
 
 
UPTEC X 06 011                   ISSN 1401-2138 
MAR 2006 
 
 
 
 

 LARS PERSSON 

 

 hERG modelling  
 using  
 3D-pharmacophores   
 
 
 
 
 
 
 Master’s degree project 



 

 
 

UPTEC X 06 011  Date of issue  2006-03 

Author 

Lars Persson 
 
Title (English) 

hERG modelling using 3D-pharmacophores 
 
Title (Swedish) 
 
Abstract 
 
Eleven pharmacophores for the cardiac K+ channel hERG were developed using the modelling 
software Catalyst and evaluated with multivariate analysis. The pharmacophores will be used as visual 
feedback in drug design and as descriptors in predictive modelling. A pharmacophore-based automatic 
sorting scheme for hERG-compounds was generated and new approaches for classification modelling 
were explored. 
 
 

Keywords 
 
hERG, pharmacophores, exclusion volumes, structure-activity relationships, PLS-DA, descriptors 
 

Supervisors 
Mats Svensson 

AstraZeneca R&D, Södertälje 
 
Scientific reviewer 

Johan Åqvist 
Department of Cell and Molecular biology, Uppsala University 

 

Project name 
 

Sponsors 
 

Language 
English 

 

Security 
 

 

ISSN 1401-2138 
 

Classification 
 

Supplementary bibliographical information   Pages 
40 

 

Biology Education Centre      Biomedical Center       Husargatan 3 Uppsala 
Box 592 S-75124 Uppsala                 Tel +46 (0)18 4710000      Fax +46 (0)18 555217 

 
 

 

Molecular Biotechnology Programme 
Uppsala University School of Engineering 



 

hERG modelling using 

3D-pharmacophores 

 

Lars Persson 

 

Sammanfattning 

 

hERG är en jonkanal i hjärtat som är inblandad i hjärtats pumpfunktion. Många läkemedel från många 

olika läkemedelsklasser har visat sig ha som biverkning att de förutom att binda sitt farmakologiska 

målprotein även blockerar hERG. Detta kan störa hjärtrytmen och i värsta fall orsaka hjärtflimmer. 

Läkemedelsföretagen satsar därför stora resurser på utveckling av olika metoder att upptäcka hERG-

problem så tidigt som möjligt i utvecklingen av nya läkemedel. Om inriktningen på ett projekt behöver 

ändras eller om det måste läggas ned, blir det mer ekonomiskt ju tidigare detta beslut kan tas.  

 

En tilltalande metod är datormodellering av hERG-bindning. Om modelleringen är tillförlitlig kan 

stark hERG-bindning förutsägas och man kan undvika kemisk syntes av blockerare. Syftet med det här 

projektet var att ta fram farmakoforer utifrån ett stort dataset med föreningar med känd och varierande 

bindningsstyrka till hERG. En farmakofor är en sammanfattning av vilka egenskaper en molekyl 

måste ha för att påverka ett målprotein och består av ett antal kemiska funktioner och deras inbördes 

koordinater. Farmakoforer är ett visuellt hjälpmedel för läkemedelskemister och kan även användas 

för prediktion av bindning. Efter statistisk utvärdering av farmakoforerna utvecklades matematiska 

modeller för prediktion av hERG-aktivitet. Modellerna kopplar ihop olika beräknade kemiska, fysiska 

och strukturella egenskaper en molekyl har, bl.a. passning till farmakoforerna, till en prediktion av hur 

stark bindning till hERG den har. 

 

Examensarbete 20 p i Molekylär bioteknikprogrammet 

Uppsala universitet mars 2006 
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1. Introduction 

1.1 QT prolongation and hERG     

 

Long QT syndrome (LQTS) is an abnormality of cardiac muscle repolarisation that is characterised by 

the prolongation of the QT interval in the electrocardiogram [1]. LQTS is associated with increased 

risk for torsades de points, a ventricular tachyarrhythmia that may degenerate to ventricular fibrillation 

and sudden death [2]. Several congenital and acquired disorders can lead to prolongation of the QT 

interval. Of special interest is the fact that numerous agents, belonging to different drug classes, have 

been associated with QT prolongation and torsades de pointes [3]. A number of drugs have been 

withdrawn from the market or restricted in availability as a result of their association with LQTS [4]. 

This has resulted in health concerns for patients as well as in great revenue-losses for the 

pharmaceutical industry. Before approval of a human pharmaceutical by regulatory authorities, 

potential for QT prolongation must now be thoroughly evaluated [5]. LQTS is a highly unwanted side-

effect for drugs. 

 

All known LQTS related to drug exposure can be traced to one specific mechanism – blockage of the 

voltage-gated cardiac potassium channel hERG (human ether-a-go-go-related gene) [6, 7]. The inner 

cavity of the hERG K+ channel is large and hydrophobic and can trap a variety of ligands and many 

that other K+ channels cannot trap [1]. The association of hERG with LQTS has launched a massive 

effort on the part of the pharmaceutical companies to understand how drugs interact with hERG on the 

molecular level and how interaction may be eliminated. Early detection of hERG blockers is an 

important aim since it will save a lot of time and money. An early failure is a cheap failure. Early 

awareness of hERG affinity for a lead compound can also guide the lead development in a direction 

away from hERG activity and save the project.  

 

One interesting approach for early detection of hERG blockers is to use in silico techniques to filter 

out potential blockers in the context of virtual compound libraries. Compounds predicted to have high 

hERG affinity could then be avoided and resources could be concentrated to synthesis of compounds 

that meet this safety concern. In this work, the structure-activity relationships governing hERG-drug 

interactions were investigated and different approaches of predictive modelling were examined.  

 

 

 



 6 

1.2 Classes of molecules that block hERG 

 

Figure 1. Drugs representing molecule classes. pIC50 is a measurement of binding affinity. (a) Cisapride, central 

amine, hERG pIC50=8.19. (b) Norastemizole, terminal amine, hERG pIC50=7.55.  (c) Loratadine, neutral, hERG 

pIC50=6.76. (d) Fexofenadine, acid, hERG pIC50=4.67. All activities are from reference [3].  

