
For this particular problem though, the gain in time is not enough to compensate
for the additional work related to the deterministic part of the solver. Indeed, for
10° trajectories the time spent in SSA in the hybrid solver was 821 s compared
to 872 s for the full system.

4.2 The Vilar oscillator

The Vilar oscillator [35] is a model for circadian rhythms, illustrating some com-
mon control components that have been observed in such systems. This kind
of control system is designed to assure periodic oscillations of certain molecular
species in order to establish a circadian rhythm in the organism. Obviously, a sys-
tem of this kind would be very complicated in an actual organism, and this model
system is artificial. The model considers nine molecular species. Two genes D,
and D, and their corresponding mRNA M, and M, are controlled by an activator
and a repressor A and R, synthesized from the respective mRNA. Furthermore,
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the activator and repressor can associate and form a complex C', in which the
activator A is degraded. The deterministic set of reaction rate equations for this
system are

(4Da = @Aqu_’)/ADAA

% = OrDy — YrDrA

% = ’}/ADAA — @ADA

S = 7rDpA—OrDj,

WA = oy D)y +asDy — 6u, My
(fi_? = BaMy+ 04D, +OrDy — A(vaDa + yrDg + o R+ 04)
Mg

it = agDp+arDp—0p, Mg
% = BRMR—’)@'AR—F(SAC—(SRR

ue == ’ycAR — 6AC

\ dt

The variables D'y and DY are the genes D4 and Dy with bound activator. In
the model it is assumed that there are only one gene coding for the repressor and
activator. Thus D4+ D’y = 1, and the same is true for the repressor gene. For the
parameters given in Table 3 the system displays a limit cycle as in Figs. 19,20.
However, if the parameter dg is sufficiently small the fixed point becomes stable
and the system stops oscillating (Fig. 21). It was shown in [35] that a mesoscopic
description of the system continues to produce reliable oscillations even when the
fixed point is stable in the deterministic sense. The noise is obviously sufficient
to perturb the trajectories far enough from the fixed point to initiate new cycles.

as Ay ar  fa Br Om, Oy
50.0 500.0 0.01 50.0 5.0 10.0 0.5
4 g YA YR Yc ©a Op
1.0 0.2 1.0 1.0 2.0 50.0 100.0

Table 3: Parameters for the Vilar oscillator.

Even for the deterministic solution (Figs. 19, 20) the cycles are not completely
identical. This is probably due to numerical errors of the time integration scheme,
and thus the system is rather hard to solve. Fig. 21 shows the behavior of the
system with the parameters as in Table 3 but with 0z = 0.08. In the deterministic
sense, the fixed point is stable and no oscillations can occur.

In order to apply the hybrid solver, the variables were divided into two subsets.
A, R and C were treated stochastically while the other variables were treated
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deterministically. This may at first seem to be a bad splitting, since the genes are
binary variables and should at a first glance be treated stochastically. However,
these variables are effectively averaged [35] and this motivates a deterministic
treatment. Once again however, the copy number is no way nearly as large
as required for the variables to be assumed to be normally distributed, even if
the variance might be small. One need to keep in mind though, that the same
assumption is made in the reaction rate equations.

This splitting gives three stochastic variables participating in 10 chemical
reactions (compared to 16 of the full system), and six deterministic variables.
The set of reactions and equations describing the system is

A4 Dy 204 propr 24P 4y py

0 BaMy A A a4 0
Yo AR AR
A+ R——C C —R
p Lnte, g R0
YRADR I} I} GRD%
A+Dp —— D}y Dy —— A+ Dy
( % = @AD;]_’YADAA
% = @RDQ%—’)/RDRA
T = 7aDaA— 04D
S = vrDrA - OrDp
% = a;lD;l—f-CYADA—(SMAMA
% = Oé,RD;z‘i‘OZRDR—(SMRMR

\

Figs. 23 to 26 shows a solution to this system with the hybrid solver. For
this problem, adaptivity is not a very good alternative, since many time steps
have to be recomputed and there is a considerable cost associated with this,
especially when the number of trajectories is large. Here, 10° trajectories were
used to construct the probability density, and 25 quasi-random points used in
each sequence in the integration algorithm. There has been a passive monitoring
of the local time integration error, but no attempt to control it has been made in
this case. The error is unacceptably large in some time intervals and this leads to
a drift of the phase of the oscillations. However, the solution captures the general,
oscillatory properties of the original system. A fixed time step At = 0.5 was used
when solving this system. Initial conditions for the deterministic variables were
0.2 for the genes and zero for the other species. The stochastic variables were
initiated as a normal distribution centered around {4, B, C'} = {60, 60, 60}.