 

The hERG channel is promiscuous. A lot of drug-like molecules have affinity for it and the structural 

diversity among the binders are large. The classic hERG blocker is a compound with a central basic 

nitrogen between two lipophilic regions (Figure 1a). Several pharmacophores for central amine 

compounds have been published earlier [3, 8, 9]. A second class of hERG blockers known from the 

literature [8, 9] are terminal amines (Figure 1b). These compounds have generally not as high affinity 

for hERG as the central amines, but still results in QT-prolongation. During AZ hERG screening a 

third class of blockers have emerged – neutral compounds (Figure 1c). There is very little published 

on neutral hERG binders and the pIC50-values of the most potent compounds are often in the medium 

range defined below.  

 

Since there are so many structurally diverse compounds that bind to hERG it is interesting to study the 

problem from the opposite direction - what properties do hERG non-blockers have? One modification 

that reduces hERG affinity is the introduction of an acidic group. Acids often have low or not 

measurable affinity. In this work, acids and zwitterions were treated as one separate class of 

compounds (Figure 1d). 

 

1.3 SAR 

 

SAR (Structure-Activity Relationship) is a common concept in medicinal chemistry. It can be defined 

as the association between the chemical composition of a molecule and its biological effect. 
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1.4 Pharmacophores 

 

Pharmacophores are sets of molecular features and their relative coordinates. The pharmacophore for a 

certain macromolecular target is developed to describe the necessary features a ligand need for activity 

at that target. Typical features are hydrophobic centres, aromatic rings, charges, H-bond acceptors and 

donors. They are generated from a set of structurally diverse known active compounds and are 

conjunctions of their features. In other words, pharmacophores are the largest set of features with 

relative distances that the active training compounds have in common. Pharmacophores can also have 

exclusion volumes at certain positions relative to the chemical function features. The exclusion 

volumes represent regions which cannot contain any topology because it might impinge sterically on 

the macromolecular target.  At AstraZeneca pharmacophores are used in virtual screening, lead 

identification and lead optimisation. 

 

1.5 Task 

 

The task was to construct new hERG-pharmacophores and to use them in hERG-modelling and 

classification. Besides their use as descriptors in multivariate modelling the pharmacophores can 

provide valuable visual feedback for synthetic chemists and help develop lead compounds away from 

hERG affinity. It was important that the classification protocol could be automated and run as a script 

from a web interface (webtool). 

 

1.6 Aim 

 

The primary aim for this project was to generate pharmacophores which provide good feedback and 

enrichment. The secondary aim was design of a model that could achieve 80% correct classification 

(into the three classes high, medium and low) on an external test set.  
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2. Material & Methods 

2.1 General methodology 

 

The general methodology was to develop pharmacophores for one type of compound at a time, use 

these pharmacophores to create a rule that automatically could filter compounds of this type out from a 

test set and then go on to work with the next type. In sequence Central amine, Terminal amine and 

Neutral pharmacophores were generated. PLS and PLS-DA [10] was used to evaluate the 

pharmacophores and for classification modelling. Both General, Central amine and Terminal amine 

models were developed. 

 

2.2 Hardware and Software 

 

All computations were carried out on a SGI server with 32 processors (MIPS R12000 400 MHz), 

running Irix 6.5. Clustering of compounds was performed by the in-house AstraZeneca program PC 

Flush 2.1.5 [11]. 1D & 2D-descriptors of the compounds were generated with SELMA [12], an in-

house AstraZeneca program. hERG Smarts [13, 14] for the compounds were generated with an in-

house AstraZeneca program. Conformational models, pharmacophores and database screening were 

performed with Catalyst version 4.11 [15]. Selection of compounds for training sets was carried out by 

BigPicker [11], an in-house AstraZeneca program. PLS and PLS-DA were performed with Simca-P+ 

version 10.0.2.0 [10]. 

 

2.3 Definition of classes 

           Table 1. Activity class definitions 

High pIC50≥6 

Medium 4.5≤pIC50≤6 

Low pIC50≤4.5 

 

IC50 (Inhibition concentration 50%) represents the concentration of an inhibitor that is required for 

50% inhibition of an enzyme in vitro. 

 

There is a safety guideline at AstraZeneca saying that no compound entering late phases should have 

an IC50 for hERG lower than 30µm, corresponding to a pIC50 of 4.5. Therefore, 4.5 was a logical limit 

between low and medium for this classification model (Table 1). Leads that have medium or high 

affinity to hERG have to be developed towards the secure low affinity interval, with this work as one 
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aid. The limit between high and medium affinity was somewhat arbitrarily chosen set to 1µm. An 

advantage of choosing a 3-class design is that the medium class separates high and low, so even if 

there are classification errors, very few of them should be double faults. Especially important is that 

compounds classified as low should not be high affinity binders. The opposite is not good either 

because compounds that are predicted to be high, but is screened anyway and turns out to be low 

affinity binders will undermine the confidence in the model.  

 

2.4 Datasets 

 

The original dataset was comprised of 7071 AstraZeneca in-house compounds from various projects. 

The number of projects was large and between-project compound structural diversity was also large. 

Previous publications on hERG modelling [3, 8, 16, 17] has used datasets containing 20-400 

compounds with activity data often collected from different sources within the literature. Activity data 

from different assays may not be comparable, and is an additional source of errors. In this work all 

pIC50-values were measured in the same assay, a proprietary method within AstraZeneca. Compounds 

that did not have a measurable pIC50 were given the value of 4.5, so that they could be used in 

multivariate analysis. Apart from pIC50-values, descriptors available were hERG Smarts, and Selma 

parameters and, after pharmacophore generation, fit-values to eleven different pharmacophores. 

Smarts are structure fragments combined with logical expressions. Selma parameters are physical-

chemical properties, topological properties and counts of number of rings, atoms, h-bond acceptors etc 

for a compound using 2D-structure as input. The 7071 compounds were divided into 1473 clusters 

using PC Flush 2.1.5 with maximum Tanimoto distance 0.3 to aid SAR investigation and selection of 

compounds for pharmacophore generation. A second dataset of 3218 AZ compounds was saved as a 

pure test set. This set is in this text called Test set B. 

 

2.5 Selection of template molecules for pharmacophore generation 

 

The selection of template compounds for pharmacophore generation was performed by visual 

inspection in Spotfire® DecisionSite 7.3 [18]. One cluster of compounds at a time was investigated for 

SAR. Since molecules within the same cluster are structurally similar it is possible to find minor 

changes or substitutions in a series which result in large and interesting hERG activity differences. 

Most interesting is to compare compounds that differ in hERG pIC50, but have similar clogp, which is 

a calculated descriptor that models hydrophobicity (Figure 2). Then activity differences are probably 

not dependent on hydrophobicity differences. Hydrophobicity is often a strong driving force for ligand 
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binding. Ideal compounds for pharmacophore generation are highly active, not too hydrophobic, 

structurally diverse compounds which have associated SAR.  
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Figure 2. Plot of pIC50 vs. clogp for a cluster of compounds. The compounds marked with rings are interesting to 

compare for SAR. 

 

Inactive compounds selected for generation of pharmacophores with exclusion volumes should have 

other properties. First of all they need to be low active and not too hydrophilic. If they are too 

hydrophilic, non-binding might depend on poor membrane permeability rather than SAR. Further they 

must align as well as the highly active compounds to a pharmacophore without exclusion volumes, but 

protrude in some region not occupied by the high activity compounds. The rationale for the exclusion 

volumes are then that this region is occupied by the macromolecule in ligand binding. 

 

2.6 Conformational models 

 

Conformers of each compound were generated in Catalyst using the default 20kcal/mol range limit 

and the fast search option. The maximum number of conformers was 250. 

 

2.7 Pharmacophore generation                     

 

All pharmacophores were produced using the Catalyst program, version 4.11 (Accelrys Inc., San 

Diego, CA, USA). Totally over 80 pharmacophores were generated and evaluated with multivariate 



 11 

analysis. In the end three non-correlating top queries for each of the molecule classes Central amines, 

Terminal amines and Neutrals were selected. Also sorted out for filtering purposes were the two 

queries Negion and Posion resulting in a set of eleven pharmacophores for use in classification and 

modelling.  

 

If not stated otherwise the feature options in Hypothesis generation were H-bond acceptor (A), H-bond 

donor (D), hydrophobic (H), ring aromatic (A) and positive ionisable (P). When using HipHopRefine, 

active compounds had the number 2 in the principal column of the spreadsheet and inactives the 

number 0. Maximum Omitted Features was globally set to 0. 

 

The P feature was modified because the default definition did not include amino pyridines and amino 

pyrimidines. The nitrogen in these rings is also protonated at physiological pH. Figure 3 depicts the 

added rules and also shows which nitrogen is protonated.  

 

Figure 3. Added rules to the predefined chemical function Positive Ionisable (P) used in this work. The rings 

mark the association. All aromatic, not bridgehead, carbons have a defined hydrogen count of 1 and all terminal 

carbons are defined to have coordination 4.  

 

The quality of the mapping of a compound to a pharmacophore is indicated by a fit-value. This is a 

kind of minimized sum of square displacements measure. For how fit-values are computed, see 

reference [15]. The maximum fit-value is the number of features in the hypothesis (i.e. R+H+P+A=4). 

If some feature is weighted, the max fit-value is the sum of the weights (i.e. R+H+P (weight 2)+A=5). 

If a conformer of a compound enters an exclusion volume when mapping to a pharmacophore, that 

alignment is blocked. If it just enters an exclusion volume slightly, the fit-value is only reduced. A 

shape constraint is a drug-shaped volume in a pharmacophore. To fit a pharmacophore with a shape 
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constraint, conformers of compounds must fit the shape better than a certain threshold value, a 

similarity tolerance. Only conformers that fulfil this initial condition will be considered for mapping to 

the chemical function features in the pharmacophore. The minimum fit-value for search is a user-

defined threshold. If the fit-value of a compound to a hypothesis is higher than the minfit-value, the 

compound is considered as a hit and this speeds up screening and can easily be automated. Hit is set to 

1 and not hit is set to 0 in the responding datasheet-column. Minfit-values were determined by visual 

inspection in Spotfire® DecisionSite 7.3. Since fit to pharmacophores is not an exact method to 

measure biological activity this conversion from continuous to binary data may not be 

disadvantageous.  

 

For the Compare/Fit function in Catalyst, the energy limit was 20kcal/mol, maximum omitted features 

were 0 and Fast fit was used. Maximum omitted features 0 means that a compound must, at least 

slightly, map all features in a pharmacophore to gain a fit-value by the Compare/Fit function. 

 

The rough optimisation of exclusion volume tolerances has been evaluated with multivariate analysis. 

 

2.7.1 Filtering pharmacophores 

 

Negion is identical to Catalyst’s predefined chemical function Negative Ionisable. Max and min fit-

value was 1. 

 

Posion is the above defined modified version of the predefined chemical function Positive Ionisable. 

Max and min fit-value was 1. 

 

2.7.2 Nomenclature for molecule class pharmacophores 

 

The first capital letters in the pharmacophore names represents the features present in the hypothesis. 

The same letters as in Catalyst are used. R is ring aromatic, H is hydrophobic, P is Posion, the 

modified version of the Catalyst feature Positive Ionisable defined above, and A is H-bond acceptor.  

The next letter or letters stands for which molecule class the pharmacophore is developed for. kl is 

central amines, t is terminal amines and neu or n is neutrals. ex means that there are exclusion volumes 

in the pharmacophore, neg means that it is a negative pharmacophore and sh means that there is a 

shape constraint in the pharmacophore. Italic letter combinations are used for all properties of a 

pharmacophore not describing which Catalyst chemical features it contains. The names of the eleven 

selected pharmacophores are written in bold face.  
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2.7.3 Central amine pharmacophores 

 

RHPklex1 was generated using the HipHop algorithm in Catalyst with five AZ-compounds as actives. 

The feature selection was set to give a RHP-pharmacophore. The top query was optimised with 

hypoopt v4.0 [19] and the exclusion volumes were added manually. Volumes were added to block 

away or lower the fit-value for one flexible inactive AZ-compound, but the highest priority was to not 

lower the fit-values for the five active compounds mentioned above. The inactive compound was very 

similar to one of the high activity compounds, but actually more hydrophobic. The Positive Ionisable 

feature was given a weight of 2. Max fit was 4 and min fit 1.5. 

 

RHPklex2 was generated using the HipHopRefine algorithm in Catalyst. Five AZ-compounds were 

used as actives and seven other AZ-compounds were used as inactives. The top RRHP query was 

optimised with hypoopt v4.0. A second crude optimisation was performed by changing the tolerances 

of the exclusion volumes from the default 120 to 60 picometers. Finally one R feature situated next to 

the H feature was removed. This because RHP-pharmacophores were good, making RHP with 

exclusion volumes very promising, but no good RHPexclvol-query could be automatically generated 

by Catalyst. Max fit was 3 and min fit 1.5. 