As can be seen in Fig. 26 the genes have a copy number below one. This can
at first seem to be biologically irrelevant, but is in fact merely a scaling in order
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puted with the hybrid solver.

to reduce the state space. Obviously, the amplitude of the oscillations is affected
but the general behavior of the system is not.

The contribution of the SSA algorithm to the total time required to solve
the system has been studied in the same manner as for the coupled flows. The
results can be seen in table 4. For this system, the stochastic simulations are more
demanding than for the coupled flows, and for the highest number of trajectories
it consumes more than 90% of the CPU time. This system consists of only nine
variables, and it should be clear that for even larger systems there is much time
to save if a good splitting can be chosen.

Number of trajectories | 10> 10* 10°  10°
Time spent in SSA [%] | 186 53.1 839 918
Total time s 178 590 3.5e3 29.7e3

Table 4: Time spent in SSA.

In Fig. 21 we have seen that the oscillations stops in the deterministic simu-
lation of the system if the parameter dp is reduced to 0.08. However, the hybrid
solver still gives rise to oscillations for this value. Unfortunately, the presence
of stable oscillations requires that the local error in the time integration of the
deterministic variables is kept small for this particular system. As already dis-
cussed, adaptivity might not be a good option for this system, but here we are
forced to control the error. Fig. 27 shows the solution with the hybrid solver
when the relative local error is kept below 0.5%. Ideally, for the hybrid solver to
be as effective as possible, the splitting needs to be done in such a way that the
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deterministic subset yields equations for which large time steps are permitted.
This condition can not be met in this particular case, as can be seen in Fig. 28.

Finally, we consider the integration error of the QMC quadrature for this
problem. Fig. 29 shows the results from an integration with the probability
distributions at time t = 100s, taken from the endpoints of the executions in
Table 4. The actual values are not directly comparable, since due to numerical
errors and the stochastic influence, the solution differs slightly. However, we are
interested in how the convergence rate of the integration depends on the number
of trajectories used to construct the distribution. As can be seen, the convergence
rate increases with increasing number of trajectories. This is to be expected, since
this means a smaller error and increased smoothness of the distribution py(x,t).



4 NUMERICAL RESULTS 33

~ Convergence rate for UWF
10

— 1e3 (-0.61)
— - 1e4 (-0.66)

1e5 (-0.73)
* - 1e6 (-0.85)

N
o
W

norm (Abs. RMSE) (30 runs)

N
1S)
&

10° . L . L -
10 10 10 10

Fig. 29: Absolute RMSE for varying number of trajectories,
uniform weighted sampling using the Faure sequence.

4.3 A mitogen-activated protein kinase signaling cascade

As a final example we will consider a model of a mitogen-activated protein ki-
nase (MAPK) signaling cascade [17]. These receptor mediated signal transduc-
tion pathways are conserved regulatory systems, and consist of three sequentially
acting kinases. Kinases are proteins that modify other proteins by the phospho-
rylation of certain amino acid residues. This modification has a different effect
on different proteins, and could lead to e.g. changes in binding properties to
DNA/RNA or to other proteins. In this case, the first protein in the cascade,
RAF, induces two phosphorylations of MEK, the second component in the chain.
Doubly phosphorylated MEK, MEKpp, in turn induces two phosphorylations of
MAPK. The output signal in the scheme, doubly phosphorylated MAPK, MAP-
Kpp, can dimerize and in this form be transported into the nucleus where it
phosphorylates a number of transcription factors,proteins directly involved in
the regulation of the transcription of genes to mRNA [20]. The model in [17] also
takes into account the effect of scaffolds, protein complexes that facilitate signal
transduction by the binding of several components of the chain (bringing reacting
species closer to each other). The model we simulate here is the corresponding
system without scaffolds, i.e. a MAPK cascade in solution.