 

RHPAklex was generated with HipHop using six AZ-compounds and optimised with hypoopt v4.0. 

The Positive Ionisable feature was given a weight of 2. The exclusion volumes were added manually 

in the same way as for RHPklex1. Max fit was 5 and min fit 3. 

 

2.7.4 Terminal amine pharmacophores 

 

RHPtex1 was generated using the HipHopRefine algorithm. Actives were eight AZ-compounds. 

Inactives were five other AZ-compounds. Two queries were chosen for development, one of them 

ended up as RHPtex1 and another as RHPtex2. To allow features to be moved during optimisation, 

the tolerances for the exclusion volumes for RHPtex1 were first reduced to 60pm before optimisation 

with hypoopt v4.0. Then the tolerances for the exclusion volumes were roughly optimised from 120 to 

80pm. Since there were gaps between exclusion volumes that did not harmonize with my SAR 

hypothesis for terminal amines, extra volumes were added manually to fill these gaps for blocking out 

inactives. For this, 16 actives and 20 inactives were used and spaces where only inactive compounds 

mapped were closed with exclusion volumes. Max fit was 3 and min fit 1.5. 

 

RHPtex2 came out from the same HipHopRefine run as RHPtex1. The two queries had the same 

RHP features lined up in the same order, but different geometries and exclusion volume patterns. This 
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pharmacophore was optimised with hypoopt v4.0 with default tolerance on exclusion volumes and 

these were then reduced to 80pm. Max fit was 3 and min fit 1.5. 

 

RRHPtneg was generated from the mapping of one inactive AZ-compound to the query RRPterm, a 

pharmacophore that was not selected for modelling. The extra H feature was placed on a terminal 

hydrophobic centre of the inactive AZ-compound situated at the other end of the molecule relative to 

the basic nitrogen (Figure 12). The rationale behind this was that visual inspection in Spotfire® 

suggested that long hydrophobic chains (about 14 bonds) with a terminal amine had less hERG 

affinity than terminal amines with semi long (about 11 bonds) hydrophobic chains. RRPterm was 

generated with the HipHop algorithm using the same active compounds as the other two terminal 

pharmacophores and was optimised with hypoopt v4.0. Max fit was 4 and min fit 1.5. 

 

2.7.5 Neutral pharmacophores 

 

RHHHneu was generated with HipHop and optimised with hypoopt v.4.0. Actives were nine neutral 

AZ-compounds. Max fit was 4 and min fit 2.5. 

 

RHHHAneu was generated prior to my arrival at AstraZeneca by an in-house computational chemist. 

Max fit was 5 and min fit 2.5. 

 

RHHAnexsh was generated with HipHopRefine with ten AZ-compounds as actives and six other AZ-

compounds as inactives. After optimisation with hypoopt v4.0, tolerances for exclusion volumes were 

reduced to 80pm and some were manually deleted to raise fit-values for the ten active compounds. 

Finally one of the active AZ-compounds was converted to a shape when aligned to the pharmacophore 

and the shape and pharmacophore were merged into one combined hypothesis. For the shape min/max 

percent extent and box volume match were 0.7/1.6 and min/max similarity tolerance 0.4/1. Max fit 

was 4 and min fit 1.5. 

 

2.8 Screening of databases 

 

Screening of compounds against pharmacophores was performed with the Fast Flexible Search 

algorithm in Catalyst. Maximum search hits were 10000. 
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2.9 Separation of compounds into molecule classes 

Posion

Negion

RHPklex1

Central 
amine

Terminal 
amine

Neutral Acid

1

1
1

0

0

0

 
Figure 4. Flow chart for molecule classification. Depending on if a compound fit to the pharmacophores Negion, 

Posion and RHPklex1, it is automatically sorted into the molecule classes Central amines, Terminal amines, 

Neutrals or Acids. 

 

For pharmacophore evaluation and the construction of Central amine and Terminal amine classifiers, it 

was important to generate a method to separate Central amines, Terminal amines, Neutrals and Acids. 

The filtering needs to be automatic to be robust and possible to integrate into a webtool. Fit to three 

pharmacophores, Posion, Negion and RHPklex1, were used as rules. See Figure 4 for the flow cart. 
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2.10 Training set and test sets 

 

2.10.1 General model 

Posion

Negion

RHPklex1

Central 
amine

Terminal 
amine

Neutral Acid

1

1
1

0

0

0

Original set
7071 compounds

Central amines
2264 comp

Terminal
Amines

1903 comp

General training set
5000 comp

Central amine training set
1800 comp

Ter minal amine training set
1280 comp

BigPicker

BigPickerBigPicker

General model

Terminal amine modelCentral amine model
 

Figure 5. Flow chart over of how the General, Central amine and Terminal amine training sets were generated. 

The test sets A, C and T are the 2071, 464 and 623 compounds not selected by BigPicker. Note that these are not 

represented by a box in the figure. 

 

Table 2. Number of compounds in each activity class for the original dataset and the General model training and 

test sets. X*Y means that X compounds are present in Y copies in the Training set for weighting reasons. 

  Original set Training set Test set A Test set B 

High pIC50≥6 837 500*6 337 131 

Medium 4.5≤pIC50≤6 4025 3000 1025 1669 

Low pIC50≤4.5 2209 1500*2 709 1418 

Sum  7071 9000 2071 3218 
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Posion

Negion

RHPklex1

Central 
amine

Terminal 
amine

Neutral Acid

1

1
1

0

0

0

Test set B
3218 compounds

Central amines
Test set BC
756 comp

Terminal amines
Test set BT
902 comp

 
Figure 6. Flow chart over how the test sets B, BC and BT are related to each other. 

 

The compounds were not evenly distributed across the activity range (Table 2), a majority had 

medium activity and only 12% were high. If the aim is to develop a model that gives equally good 

recall for all classes, the training set should contain an equal number of compounds from each class. 

To save some high and low compounds for Test set A and to still obtain a large training set, first 500 

high, 3000 medium and 1500 low compounds were selected by the AZ in-house program BigPicker, 

which picks out structurally diverse subsets (Figure 5). The rows in the datasheet containing highs and 

lows were then copied 5 times respectively 1 time giving a training set of 9000 compounds, 3000 

unique mediums, 6 copies each of 500 highs and 2 copies each of 1500 lows. The 2071 compounds 

that were not selected by BigPicker now constituted Test set A. Approximately 300 out of the 837 

high activity compounds originated from the same project and were therefore structurally similar. The 

choice of 500 selected high compounds was made to reduce the models bias towards these series. 

Since BigPicker selects molecules by structural diversity, a majority of these compounds ended up in 

Test set A. The number of compounds from each molecule class found in each activity class in each 

dataset in Table 2 can be found in Appendix 6.1.   

 

 

 



 18 

2.10.2 Central amine model 

 

Table 3. Number of compounds in each activity class for the central amine original dataset and the Central amine 

model training and test sets. X*Y means that X compounds are present in Y copies in the Central Amine 

Training set for weighting reasons. 

  Central amines 

Original set 

Central amine 

Training set 

Test set C Test set BC 

High pIC50≥6 706 400*3 306 109 

Medium 4.5≤pIC50≤6 1318 1200 118 418 

Low pIC50≤4.5 240 200*6 40 229 

Sum  2264 3600 464 756 

 

The central amine original dataset is comprised of the 2264 central amines filtered out from the 

original dataset of 7071 compounds (Figure 5). The central amine training set was prepared in the 

same way as the original training set and the numbers of compounds from each activity class and 

multiplications is found in Table 3. Test set C is all central amines in the original dataset that was not 

selected by BigPicker and Test set BC is all central amines in Test set B (Figure 6). The performances 

of the General and the Central amine model on Test set BC can readily be compared. 

 

2.10.3 Terminal amine model 

 

Table 4. Number of compounds in each activity class for the terminal amine original dataset and the Terminal 

amine model training and test sets.  X*Y means that X compounds are present in Y copies in the Terminal 

Amine Training set for weighting reasons. 

  Terminal amines 

Original set 

Terminal amine 

Training set 

Test set T Test set BT 

High pIC50≥6 104 80*10 24 15 

Medium 4.5≤pIC50≤6 1234 800 434 550 

Low pIC50≤4.5 565 400*2 165 337 

Sum  1903 1280 623 902 

 

The terminal amine original dataset is comprised of the 1903 terminal amines filtered out from the 

original dataset of 7071 compounds. The terminal amine training set was prepared in the same way as 

the original and central amine training set (Figure 5) and the numbers of compounds from each 

activity class and multiplications is found in Table 4. Test set T is all terminal amines in the original 

dataset that was not selected by BigPicker and Test set BT is all terminal amines in Test set B (Figure 
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6). The performances of the General and the Terminal amine model on Test set BT can readily be 

compared. 

 

2.11 Classification with PLS-DA 

 

The General, Central and Terminal amine PLS-DA models were all generated in Simca-P+ v.10.0.2.0 

with the same protocol. Work set was the respective training set, all variables except pharmacophore 

fit, Smarts, Selma parameters and three random variables were excluded, the classes were set from the 

activity classes, model type in Simca was changed to PLS-DA and a first model was generated with 

autofit. Since several observations were present in several copies, the default validation based on Q2-

values suggested overfitted models. These models has no problem to predict a left out observation that 

there is another copy of in the work set and the resulting Q2-value of such a validation is therefore too 

high. For this reason after autofit of a model, the last components were deleted. Usually the first five 

components were left after inspection of R2-values, Q2-values and number of iterations for the last 

components. After the first model was generated, all variables that did not have a VIP-value higher 

than all the three random variables were deleted along with the random variables. Finally a second 

model was generated with autofit and the last components were deleted as above.  
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3 Results and discussion 

3.1 Pharmacophores 

 

Pharmacophore features are coloured as follows: ring aromatic (R), two adjacent orange spheres; 

poison (P), orange; hydrophobic (H), blue; hydrogen bond acceptors (A), two adjacent green spheres; 

exclusion volumes (ex), black. The aligned molecules in the figures are drugs that are on, or have been 

withdrawn from, the market [3].  

 

3.1.1 Central amine pharmacophores 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Droperidol (yellow) and Risperidon (red) aligned with RHPklex1. 

 

RHPklex1 (Figure 7) consists of one central Posion (P) feature between one ring aromatic (R) and 

one hydrophobic (H) feature. The topology  is slightly bent. Similar pharmacophores have previously 

been published [3, 8]. A novel feature with this hypothesis is the addition of a number of exclusion 

volumes that blocks out compounds branched in the ring aromatic part of the molecule. The rationale 

behind exclusion volumes is that they represent a subset of the volume where protein residues are 

situated when binding to the ligand. In RHPklex1 these volumes are manually placed further away 

from the R and P features compared to the automatically generated RHPklex2, allowing larger and 

more substituted molecules to map the pharmacophore. Because of this more generously allowed 

volume, practically all central amines fit the query and it can be used for filtering, but does not provide 

excellent enrichment among central amines. The volumes are still blocking out most terminal amines 

that could map the RHP query without exclusive volumes in twisted and high-energy conformations. 

The P feature as an experiment got a weight of 2 early during development since this feature is known 
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[20] to be very important for hERG binding. It is not though thoroughly investigated how big the 

impact of this weighting is on performance.  

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Pimozide (brown) and Cisapride (green) aligned with RHPklex2. 

 

RHPklex2 (Figure 8) is the most enriching pharmacophore, both for the entire dataset and the central 

amines. It has a topology similar to RHPklex1, but the distance between the features is slightly longer 

and they are nearly linearly aligned. The HipHopRefine-generated exclusion volumes surrounds the 

entire R & P half of the query and are placed closer to them than in RHPklex1. This results in a small 

allowed volume around the features that blocks out R or P-branched compounds. The exclusion 

volumes are rather small and gaps between them allow substitutions, but these compounds often get 

their fit-values reduced below minfit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Cisapride aligned with RHPAklex.  
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RHPAklex (Figure 9) is very similar to RHPklex1, but has an additional H-bond acceptor (A) feature 

situated next to the aromatic ring. Hydrogen bonding to residues in the selectivity filter of the hERG 

channel has previously [21, 22] been reported and a RPA pharmacophore similar to RHPAklex 

without the exclusion volumes and the H feature has been published [8]. The exclusion volumes are 

situated in similar positions as those in RHPklex1. The P feature has a weight of 2 for the same reason 

as RHPklex1.  

 

3.1.2 Terminal amine pharmacophores 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Norastemizole aligned with RHPtex1. 

 

RHPtex1 (Figure 10) consists of one ring aromatic (R) feature between one Posion (P) and one 

hydrophobic (H) feature. The three features are arranged almost linearly in space and the R and 

particularly H part of the query are surrounded by exclusion volumes since there was SAR for that 

branching in this area was negatively correlating with hERG activity. 
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Figure 11. Norastemizole aligned with RHPtex2. 