The model includes 22 variables, the kinases RAF, MEK and MAPK, the
dephosphatases RAFPH, MEKPH which removes phosphate groups from their
corresponding kinase, and the possible dimers formed in the reactions. These 22



4 NUMERICAL RESULTS

34

[y
o
\

o - MAPKpp | |
,’ —— MAPKp

# molecules
(=) - N w S u (=2 ~ =) ©

/ /

50 100 150 200 t2[5? 300 350 400 450 500
S,

o

Fig. 30: Deterministic simulation of the
MAPK cascade. Solution is computed
with MATLAB odel5s.

# molecules
N

L

0 50 100 150 200 250 300 350 400 450 500
t[s]

(=]

Fig. 31: Single trajectory SSA showing
the fluctuations in activated MAPK ki-
nase, MAPKpp.

variables take part in 30 chemical reactions, so this model is larger than the ones
previously considered.

Fig. 30 shows a deterministic simulation of the system with Matlab’s odel5s.
Only the singly and doubly phosphorylated MAPK are displayed. Except for
a few species, the components vary slowly in time, but with the parameters
given in the supplementary material of [20] the number of MAPKpp molecules
at maximal output signal is rather small. In fact, the mean value is below one.
A stochastic simulation with SSA reveals that the number of molecules of doubly
phosphorylated MAPK vary from zero to a few molecules after an initial time
when no active MAPK is present (Fig. 31).

Suppose that we want to make a larger model where a control system like this
is one component. We might then be interested in the stochastic variation of the
output signal (MAPKpp), while the detailed stochastic information regarding
the other components is less important. This is a scenario where the hybrid
approach could provide a speedup compared to the full SSA. To evaluate the
performance, the state space have here been separated so that singly and doubly
phosphorylated MAPK (MAPKp, MAPKpp) are treated as discrete stochastic
variables, and the other as deterministic. In this way, 30 chemical reactions
for 22 chemical species are reduced to nine reactions and 20 integro-differential
equations. Figs. 32 and 33 show isolines of the distributions at ¢ = 500s computed
with SSA for the full system and the hybrid solver. For both methods, 10°
trajectories was used to approximate the distribution.

As can be seen, the densities compare well for the two methods, and the
hybrid solver is in this case able to capture the stochastic properties of the acti-
vated MAPK species. Since we have only two stochastic variables and their copy
numbers are small, a relatively small number of quadrature points needs to be
used, and the SSA of the hybrid solver is also much cheaper than that of the
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full system. With 10* trajectories (which can be considered to be a relatively
low number), the hybrid solver computes the solution up to t = 200s five to six
times faster than full SSA. The relative efficiency of the hybrid solver compared
to SSA is evidently dependent on the choice of the number of trajectories and
the number of quadrature points. For example, if we want better resolution of
the distribution and lower relative error in the value of the integral, we could
choose e.g. 10° trajectories and 2!5 quadrature points in each sequence. With
these parameters, the hybrid solver is also five to six times faster than full SSA.
One need to keep in mind that this is still a small system. For example, the same
model extended to include scaffolds [20] have 89 variables participating in over
300 chemical reactions. For a system of this size, the hybrid solver is predicted
to be a lot faster than SSA if a good separation can be chosen.

5 Conclusions

In this thesis, a hybrid solver for coupled macroscales and mesoscales have been
implemented and evaluated. From the numerical experiments it can be seen
that this solver is able to capture important features of the fully mesoscopic
description, while keeping the number of stochastically treated variables at a
manageable level.