 

RHPtex2 (Figure 11) has the same features as RHPtex1, but they are arranged in a bent orientation 

instead of a linear. The exclusion volumes are fewer, but closer, to the main features resulting in a 

more difficult pharmacophore to fit than RHPtex1. The space beyond the H feature is also less closed 

than in RHPtex1. Pharmacophores resembling the two RHPtex hypothesis, but without exclusion 

volumes and with the H feature positioned next to the R feature at the same distance from P, has been 

reported [8, 9]. One interesting property of RHPtex2 is that it functions as a negative pharmacophore 

for central amines. The R & H features can represent an aromatic ring branched in a direction away 

from the basic nitrogen. Branches like this are blocked by the exclusion volumes around the central 

amine pharmacophores. For this reason RHPtex2 is less correlated with hERG activity in the General 

model. This contributes to the bad performance of the General model in predicting highly active 

terminal amines (presented in the modelling section, Table 4). 

 

 

 

 

 

 

 

 

 

 

Figure 12. Sildenafil aligned with RRHPtneg. 
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Visual inspection of pIC50 vs. fit values to the pharmacophore RRPterm in Spotfire® suggested that 

addition of a hydrophobic feature would produce a negative pharmacophore – a pharmacophore that 

mostly non-actives fit. RRHPtneg (Figure 12) was generated and fit to this pharmacophore did indeed 

correlate negatively with pIC50 for terminal amines. That compounds with this topology are generally 

not hERG active is also supported by Aronov [20]. 

 

3.1.3 Neutral pharmacophores 

 

No neutral pharmacophores have previously been reported. Finding SAR among the neutral 

compounds is difficult and the neutral pharmacophores are not as enriching as the central and terminal 

amine pharmacophores, meaning that they don’t discriminate as well between actives and inactives. 

 

 

 

 

 

 

 

 

 

Figure 13. Astemizole aligned with RHHHneu. Note that Astemizole is not a neutral compound. 

 

RHHHneu (Figure 13) consists of three hydrophobic (H) and one ring aromatic (R) features. A lot of 

compounds fit this pharmacophore. 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Domperidone aligned with RHHHAneu. Note that Domperidone is not a neutral compound. 
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RHHHAneu (Figure 14) is quite similar to RHHHneu, but has an additional H-bond acceptor (A) 

feature. This extra feature makes it more difficult to fit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Loratadine aligned with RHHAnexsh. The light-blue volume is the shape constraint. 

 

RHHAnexsh (Figure 15) is a complex pharmacophore comprised of two hydrophobic (H), one ring 

aromatic (R) and one H-bond acceptor features (A), exclusion volumes and a shape restriction. The 

exclusion volumes block both hydrophobic ends from branching and the shape constraint punishes 

excursions from the mapping of the highly active AZ-compound which was template for the shape 

constraint. The SAR behind the exclusions was not as solid as in the central and terminal amine case. 

The shape restriction slows down screening of compound-databases. 
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3.2 Classification with PLS-DA 

 

3.2.1 General model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Loading plot for the General model. The class variables are marked in red. 

 

The General model contained 4 components. Most important variables were RHPklex2, RHPklex1, 

the Smart para_herg_3 and RHPAklex. All correlated positively with pIC50 (Figure 16). These 

variables are in top because central amines, which are in majority among highly active compounds, fit 

to them. Also in the top are the descriptors Negion, Posion and the Selma parameters polar surface 

area (PSA) and clogp. Negion and PSA are negatively correlated to hERG pIC50 and Posion and clogp 

positively correlated. It has previously been reported that positive ionisable, hydrophobic compounds 

block hERG channels [20]. 
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3.2.1.1 Test set results 

 

Table 5. General model results on Test set A. Recall for an activity class is the percentage of compounds in that 

class that is predicted correctly.  Precision for an activity class is the percentage of compounds correctly 

predicted to belong to that class.   

%  Correct 66.2 Predicted
Precision (% ) Recall (% ) low med high sum

69.3 57.8 low 410 244 55 709
69.4 66.2 Observed med 181 679 165 1025
56.1 83.4 high 1 55 281 337

sum 592 978 501 2071  

 

Table 6.  General model results on Test set B. 

%  Correct 59.6 Predicted
Precision (% ) Recall (% ) low med high sum

68.1 54.2 low 769 554 95 1418
64.3 62.8 Observed med 358 1048 263 1669
21.8 76.3 high 2 29 100 131

sum 1129 1631 458 3218  

 

The results on Test set A (Table 5) are generally better than on Test set B (Table 6). This is not 

surprising since BigPicker was used for division of the original dataset into training set and Test set A. 

The compounds of Test set A should be within the structural space of the training set. Another reason 

for the better result is that the proportion of high affinity compounds is lower in Test set B, and the 

General model is good at predicting the high class compounds. 

 

Recall for an activity class is the percentage of compounds in that class that is predicted correctly. For 

example recall for the high activity class is the percentage of the highly active compounds that are 

predicted to be highly active by the classification model.  Precision for an activity class is the 

percentage of compounds correctly predicted to belong to that class.  

 

Two important figures are recall for the high class and precision for the low class. These are good on 

both test sets. High recall for high activity compounds is important, because then you know that 

compounds predicted as low or medium are not highly active. These compounds can then be 

considered as safe or at least possible to develop away from hERG affinity. Development of a 

compound series from medium to low hERG activity is much more likely to succeed than 

development from high to low hERG activity. In the latter case such comprehensive structural changes 

may be needed that affinity to the pharmacological target may be hard to maintain. High precision for 

the low class is important because then you can trust that the compounds predicted as low are low and 

not medium or highly hERG active. But high precision for the low class is not as valuable if not the 
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recall for the low class are high. The recall for the low class is only 54% and 58% respectively for Test 

set A & B. Especially serious are double-faults, and particularly high class compounds that are 

predicted as low active. A model that plays it safe and overestimates all activities are not good either, 

because it will reduce freedom to operate, produce a lot of misclassifications and will not be trusted by 

the users.  

 

The results of the General model on the central and terminal amine compounds of Test set B (Test set 

BC and BT) will be presented and discussed in the central and terminal amine model chapters. 

 

Table 7. General model results on neutral compounds in Test set B. 

%  Correct 61.7 Predicted
Precision (% ) Recall (% ) low med high sum

62.2 64.3 low 440 242 2 684
61.7 59.6 Observed med 267 401 5 673
0.0 0.0 high 0 7 0 7

sum 707 650 7 1364  

 

Table 8. General model results on acidic compounds in Test set B. 

%  Correct 75.5 Predicted
Precision (% ) Recall (% ) low med high sum

95.5 88.1 low 148 1 19 168
0.0 0.0 Observed med 7 0 21 28
0.0 0.0 high 0 0 0 0

sum 155 1 40 196  

 

In Table 7 and 8, the General model results on neutral and acidic compounds in Test set B are 

presented. The results are not bad, but a problem is that the General model associates the high class 

with central amines since those are in majority and high class neutral compounds are not predicted 

correctly. Some acidic compounds are central amine zwitterions and many of those are incorrectly 

predicted to be highly active. The results on neutrals and acids in the training set and Test set A (not 

presented here) were very similar. 
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3.2.2 Central amine model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. (a) Loading plot for the Central amine model. The class variables are marked in red. (b) Scatter plot of 

hERG pIC50 vs. clogp for the compounds in the central amine training set. 

 

The Central amine model contained 5 components. Most important variables were the positively 

correlated clogp, RHPklex2, the two Smarts para_herg_3 and PARA_HERG and the negatively 

correlated Selma parameter HB-donors (Figure 17a). Figure 17b depicts hERG pIC50 vs. clogp for the 

compounds in the central amine training set. There is correlation, but there seems to be an optimum 

clogp range from 2 to 5. This was also reported previously [20]. Clogp and pharmacophores with 

exclusion volumes are good descriptors to combine in a prediction model since they span different 

dimensions of the property space (Figure 17a), but are both strongly correlating with hERG pIC50. 

Descriptors associated with the low activity class were primarily different measures of polarity and 
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some smarts (Figure 17a). With these results in mind, an interesting approach for lowering hERG 

activity for highly active compounds is to substitute them with polar branches that protrude into 

volumes blocked by exclusion volumes. 

 

3.2.2.1 Test set results 

 

Table 9. Central amine model results on Test set C. 

%  Correct 79.3 Predicted
Precision (% ) Recall (% ) low med high sum

44.7 85.0 low 34 3 3 40
67.4 54.2 Observed med 34 64 20 118
92.2 88.2 high 8 28 270 306

sum 76 95 293 464  

 

Table 10. Central amine model results on Test set BC. 

%  Correct 57.3 Predicted
Precision (% ) Recall (% ) low med high sum

50.4 73.8 low 169 43 17 229
76.1 39.7 Observed med 164 166 88 418
48.3 89.9 high 2 9 98 109

sum 335 218 203 756  

 

Table 11. General model results on central amines in Test set B, in other words Test set BC. 

%  Correct 45.8 Predicted
Precision (% ) Recall (% ) low med high sum

64.7 24.0 low 55 115 59 229
60.8 45.7 Observed med 29 191 198 418
28.0 91.7 high 1 8 100 109

sum 85 314 357 756  

 

The Central amine model results on Test set C and BC again highlights the impact of test set 

composition on percent correctly predicted compounds. The result for Test set C (Table 9) was 79% 

correct. The recall for the high and low class was excellent, but the medium class recall was an 

average 54%. The proportion of high activity compounds in Test set C was large. The number of 

double-faults was also higher than desired. In Test set BC (Table 10), medium compounds were in 

majority and that effects the percent correctly predicted. The recalls were also lower on this test set. 

 

It is interesting to compare the performances of the General (Table 11) and Central amine (Table 10) 

models on Test set BC. The General model associates the low activity class with neutrals and acids 

and had very low recall for low activity central amines. The activities were generally overestimated 

and only 46% were predicted correctly. The corresponding figure for the Central amine model was 
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57%. The big difference between the General and the Central amine model results was that the latter 

has a much higher recall for low class compounds, 74% compared to 24%. 

 

3.2.3 Terminal amine model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18.  (a) Loading plot for the Terminal amine model. The class variables are marked in red. (b) Scatter plot 

of hERG pIC50 vs. clogp for the compounds in the terminal amine training set. (c) Scatter plot of hERG pIC50 vs. 

PSA for the same compounds. Note that hERG pIC50 and PSA is anti-correlated. 

 

The Terminal model contained 5 components. Most important variables were clogp, RHPtex2 and 

polar surface area (PSA). The first three were positively correlated with hERG pIC50 and PSA was 

negatively correlated (Figure 18a). Figure 18b is a scatter plot of pIC50 vs. clogp for the compounds in 
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the terminal training set. It is visible in the plot that the correlation is stronger for terminal amines than 

central amines (Figure 17b). Figure 18c depicts the negative correlation between hERG pIC50 and PSA 

for the same compounds. 

 

3.2.3.1 Test set results 

 

Table 12. Terminal amine model results on Test set T. 

%  Correct 50.4 Predicted
Precision (% ) Recall (% ) low med high sum

50.7 86.1 low 142 15 8 165
90.3 34.3 Observed med 138 149 147 434
12.9 95.8 high 0 1 23 24

sum 280 165 178 623  

 

Table 13. Terminal amine model results on Test set BT. 

%  Correct 48.0 Predicted
Precision (% ) Recall (% ) low med high sum

66.5 64.1 low 216 73 48 337
72.8 37.5 Observed med 109 206 235 550
3.7 73.3 high 0 4 11 15

sum 325 283 294 902  

 

Table 14. General model results on terminal amines in Test set B, in other words Test set BT. 

%  Correct 64.5 Predicted
Precision (% ) Recall (% ) low med high sum

69.2 37.4 low 126 196 15 337
68.5 82.9 Observed med 55 456 39 550
0.0 0.0 high 1 14 0 15

sum 182 666 54 902  

 

The results of the Terminal amine model on Test set T (Table 12) and BT (Table 13) shows a similar 

pattern as the Central amine model performance. Recalls were high or acceptable for the low and high 

class. Since the number of high activity compounds in the test sets was low and mediums were in 

majority, the percent correctly predicted were only about 50%. The model can discriminate between 

highs and lows much better than the General model (Table 14) that predicts almost all terminal amines 

to be medium active. Since most terminal amines are medium active, 65% of Test set BT was 

predicted correctly.  
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3.3 Additional models 

 

Development of Neutral and Acid models was not prioritized due to lack of time and possible 

weighting problems arising from the low number of high activity compounds among the neutral and 

acidic compounds. 