For some of the test systems considered, the number of reactions are too few
and the splitting done in such a way that an improvement in execution time over
the full SSA algorithm can not be obtained. It is shown however, that for systems
where this splitting can give a sufficient reduction in the number of reactions and
the rate constants involved in those reactions, a considerable speedup compared
to a fully stochastic simulation can be obtained. For a larger system, the hybrid
solver is shown to execute five to six times faster than the full SSA with the chosen
splitting, while it is still able to retain the stochastic properties of the original
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model. Alternatively, the hybrid solver can be viewed upon as a way of improving
the macroscopic model by introducing stochasticity in some components. With
this viewpoint, the hybrid solver is more computationally demanding than the
ODE models, but gives more realistic results to a rather low additional cost.

The major bottleneck in the time stepping scheme of the hybrid solver is,
apart from the simulation, the evaluation of the probability distribution function
po(x,t). The number of evaluation points is determined by the performance of
the integration algorithm. It is therefore crucial to develop a scheme that gives
a small error with few evaluated quadrature points. Here, the integration is
done with a quasi-Monte Carlo method. Monte Carlo methods are well suited
for high dimensional integration, and even if the dimensions are not particularly
high for the systems considered here, a generally applicable method is required
if the intention is to be able to simulate different systems without extensive
reprogramming by the user. One problem with QMC methods is that the higher
convergence rate compared to pseudorandom numbers depends on the integrand
being sufficiently smooth. Since we are dealing with a discrete distribution this
is not the case and we have seen that a large number of trajectories are needed.
Even when this requirement can be met, the convergence rate is still not as high
as in the ideal smooth case.

5.1 Future work

In this implementation, no optimization of the code for speed has been made.
The SSA algorithm is an implementation of Gillespie’s direct method. However,
there are faster modifications of this algorithm, and any attempt to implement a
generally applicable solver should consider the use of some of these methods. Gib-
son and Bruck [7] have shown that their 'Next reaction’” method performs much
better than the original SSA algorithm. Furthermore, Gillespie has proposed the
‘tau-leap’ method [14] which is an approximation of the original algorithm in
which one ’leaps’ over some time steps. Perhaps one should use this approxima-
tion for intermediate variables and the exact algorithm for the other variables in
order to reduce the computational burden even more. One attempt to use this
approach has been made in [29].

We have seen that the discrete nature of the probability distribution imposes
some problems in the integration schemes. Since the evaluation of the distribution
is the most important part to improve, something should be done in order to en-
hance the convergence rate. One possibility would be to try to make a continuous
approximation of the discrete distribution by smoothing out the discontinuities
by interpolation. There are also a few adaptive Monte Carlo software packages
avaliable, e.g. [17]. They are provided as open source, and could possibly be
modified to deal with the special requirements of this solver.

Perhaps the most difficult task when setting up a hybrid scheme is the splitting
of the state space. As for now, this has to be done manually and requires some
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previous knowledge of the system. If the system is large, a trial and error approach
can be tedious due to the time taken to solve the system. If some method
to automatically partition the variables could be implemented a lot would be
gained, since more of the research time could be spent on drawing conclusions
concerning the system at hand than on setting up the computation. Such a
partitioning algorithm would also make it possible to treat variables differently
at different times, for example if the chemical species are present in large copy
numbers for long times and then drop to small values.

Obviously, there is a great interest in extending the stochastic models to
include spatial dimensions. For example, in the model of the MAPK cascade, a
clear spatial dependence can be seen. Some proteins in the cascade are located
preferentially to the plasma membrane, either by direct interaction with some
receptor or via scaffolds. Dimerized MAPKpp in turn, can be transported trough
the nuclear membrane and has an important function inside the nucleus. In this
case, it could be interesting to study how the distribution of activated MAPK in
different locations and compartments of the cell changes over time following the
binding of signal molecules to the corresponding receptor.

Within the hybrid approach, adding diffusion and convection terms to the
deterministic equations would be possible. How to efficiently handle these is-
sues for the stochastic variables are an area where an extensive research effort is
necessary.

Finally, there is already software developed for the simulation of chemical re-
actions. With the need to be able to share models within the research community,
a markup language has been developed [14]. SBML, or Systems Biology Markup
Language, is avaliable for example as a toolbox for Matlab. In order to be able
to try different systems more quickly, the hybrid solver should be extended to
handle SBML.
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