 

3.3.1 PLS 

 

PLS-models were also developed in Simca-P+ v.10.0.2.0  using the same training sets as in the PLS-

DA models. The general performance of PLS in hERG activity classification was that recall for the 

medium class was excellent, around 80-90%, for the high class it was around 50-70% and for the low 

activity class it was mediocre - around 20%. One reason for these results is that PLS is a regression 

and not a classification method. Another reason for the poor recall for low class compounds is that 

pIC50 were set to 4.5 for compounds whose hERG activity were not measurable in the assay. 4.5 is 

the defined limit between the poor and the medium class. If a compound with a pIC50 of 4.5 is 

predicted to 4.51 it will be misclassified, but the numerical error will be very small.  

 

PLS predictions may still be useful as additional information in a webtool. Results not presented here 

show that high activity compounds that are classified as medium by PLS-DA are in over 90% of the 

cases predicted by PLS to have a pIC50≥5. Thus, a compound that is classified as medium and have a 

PLS-predicted pIC50<5 is highly unlikely to be highly active.  

 

3.3.2 PLS-DA with two classes 

 

PLS-DA models that classifies compounds as more or less active than pIC50=5 were also generated. 

Results are not presented in this report. The percent correct predictions was high, usually 70-80%. 

Since the task for these classifiers were simpler than for the 3-class PLS-DA models, this was no 

surprise. The problem is that there is no medium class separating the high and low activity class. The 

high class is then not as well separated from the low class by the model and the risk for double-faults 

is larger. 
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3.3.3 RDS 

 

Non-linear modelling was also performed with RDS (Rule Discovery System) [23] by my supervisor 

at AstraZeneca. Preliminary results were very good almost meeting the 80% aim, with additional 

conditions such as high recall for high and low active compounds also fulfilled. More extensive hERG 

modelling will be performed by computational chemists at AstraZeneca, using RDS, the new 

pharmacophores and the molecule class separation system developed in this work. 
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4 Conclusions 

 

Eleven new pharmacophores for hERG binding were generated. They were developed for three 

different molecule classes – central amines, terminal amines and neutral compounds. They give good 

enrichment and provide visual feedback to chemists trying to avoid hERG active compounds in lead 

development. By using these pharmacophores and the scheme presented above (Figure 4), compounds 

can now be automatically sorted into four molecule classes – the three mentioned above and acids. 

Since these classes have distinctly different distributions of hERG pIC50, this is a practical way of 

dividing the dataset into subsets. Due to the automated sorting, these subsets can easily be treated and 

analysed separately or in groups. This may be very useful. For example the usually low active acids 

can be filtered out from the other three molecule classes and, maybe with some reservation, be 

predicted as low active. Then a model might be generated for the three remaining molecule classes or 

the highly active central amines may be filtered out from the other two classes and predicted 

separately. There are many different approaches and subsettings to investigate. Many of the different 

approaches of hERG modelling using subsets were not tested properly in this work, due to lack of time 

and because the software RDS was not available for use in this study.  

 

Some conclusions may be drawn from the PLS-DA classification modelling performed in this work. 

When the training sets are evenly weighted as in this case, Central amine and Terminal amine models 

are better than a General model in separating high and low activity compounds within their respective 

molecule class, but may produce a larger number of misclassifications. This because they have lower 

recall for the medium activity class, which most compounds in the dataset belong to. Most terminal 

amines are medium active and if a separate model is to be used for these, it should be carefully 

weighted or a non-linear modelling method should be used.  

 

The General model generalises and associates acids with the low activity class, neutrals with the low 

or medium activity class, terminal amines with the medium activity class and central amines with the 

medium or high activity class. This is generally true and that is important, but the General model will 

not recognise the highly active neutrals or terminal amines or the low activity central amines that exist. 

One important reason for these generalisations is that the molecule classes are not evenly weighted in 

each activity class in the General model training set. To perform this kind of weighting in Simca is 

very time-demanding and was therefore not executed. One argument for separate models for separate 

molecule classes is that pharmacophores for the terminal amines are negative for central amines. Also, 

if the different molecule classes bind to different binding sites in hERG, separate modelling may be 

most appropriate since the SAR will be different. In the literature, there is very little published on 
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hERG binding for neutral compounds, but for amines many research groups agree on the position of 

the basic nitrogen of a compound when it binds to hERG [17, 20, 24] 

 

Looking forward this work opens up for several new approaches for hERG modelling. The secondary 

aim of this work – to generate a classification model that could achieve 80% accuracy in prediction – 

was not met, but there is hope for the future. RDS classification models will definitely give higher 

recalls. The aim should also be rephrased to at least 80% recall for all activity classes. Now there are 

eleven new pharmacophores to use as descriptors and this may also have impact on model 

performance. Though test model results not presented here suggests that a lot of this structural 

information is already covered by the Smarts. Subset modelling will be very interesting and may 

improve results. Already in this work, separate central amine modelling was shown to be rewarding. 
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7 Appendix 

7.1 Distribution of activity classes and molecule classes in General model datasets  

 

Original set 

  Central 

amines 

Terminal 

amines  

Neutrals Acids Sum 

High pIC50≥6 706 104 25 2 837 

Medium 4.5≤pIC50≤6 1318 1234 1344 129 4025 

Low pIC50≤4.5 240 565 964 440 2209 

Sum  2264 1903 2333 571 7071 

 

Training set 

  Central 

amines 

Terminal 

amines  

Neutrals Acids Sum 

High pIC50≥6 411*6 73*6 14*6 2*6 3000 

Medium 4.5≤pIC50≤6 994 919 991 96 3000 

Low pIC50≤4.5 166*2 337*2 651*2 346*2 3000 

Sum  3792 2031 2377 800 9000  

 

Test set A 

  Central 

amines 

Terminal 

amines  

Neutrals Acids Sum 

High pIC50≥6 295 31 11 0 337 

Medium 4.5≤pIC50≤6 324 315 353 33 1025 

Low pIC50≤4.5 74 228 313 94 709 

Sum  693 574 677 127 2071 

 

Test set B 

  Central 

amines 

Terminal 

amines  

Neutrals Acids Sum 

High pIC50≥6 109 15 7 0 131 

Medium 4.5≤pIC50≤6 418 550 673 28 1669 

Low pIC50≤4.5 229 337 684 168 1418 

Sum  756 902 1364 196 3218 

 


